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Abstract 
Background: Resistance to cisplatin (DDP) leads to poor prognosis in pa-
tients with Lung Adenocarcinoma (LUAD) and limits its clinical application. 
It has been confirmed that autophagy promotes chemoresistance and, there-
fore, novel strategies to reverse chemoresistance by regulating autophagy 
are desperately needed. Methods: The differentially expressed lncRNAs 
(DElncRNAs), miRNAs (DEmiRNAs), and mRNAs (DEmRNAs) between 
A549 and A549/DDP cell lines were identified using the limma package in R, 
after gene expression profiles were obtained from Gene Expression Omnibus 
(GEO) database. By combining Autophagy-Related Genes (ARGs) from Hu-
man Autophagy Database (HADb), the interactions lncRNA-miRNAs and 
the interactions miRNAs-mRNAs respectively predicted by miRcode and 
miRDB/Targetscan database, the autophagy-related ceRNA network was con-
structed. Then, extraction of ceRNA subnetwork and Cox regression analyses 
were performed. A prognosis-related ceRNA subnetwork was constructed, 
and the upstream Transcription Factors (TFs) regulating lncRNAs were pre-
dicted by the JASPAR database. Finally, the expression patterns of candidate  
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genes were further verified by quantitative real-time polymerase chain reac-
tion (qRT-PCR) experiments. Results: A total of 3179 DEmRNAs, 180 DE-
miRNAs, and 160 DElncRNAs were identified, and 35 DEmRNAs were con-
tained in the HADb. Based on the ceRNA hypothesis, we established a ceRNA 
network, including 10 autophagy-related DEmRNAs, 9 DEmiRNAs, and 14 
DElncRNAs. Then, LINC00520, miR-181d, and BCL2 were identified to con-
struct a risk score model, which was confirmed to be a well-predicting prog-
nostic factor. Furthermore, 5 TF ZNF family members were predicted to re-
gulate LINC00520, whereas the RT-PCR results showed that the 5 ZNFs 
were consistent with the bioinformatics analysis. Finally, a ZNF regulato-
ry LINC00520/miR-181d/BCL2 ceRNA subnetwork was constructed. Con-
clusions: An ZNFs/LINC00520/miR-181d/BCL2 axis as a novel network in 
DDP-resistant LUAD has been constructed successfully, which may provide 
potential therapeutic targets for LUAD. 
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1. Introduction 

Lung cancer ranks high in the incidence and mortality of malignant tumors 
worldwide [1] [2]. Approximately, 85% of lung cancer is Non-Small Cell Lung 
Cancer (NSCLC), and in this type, Lung Adenocarcinoma (LUAD) has the worst 
prognosis [3]. Currently, chemotherapy is still the major treatment method, but 
drug resistance often leads to treatment failure or tumor recurrence. The poten-
tial mechanisms of chemoresistance are as follows: 1) the overexpression of ef-
flux transporters such as ATP-Binding cassette transporters may lead to in-
creased drug efflux and/or decreased drug influx [4]; 2) tumor cells may have 
defects in the apoptotic machinery by overexpressing anti-apoptotic proteins or 
under-expressing pro-apoptotic proteins [5] [6]; 3) there may be dysregulation 
of DNA damage repair pathways [7], including base excision repair, nucleotide 
excision repair, single-strand break repair, and DNA mismatch repair [8]; 4) 
there may be activation of detoxifying systems, including glutathione and gluta-
thione S-transferase P1 [9]; 5) there may be an epithelial-to-mesenchymal tran-
sition, which is conducive to chemoresistance [4]; 6) cancer stem cells, as a sub-
group of tumor-initiating cells, can self-renew and may cause resistance to con-
ventional chemotherapy [10]. However, the mechanisms of chemoresistance in 
lung cancer have not been fully elucidated and further studies are needed. 

Recently, substantial evidence has suggested that autophagy, a conserved me-
tabolic process, which promotes orderly degradation and recycling of the intra-
cellular organelles and cytoplasmic proteins [11], plays a vital role in chemore-
sistance. For instance, galectin-1 could lead to chemoresistance against cisplatin 
(DDP) treatment by inducing autophagic flux in hepatocellular carcinoma cells, 
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which could be reversed by an autophagy inhibitor or knockdown of Autopha-
gy-Related Gene 5 (ATG5) [12]. Kim et al. [13] demonstrated that DDP treat-
ment induced GDNF Family Receptor α 1 (GFRA1) expression in human osteo-
sarcoma cells. On the other hand, the induction of GFRA1 reduced DDP-induced 
apoptotic cell death by regulating AMPK-dependent autophagy. Tan et al. [14] 
indicated that the Thioredoxin-Related Protein of 14 kDa (TRP14) induced 
autophagy and consequently DDP resistance in ovarian cancer cells via the 
AMPK/mTOR/p70S6K signaling pathway. Moreover, autophagy and DDP resis-
tance were decreased or increased with knockdown or overexpression of TRP14, 
respectively, and this effect was reversed by treatment with Rapa or ATG5 knock-
down. These studies strongly suggest that regulation of autophagy activity might 
be an efficient strategy for reversing chemoresistance. 

A competitive endogenous RNA (ceRNA) hypothesis, which describes that 
transcripts could regulate each other at the post-transcription level by competing 
for shared microRNA (miRNA) response elements, was proposed in 2011 [15]. 
Recently, a growing body of evidence has indicated that long non-coding RNA 
(lncRNA)-miRNA-mRNA ceRNA regulatory networks are closely associated 
with the occurrence, development, invasion, and metastasis of NSCLC [16] [17] 
[18] [19], as well as chemoresistance. Xiao et al. [20] reported that lncRNA 
CASC2, as a ceRNA, bound to miR-18a and repressed its function to release tar-
get gene IRF-2 in NSCLC cells, thus strongly inhibiting the proliferation, migra-
tion, and invasion of DDP-resistant NSCLC cells (H226/DDP and A549/DDP) in 
vitro and tumor growth in vivo. Moreover, a handful of studies have described 
interactions among lncRNA, miRNA, and mRNA, which play crucial roles in 
autophagy-related chemoresistance in NSCLC. For example, Sun et al. [21] 
demonstrated that the knockdown of lncRNA-XIST restored the chemosensitiv-
ity of DDP-resistant A549 cells to DDP via regulating autophagy by the ceRNA 
pathway of lncRNA-XIST/miR-17/ATG7. Huang et al. [22] found that BLACAT1 
was upregulated in DDP-resistant NSCLC cells, and it promoted autophagy and 
chemoresistance of NSCLC cells through the miR-17/ATG7 signaling pathway. 
Therefore, it is necessary to construct more holistic and systematic ceRNA net-
works that regulate chemoresistance depending on autophagy in NSCLC. 

In the present study, we aim to identify Autophagy-Related Differentially Ex-
pressed mRNAs (ARDEmRNAs), differentially expressed miRNA (DEmiRNAs), 
and differentially expressed lncRNAs (DElncRNAs) between DDP-sensitive 
A549 cells and DDP-resistant A549/DDP cells by bioinformatics analysis. Fur-
thermore, the ceRNA regulatory network related to autophagy was constructed, 
and functional annotation and network analysis were subsequently performed 
on the genes in the network. In addition, the subnetwork was extracted based on 
critical nodes. The relationships with prognoses were further analyzed utilizing 
the clinical data from The Cancer Genome Atlas (TCGA). The independent 
prognostic factors LINC00520, miR-181d, and BCL2 were screened out to con-
struct the risk model. Meanwhile, Transcription Factors (TFs) located upstream 
of LINC00520 were predicted. This study will contribute to understanding the 
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molecular mechanism of chemoresistance in LUAD and provide new therapeu-
tic targets for the treatment of LUAD chemoresistance. 

2. Materials and Methods 
2.1. Data Acquisition 

Three primitive microarray datasets including expression profiles of mRNAs, 
miRNAs, and lncRNAs in DDP-sensitive A549 cells and DDP-resistant A549/DDP 
cells, i.e. GSE108214 [23], GSE157692 [24], and GSE43493, were downloaded 
from the National Center for Biotechnology Information (NCBI) Gene Expres-
sion Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/) [25]. The 
basic information for the three datasets was listed in Table 1. 

2.2. Data Processing and Differential Expression Analysis 

To obtain gene expression matrix data, the R program was applied to normalize 
the microarray data and annotate the probe. The limma R package was used to 
screen Differentially Expressed Genes (DEGs). Significantly DEmRNAs, DEmiR-
NAs and DElncRNAs were screened by P < 0.05 and |log2(fold-change)| > 1. 

2.3. Screening of ARDEmRNAs 

A total of 232 ATGs were extracted from Human Autophagy Database (HADb, 
http://www.autophagy.lu/index.html). Then, the intersection of 232 ATGs and 
significantly DEmRNAs in GSE108214 dataset was taken to obtain ARDEmRNAs 
using Venn software (v2.0;  
http://www.bioinformatics.com.cn/static/others/jvenn/index.html). 
 
Table 1. Information on the three chips from gene expression omnibus database. 

Data 
Source 

Platform 
Chip Service 

Provider 
Sample Size Year 

Types of 
RNA 

GSE108214 GPL17077 

Agilent-039494 
SurePrint G3 

Human GE v2 
8x60K  

Microarray 
039381 (Probe 
Name version) 

Four A549 cell 
samples and five 
A549/DDP cell 
samples were  

selected from 22 
total samples 

2018 mRNA 

GSE157692 GPL18573 

Illumina  
NextSeq 500 

(Homo  
sapiens) 

two pairs samples 
of A549 and 
A549/DDP 

2021 miRNA 

GSE43493 GPL15314 

Arraystar  
Human 
LncRNA  

microarray 
V2.0 

three pairs  
samples of A549 
and A549/DDP 

2013 LncRNA 
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2.4. Construction of Autophagy-Related ceRNA Network 

The interactions between miRNAs and 23 ARDEmRNA were predicted using 
two online analysis tools: miRDB (http://www.mirdb.org/miRDB) and TargetS-
can (http://www.targetscan.org), and the miRNAs that were predicted in two 
databases simultaneously were obtained. Additionally, the DElncRNAs-miRNAs 
interactions were predicted by miRcode (http://www.mircode.org). The intersec-
tion of these two miRNA sets and the DEmiRNAs was taken using Venn software. 
Based on the “ceRNA hypothesis”, a ceRNA regulation network must meet the 
following criteria: 1) The lncRNA was co-expressed positively with mRNA. 2) The 
lncRNA was co-expressed negatively with miRNA. 3) The mRNA was co-expressed 
negatively with miRNA. The interactive networks of DElncRNAs, DEmiRNAs, 
and ARDEmRNAs were thus established. The Cytoscape (Version 3.6.0) soft-
ware was used to visualize the ceRNA network.  

2.5. Functional Enrichment Analysis 

Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) pathway enrichment analyses were performed using the DAVID 
v6.8 online tool (https://david-d.ncifcrf.gov/). GO functional categories included 
Biological Process (BP), Cellular Component (CC), and Molecular Function (MF). 
Statistically significant terms were determined using a two-sided P < 0.05. 

2.6. Protein-Protein Interaction (PPI) Analysis 

A PPI network of the ARDEmRNAs included in the ceRNA network was con-
structed using the STRING online database (https://string-db.org/), with the 
cut-off criterion of an interaction score > 0.4. Then, the TSV file of the PPI net-
work was imported into Cytoscape v3.6.0. CytoHubba, a plugin in Cytoscape, 
was utilized to select hub genes of the PPI network. Subsequently, significant 
modules of the network were screened out using the Molecular Complex Detec-
tion (MCODE), another plugin in Cytoscape. P < 0.05 was considered statistically 
significant. 

2.7. Extraction of Subnetwork 

The ceRNA network topological properties were calculated using the Networ-
kAnalyzer Tool in Cytoscape v3.6.0. Based on degree, betweenness centrality, 
and radiality, the top 10% nodes were taken as critical nodes, which were used to 
further construct a subnetwork. Additionally, the TSV file of the whole ceRNA 
network was imported into Cytoscape v3.6.0. The hub genes were defined by the 
Maximal Clique Centrality (MCC) algorithm in CytoHubba. 

2.8. Survival Analysis 

Gene expression and clinical data of 586 LUAD patients were obtained from 
the TCGA dataset by using R program software. Patients were classified into 
groups with up-regulation and down-regulation based on the optimal cut-off 
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value. Kaplan-Meier survival curves were plotted using SangerBox online tools 
(http://sangerbox.com/). Furthermore, univariate and multivariate Cox regres-
sion analyses were conducted using SPSS 19.0, and P < 0.05 indicated a signifi-
cant difference. The significant prognosis-related genes were used to construct a 
prognostic risk score model for predicting Overall Survival (OS). The formula of 
the risk score model was as follows: risk score = expression level of Gene 1 × β1+ 
expression level of Gene 2 × β2+ ··· + expression level of Gene N × βN, where β 
is the regression coefficient calculated by multivariate Cox regression analysis 
[26]. According to the median risk score, patients were classified into high-risk 
and low-risk groups. To verify the predictive performance of the risk score in 
correctly classifying patients into deaths and lives, Receiver Operator Characte-
ristic (ROC) curves were plotted. The univariate and multivariate Cox regression 
analyses were conducted again to assess whether the risk score is independent of 
the clinical features in LUAD patients. 

2.9. Screening of TFs 

Firstly, the promoter sequences of lncRNAs were obtained from the NCBI data-
base (https://www.ncbi.nlm.nih.gov/gene/) and stored in FASTA format. The 
promoter region was defined as the 2000 bp upstream and 100 bp downstream 
of the transcriptional start site. Next, TFs that could bind to the promoter region 
were predicted by the UCSC Genome Browser  
(http://genome.ucsc.edu/index.html). The JASPAR2018 TFBS hg38 Track min-
imum score was set to 800. Finally, possible TF binding sites in the promoter re-
gion were predicted by the JASPAR database (https://jaspar.genereg.net/), and high-
er scores indicated higher reliability. 

2.10. Quantitative Real-Time Polymerase Chain Reaction  
(qRT-PCR) 

A549 were cultured in RPMI medium 1640 and A549/DDP cells were cultured 
in 10% FBS-RPMI medium 1640 and 2 µg/mL DDP (Sigma, United States) to 
maintain resistance. All cells were cultured in an incubator at 37˚C in an at-
mosphere containing 5% CO2. Total RNA was extracted from each cell line using 
TRIzol Reagent (Invitrogen, United States) according to the manufacturer’s in-
structions. The resulting RNA (2 µg) was used as a template for reverse-transcribing 
to first-strand cDNA synthesis of mRNA and lncRNA by using a PrimeScript™ RT 
reagent Kit (TaKaRa, China) in a total volume of 20 µL. RT-qPCR was per-
formed on a MX3000P Quantitative PCR System (Agilent Technologies, Japan) 
using a TB Green® Premix Ex TaqTMII kit (TaKaRa, China) referring to the pro-
tocol. Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) was used as the in-
ternal control, and mRNA and lncRNA values were normalized to that of GAPDH. 
The miRNA sequence-specific reverse transcription qRT-PCR for miR-181d and 
endogenous control U6 were performed according to Hairpin-itTM miRNAs 
qRT-PCR quantization kit and U6 snRNA real-time PCR normalization kit 
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(GenePharma, Shanghai, China). The relative expression of RNA was calculated 
by the 2−∆∆Ct method. Each sample was repeated in triplicate. The primers were 
purchased from Shanghai Sangong Bioengineering Co., Ltd. A list of primers is 
shown in Table 2. 

2.11. Statistical Analysis 

The differential expression levels of genes were compared by using two inde-
pendent samples Student t-test between the A549 cells and A549/DDP cells in 
the R program. The log-rank test was used to evaluate the difference in survival. 
The correlations between hub genes, seed genes, or clinical characteristics and 
prognoses were performed by univariate and multivariate Cox regression ana-
lyses. P < 0.05 was considered statistically significant. 

3. Results 
3.1. Identification of DEmRNAs, DEmiRNAs, and DElncRNAs 

Three microarray datasets (GSE108214, GSE157692, and GSE43493) were  
 
Table 2. Oligonucleotide primers used for RT-PCR validation of candidate noncoding 
RNAs and mRNAs in the present study. 

Genes Primer Sequence (5’-3’) 

ZNF384 
F: GTCTCAGGTCAGATCGAGAACA 

R: ACTCTGTGTCCATACTGATGCC 

ZNF24 
F: TGGCACTCTCAATATGGGTGT 

R: TGGAACTTCGGCTGAATGCTT 

ZNF263 
F: GTCTCACATTCCCAGTCAGGA 

R: GCATACAGACGGAACACCTTC 

ZNF341 
F: GAGGTGCCAAACCAGTGTGT 

R: TTTAGCTCGTCGGGTCTTCAG 

ZNF148 
F: GTTCTCCCGCAAAAATCCTTACA 

R: TGAAACGCATGTCACATTGACTA 

LINC00520 
F: GTGCTAGGAGGACCCATACG 

R: GCCACCAATGTGCTGTCAAG 

miR-181d 
F: CTGCCGAACATTCATTGTTG 

R: AGAGCAGGGTCCGAGGAT 

BCL2 
F: GGATGCCTTTGTGGAACTGT 

R: AGCCTGCAGCTTTGTTTCAT 

GAPDH 
F: GTGAAGGTCGGAGTCAAC 

R: GTT GAG GTC AAT GAA GGG 

U6 
F: CGCTTCGGCAGCCACATATAC 

R: TTCACGAATTTGCGTGTCATC 
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downloaded from the GEO database. After data standardization, the gene ex-
pression levels were compared between A549 cells and A549/DDP cells by a 
limma R package. A total of 3179 DEmRNAs (1684 upregulated and 1495 
downregulated) in GSE108214 dataset, 180 DEmiRNAs (69 upregulated and 111 
downregulated) in GSE157692 dataset, and 160 DElncRNAs (75 upregulated and 
85 downregulated) in GSE43493 dataset were identified using the standard of P < 
0.05 and |log2(fold-change)| > 1. The volcano maps showed the overall distribu-
tion of DEmRNAs, DEmiRNAs, and DElncRNAs between A549 cells and 
A549/DDP cells (Figures 1(A)-(C)). The top 50 genes of DEmRNAs, DEmiR-
NAs and DElncRNAs were displayed in the heatmaps (Figures 1(D)-(F)).  

3.2. Screening of 35 ARDEmRNAs 

Since autophagy is involved in chemoresistance, the intersection between  
 

 
Figure 1. Identification of DEmRNAs, DEmiRNAs, and DElncRNAs. Volcano plots of differentially expressed RNAs between 
A549 cells and A549/DDP cells. The red points in the plot represent up-regulated RNAs and the green points represent down-regulated 
RNAs with statistical significance. (A) mRNAs. (B) miRNAs. (C) lncRNAs. Heatmaps of top 50 differentially expressed RNAs be-
tween A549 cells and A549/DDP cells. The colors indicate the expression level: red indicates up-regulation, green means down-regulation 
and black indicates normal expression. Furthermore, each column represents a sample and each row represents a differentially 
expressed gene. (D) mRNAs. (E) miRNAs. (F) lncRNAs. 
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DEmRNAs in GSE108214 dataset and 232 ATGs from HADb was analyzed, and 
35 ARDEmRNAs were identified (Figure 2). 

3.3. Construction of Autophagy-Related ceRNA Network 

Firstly, 174 miRNAs targeting 35 ARDEmRNAs were predicted by both miRDB 
and TargetScan. Meanwhile, 262 miRNAs targeting 160 DElncRNAs were pre-
dicted by miRcode. After analyzing the intersection of 174 miRNAs, 262 miR-
NAs, and the 180 DEmiRNAs in the GSE157692 dataset, the 16 common miR-
NAs were obtained, as well as 16 common miRNA-DEmRNA interactions, and 
16 common miRNA-DElncRNA interactions. According to the regulatory rela-
tionships in the ceRNA hypothesis, 10 DEmRNAs (Table 3), 9 overlapped DE-
miRNAs, and 14 DElncRNAs (Table 4) were included in the ceRNA network. 
The specific steps for constructing an autophagy-related ceRNA network were 
shown in the flow chart (Figure 2), and a visualization of the ceRNA network  

 

 
Figure 2. Flow chart of the autophagy-related ceRNA network construction. 
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Table 3. Putative differentially expressed miRNAs that may target autophagy related dif-
ferentially expressed mRNAs. 

ARDEmRNAs DEmiRNAs 

BCL2 miR-34c, miR-125b, miR-181d 

FKBP1A miR-135b, miR-181d 

NAMPT miR-135b 

RPS6KB1 miR-135b, miR-181d, miR-129 

DLC1 miR-429 

ITPR1 miR-429 

ULK2 miR-429 

VEGFA miR-429, miR-106b 

WDFY3 miR-20b, miR-129 

TP53INP2 miR-138 

 
Table 4. Putative differentially expressed miRNAs that may be targets of differentially 
expressed lncRNAs. 

DElncRNAs DEmiRNAs 

LINC00210 miR-34c, miR-125b 

HOTTIP miR-34c, miR-125b, miR-20b, miR-181d 

LINC00271 miR-34c, miR-125b 

CYB561D2 miR-34c, miR-125b 

LINC00520 miR-135b, miR-125b, miR-20b, miR-181d 

UCA1 miR-135b 

MEG3 miR-429, miR-138 

IGF2-AS miR-125b, miR-20b 

LINC00304 miR-138 

DNAH10OS miR-138 

RUVBL1-AS1 miR-138 

HNF1A-AS1 miR-138 

C9orf147 miR-181d 

LINC00265 miR-181d 

 
was shown in (Figure 3(A)). Meanwhile, the expression levels of 14 DElncRNAs, 
10 DEmRNAs, and 9 DEmiRNAs in A549 and A549/DDP cells were visua-
lized with box plots using GraphPad Prism Software (Version 8.0) (Figures 
3(B)-(D)).  

3.4. Functional Enrichment Analysis of ceRNA 

The functional enrichment of the 33 DEGs (10 ARDEmRNAs, 9 DEmiRNA, and 
14 DElncRNA) in the ceRNA network was performed by DAVID and the top 10  
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Figure 3. Construction of autophagy-related ceRNA network. (A) Visualization of the ceRNA network containing 10 ARDEmR-
NAs, 9 DEmiRNAs, and 14 DElncRNAs. The circles represent ARDEmRNAs; diamonds represent DEmiRNAs; squares represent 
DElncRNAs; black represents upregulation; gray represents downregulation; and, edges indicate lncRNA-miRNA-mRNA interac-
tions. (B) The expression levels of 9 DEmiRNAs in the ceRNA network. (C) The expression levels of 14 DElncRNAs in the ceRNA 
network. (D) The expression levels of 10 ARDEmRNAs in the ceRNA network. Gray represents A549 while black represents 
A549/DDP. *P < 0.05, compared to A549. 

 
GO terms and KEGG pathways were displayed in (Figure 4). The GO terms of 
“Single-multicellular organism process”, “Multicellular organismal process” and 
“Negative regulation of biological process” were enriched in BP (Figure 4(A)). 
In CC (Figure 4(B)), “Cytoplasm”, “Intracellular membrane-bounded orga-
nelle” and “Intracellular organelle” terms were enriched. In MF (Figure 4(C)), 
the main enriched GO terms were “Identical protein binding”, “Molecular func-
tion regulator” and “Protein homodimerization activity”. KEGG analysis results 
revealed that the genes were predominantly enriched in “HIF-1 signaling path-
way”, “Proteoglycans in cancer” and “PI3K-Akt signaling pathway” (Figure 
4(D)). 

3.5. PPI Analysis of 10 ARDEmRNAs 

Based on the STRING database, we established the PPI network to reveal the 
functional interaction of 10 ARDEmRNAs. Ten nodes and 7 edgeswere selected 
in the PPI network, with PPI enrichment p-value < 3.79 × 10−4 (Figure 5(A)). 
According to the MCC algorithm, the top 5 hub genes were identified using the 
CytoHubba plugin of Cytoscape, which were the nodes with higher degrees in 
the network, including Vascular Endothelial Growth Factor Receptor (VEGFR), 
ribosomal protein S6 kinase B1 (RPS6KB1), FKBP prolyl isomerase 1A (FKBP1A), 
inositol 1,4,5-trisphosphate receptor type 1 (ITPR1), and Nicotinamide Phos-
phoribosyltransferase (NAMPT) (Figure 5(B)). MCODE analysis was further  

https://doi.org/10.4236/ajmb.2023.131006


Y. Xu et al. 
 

 

DOI: 10.4236/ajmb.2023.131006 78 American Journal of Molecular Biology 
 

 
Figure 4. Functional enrichment results of ceRNA network. (A) Top 10 significantly enriched GO terms in BP. (B) Top 10 signif-
icantly enriched GO terms in CC. (C) Top 10 significantly enriched GO terms in MF. (D) Top 10 significantly enriched pathways 
in the KEGG pathway. 
 

 
Figure 5. PPI network analysis of 10 ARDEmRNAs. (A) The PPI regulation network was constructed by the STRING database. 
(B) The top 5 hub genes in the PPI network were identified using Cytoscape. (C) A module was extracted from the PPI network 
using MCODE. 
 

performed to obtain a significant module, which consisted of 3 genes and 3 
edges from the whole network (Figure 5(C)). Moreover, the top ranked hub gene 
VEGFR was also a seed gene in the module.  
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3.6. Extraction of Subnetwork 

The top 10% - 20% of critical nodes ranked by topological properties play a key 
role in the whole ceRNA network. Once the critical nodes are disrupted, the 
network function is abnormal, thereby affecting tumorigenesis. Therefore, the 
topological properties of the ceRNA network were analyzed and 33 genes in-
cluding 10 DEmRNAs, 9 DEmiRNAs, and 14 DElncRNAs were ranked accord-
ing to betweenness centrality, degree, and radiality (Table 5). Based on the top 2 
critical nodes of miR-125b and miR-181d, which were also the top 2 hub genes 
defined by the MCC algorithm in the CytoHubba (Figure 6(A)), the subnetwork 
was constructed (Figure 6(B)). 

3.7. Survival Analysis of the Critical Genes in the ceRNA  
Subnetwork 

Of the 33 critical genes, 4 genes including LINC00520, miR-125b, miR-181d, and 
BCL2 were found to be related to the prognosis of LUAD patients by Kap-
lan-Meier survival analysis and a log-rank test. Furthermore, upregulated 
LINC00520 and downregulated miR-125b, miR-181d, and BCL2 predicted poor 
prognosis (Figure 7(A)). Based on univariate (Figure 7(B)) and multivariate 
Cox regression analysis (Figure 7(C)), LINC00520, miR-181d and BCL2 were 
selected to construct a prognostic risk score model as follows: risk score = 
−0.653 × ExpressionLINC00520  +  0.475 × ExpressionmiR-181d + 0.605 × Ex-
pressionBCL2. Then, with the median-risk score as the boundary, the LUAD pa-
tients were divided into the high-risk group (score higher than the median-risk 
score) and the low-risk group (score lower than the median-risk score). The risk 
score distribution plot, survival status scatter plot, and heatmap of risk gene ex-
pression in the two groups were presented in (Figure 7(D)). The risk curve and 
scatterplot indicated that samples with higher risk scores had a higher risk of  
 

 
Figure 6. Construction of the ceRNA subnetwork. (A) The top 10 hub genes in the ceR-
NA network were identified using Cytoscape. (B) Visualization of the ceRNA sub-
network containing 3 ARDEmRNAs, 2 DEmiRNAs, and 2 DElncRNAs. The circles 
represent ARDEmRNAs; diamonds represent DEmiRNAs; squares represent DElncRNAs; 
black represents upregulation; gray represents downregulation; and, edges indicate 
lncRNA-miRNA-mRNA interactions. 
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Figure 7. Overall survival analysis of LUAD patients in TCGA cohort. (A) Kaplan-Meier survival curves of the critical genes in 
ceRNA subnetwork. (B) The forest plot of univariate Cox regression analysis. (C) The forest plot of multivariate Cox regression 
analysis. (D) Risk score analysis. Upper panel: risk score distribution of patients in the prognostic model. Middle panel: survival 
status scatter plots for patients in the prognostic model. Bottom panel: heatmap of LINC00520, miR-181d, and BCL2 expression in 
LUAD samples. (E) The 1-, 3-, and 5-year ROC curves of risk score. (F) Kaplan-Meier survival curves of the risk score model. (G) 
Univariate Cox regression analysis of the risk score and clinical characteristics. (H) Multivariate Cox regression analysis of the risk 
score and clinical characteristics. 
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Table 5. Topological properties of the 33 genes in the whole ceRNA network. 

Gene 
Betweenness  

Centrality 
Degree Radiality Type 

miR-125b 0.280848 7 0.778947 miRNA 

miR-181d 0.378732 7 0.8 miRNA 

miR-138 0.681818 6 0.8 miRNA 

miR-34c 0.076859 5 0.673684 miRNA 

miR-135b 0.238569 5 0.736842 miRNA 

miR-429 0.666667 5 0.8 miRNA 

miR-20b 0.133661 4 0.736842 miRNA 

HOTTIP 0.149269 4 0.778947 lncRNA 

LINC00520 0.257616 4 0.821053 lncRNA 

BCL2 0.076963 3 0.736842 mRNA 

RPS6KB1 0.11753 3 0.715789 mRNA 

FKBP1A 0.028363 2 0.673684 mRNA 

VEGFA 0.166667 2 0.65 mRNA 

WDFY3 0.030235 2 0.589474 mRNA 

miR-129 0.025835 2 0.589474 miRNA 

LINC00210 0.004337 2 0.610526 lncRNA 

LINC00271 0.004337 2 0.610526 lncRNA 

CYB561D2 0.004337 2 0.610526 lncRNA 

MEG3 0.545455 2 0.816667 lncRNA 

IGF2-AS 0.01707 2 0.652632 lncRNA 

NAMPT 0 1 0.547368 mRNA 

DLC1 0 1 0.616667 mRNA 

ITPR1 0 1 0.616667 mRNA 

ULK2 0 1 0.616667 mRNA 

TP53INP2 0 1 0.616667 mRNA 

miR-106b 0 1 0.466667 miRNA 

UCA1 0 1 0.547368 lncRNA 

LINC00304 0 1 0.616667 lncRNA 

DNAH10OS 0 1 0.616667 lncRNA 

RUVBL1-AS1 0 1 0.616667 lncRNA 

HNF1A-AS1 0 1 0.616667 lncRNA 

C9orf147 0 1 0.610526 lncRNA 

LINC00265 0 1 0.610526 lncRNA 
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mortality. The heatmap revealed that LINC00520 might have a positive effect on 
LUAD, while BCL2 and miR-181d might have adverse effects. Furthermore, 
ROC curve analysis indicated that the average Area Under the Curve (AUC) at 
1, 3, and 5 years were 0.63, 0.66, and 0.74, respectively (Figure 7(E)). Mean-
while, the Kaplan-Meier survival curve revealed that the high-risk group was 
closely associated with poor survival status (Figure 7(F)). To verify the inde-
pendence of the risk score, univariate and multivariate Cox regression analyses 
were performed on age, gender, clinic stage, and TNM stage (Table 6), and risk 
score. The p-value of the risk score in univariate Cox regression analysis was less 
than 0.05, indicating that it was a well-predicting model (Figure 7(G)); however, 
multivariate Cox regression analysis revealed that the risk score was not inde-
pendent prognostic factor (Figure 7(H)). Additionally, univariate Cox regression 
analysis demonstrated that the clinical variables, including clinic stage, T stage, 
N stage, and M stage, were significantly associated with patient survival, while mul-
tivariate Cox regression analysis indicated that only the M stage was an inde-
pendent prognostic factor. 

3.8. Prediction of TFs and Construction of TF Regulatory  
ceRNA Subnetwork 

First, JASPAR was utilized to predict the possible TFs that could bind with the 
promoter of LINC00520 (Figure 8(A)). Five ZNF family members with more  
 
Table 6. Clinical characteristics of lung adenocarcinoma patients in the Cancer Genome 
Atlas database. 

Characteristics Group Total % 

Age 
≤65 163 48.22 

>65 175 51.78 

Gender 
Male 168 49.70 

Female 170 50.30 

T Stage 

T1 103 30.47 

T2 189 55.92 

T3 28 8.28 

T4 18 5.33 

N Stage 
N0 213 63.02 

N1,2,3 125 36.98 

M Stage 
M0 316 93.49 

M1 22 6.51 

Clinc Stage 

I 173 51.18 

II 81 23.96 

III 62 18.34 

IV 22 6.51 
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Figure 8. Prediction of Transcription Factors (TFs) and construction of TF regulatory ceRNA subnetwork. (A) TFs for LINC00520. (B) 
The binding sites of 5 ZNF family members with more than 12 scores for LINC00520. (C) A ZNF family regulatory ceRNA sub-
network. 

 
than 12 scores, including ZNF384, ZNF24, ZNF263, ZNF341, and ZNF148, 
were predicted as TFs of LINC00520 (Table 7), and the site motifs were shown 
in (Figure 8(B)). Furthermore, a ZNF family regulatory ceRNA subnetwork, 
ZNFs/LINC00520/miR-181d/BCL2 axis, was constructed (Figure 8(C)), which 
might provide new insight into the molecular mechanism of chemoresistance in 
LUAD. 

3.9. Validation of Regulatory Axis Gene Expression 

To verify the accuracy of the lncRNA-miRNA-mRNA regulatory network we 
constructed, the expression of these genes in cisplatin-resistant and parental 
A549 cells was tested in vitro. The RT-PCR results showed that both LINC00520 
and BCL2 were significantly upregulated in A549/DDP cells relative to A549 
cells (P < 0.05; Figure 9(A) and Figure 9(C)), while the expression of miR-181d  
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Table 7. Ten members of ZNF family with more than 10 score as transcription factor for LINC00520. 

TFs Score 
Relative 

Score 
Start End Strand Predicted Sequence 

ZNF384 16.308 0.99139 697 708 + AAAAAAAAAAAA 

ZNF24 14.538 0.87708 1662 1674 − CATTCATTCCCTC 

ZNF263 14.499 0.87894 133 153 − 
TGAAGAGGAAAGAA 

AGGGGAA 

ZNF341 13.220 0.94271 1962 1973 + GAGAACAGCAAG 

ZNF148 12.870 0.89745 1449 1460 − TTCCCCTCCCAG 

 

 
Figure 9. Validation of regulatory axis gene expression by qRT-PCR analysis (A) LINC00520. (B) miR-181d. (C) BCL2. (D) 
ZNF384. (E) ZNF24. (F) ZNF263. (G) ZNF341. (H) ZNF148. *P < 0.05, compared to A549. 
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was significantly downregulated in cisplatin resistance cells relative to the pa-
rental cells (P < 0.05; Figure 9(B)). At the same time, the expression of 5 ZNF 
family members, including ZNF384, ZNF24, ZNF263, ZNF341, and ZNF148 (P < 
0.05; Figures 9(D)-(H)) were also upregulated in A549/DDP cells relative to A549 
cells. These results were consistent with the conclusions of the bioinformatics 
analysis.  

4. Discussion 

Chemoresistance is a huge obstacle in the treatment of lung cancer. Accumulat-
ing evidence has suggested that autophagy is an important mechanism of che-
moresistance [27] [28], which could be regulated by ceRNA networks. LncRNA 
MALAT1 might act as a ceRNA for miR-23b-3p and miR-30b, through which in-
hibitory effects on ATG12 and ATG5 were attenuated, leading to chemo-induced 
autophagy and chemoresistance in gastric cancer [29] [30]. Wang et al. [31] in-
dicated that lncRNA H19 acted as a ceRNA of miR-194-5p, which is a suppres-
sive miRNA of Sirtuin-1 (SIRT1), and enhanced 5-Fluorouracil (5-FU) chemo-
resistance via miR-194-5p/SIRT1/autophagy pathway in colorectal cancer cells. 
Additionally, Shi et al. [32] demonstrated that lncRNA HANR increased auto-
phagy-related sorafenib resistance by inhibiting the miR-29b/ATG9A axis in 
hepatocellular carcinoma cells. Although some studies have suggested that ceRNA 
plays a role in autophagy-related chemoresistance in NSCLC [21] [22], the more 
potentially important RNA molecules and their regulatory networks have not yet 
been identified. Bioinformatics has a great advantage in cancer prediction. Cancer 
biomarkers can be screened by bioinformatics analysis and used for the accurate 
evaluation and management of the disease. In addition, specific bioinformatics 
tools have been used to reduce the difficulty of analysis, and speed up the study 
schedule and efficiency. In the present study, we identified 3179 DEmRNAs, 180 
DEmiRNAs, and 160 DElncRNAs from three datasets of GSE108214, GSE157692, 
and GSE43493 by bioinformatic analysis, respectively. Given the crucial role of 
autophagy in chemoresistance, 35 autophagy-related DEmiRNAs were obtained 
by taking the intersection between ARGs and 3179 DEmRNAs. Then, the interac-
tions among the DElncRNAs, DEmiRNAs, and ARDEmRNAs were predicted. 
In the end, a comprehensive autophagy-related ceRNA regulatory network inDDP 
resistance LUAD cell line was constructed, in which 14 DElncRNAs, 10 DEmR-
NAs, and 9 DEmiRNAs were involved. This might provide a direction for further 
research on chemoresistance in LUAD. 

To explore the biological function of the DEGs in the ceRNA network, GO 
and KEGG enrichment analyses were performed. GO is an important initiative 
to unify the representation of gene and gene product attributes across all species. 
The enrichment analysis is to test whether a GO term is statistically enriched for 
33 DEGs, but regrettably, no meaningful information about chemoresistance could 
be taken into consideration. It is worth noting that the KEGG pathway enrich-
ment analysis indicated various combinations of these DEGs were involved in 5 
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pathways, including “HIF-1 signaling pathway”, “Proteoglycans in cancer”, 
“PI3K-Akt signaling pathway”, “MTOR signaling pathway”, and “Cholinergic 
synapse”. Moreover, most of them have been confirmed to be closely associated 
with chemoresistance. Hypoxia-Inducible Factors (HIFs) are a kind of transcrip-
tion factor activated under a hypoxic environment to maintain cell activity [33]. 
The hypoxic and ischemic environment may trigger the HIF-1 signaling path-
way, which can activate cell autophagy and further promote drug resistance to 
tumor [34]. Kitajim et al. [35] elucidated that HIF-1α knockdown could improve 
the 5-FU sensitivity of gastric cancer cells. Méndez et al. [36] also found that the 
activation of HIF signaling pathway could promote chemoresistance and was 
critical in maintaining the characteristics of cancer stem cells in pancreatic can-
cer. Therefore, the HIF-1 signaling pathway is closely associated with multidrug 
resistance. As is well known, PI3K/Akt signaling pathway and mTOR signaling 
pathway are classical autophagy pathways, which are closely related to chemore-
sistance [37] [38]. PI3K and Akt suppression can inhibit mTOR phosphorylation 
at the Ser2448 site, thereby enhancing the expression of autophagy-related pro-
teins and inducing autophagy and chemoresistance [39]. Although there is no 
direct evidence to support the correlation between “Proteoglycans in cancer”, 
“Cholinergic synapse”, and autophagy or chemoresistance, a recent study im-
plied that proteoglycans exerted diverse functions in the occurrence of cancer, 
mainly related to binding, hydration, transport, and resistance to drug [40], 
while autophagy has been reported to interact with synaptic plasticity, including 
structural changes in the synapse number, shape, size, and composition [41] 
[42]. 

Considering the importance of the key drivers in autophagy-related ceRNA 
network [43], a novel ceRNA subnetwork was extracted according to topolog-
ical properties calculated by the NetworkAnalyzer Tool, including 2 lncRNAs 
(HOTTIP, LINC00520), 2 DEmiRNAs (miR-125b, miR-181d), and 3 DEmRNAs 
(BCL2, FKBP1A, and RPS6KB1). HOTTIP, miR-125b, and BCL2 have been stu-
died for their roles in autophagy-related chemoresistance in cancer. Zhao et al. 
[44] provided results suggesting that HOTTIP was markedly upregulated in the 
cancer tissues of gastric cancer patients who were treated with gastrectomy and 
DDP chemotherapy, and HOTTIP expression up-regulation induced DDP resis-
tance by regulating the miR-216a-5p/BCL2/Beclin1/autophagy pathway, which 
provided a novel strategy to overcome chemoresistance in gastric cancer. Several 
studies have revealed that miR-125b is also involved in autophagy and chemore-
sistance. For example, Yu et al. [45] reported that miR-125b functioned as an im-
portant downstream mediator upon the activation of the CXCL12/CXCR4 axis 
to confer 5-FU resistance in colorectal cancer probably through increasing au-
tophagy both in vitro and in vivo. Wang et al. [46] found that miR-125b was down-
regulated and Forkhead box P3 (Foxp3) was upregulated in both thyroid cancer 
tissues and cell lines, and demonstrated a novel mechanism that miR-125b 
might promote autophagy and enhance the efficacy of DDP in thyroid cancer by 
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negatively regulating Foxp3. Another study has also demonstrated that MAP ki-
nase interacting serine/threonine kinase 2 enhanced chemoresistance of ovarian 
cancer by suppressing autophagy via miR-125b [47]. Moreover, the antiapoptot-
ic protein BCL2 is frequently upregulated in acquired chemo-resistant cancer 
cells, which blocks drug-induced apoptosis and enhances autophagy [48]. The 
underlying mechanisms of LINC00520, miR-181d, FKBP1A, and RPS6KB1 in 
chemoresistance have been rarely reported. They might be novel and pivotal mo-
lecules driving the disease process and should be further studied. 

We selected 7 genes from the novel ceRNA subnetwork and explored their 
role in the prognosis of LUAD patients using the Kaplan-Meier survival analysis. 
The results suggested that LINC00520, miR-181d, miR-125b, and BCL2 were 
identified to be associated with prognosis. Of them, high expression of LINC00520 
and low expression of miR-125b, miR-181d, and BCL2 were related to poor OS 
in LUAD patients. Similar results have been reported by others. Xia et al. [49] 
confirmed that LINC00520 could predict poor prognosis and promote the pro-
gression of lung cancer by inhibiting miR-3175 expression. Luan et al. [50] re-
ported that high expression of LICN00520 was a risk factor for the prognosis of 
melanoma patients and LINC00520 exerted its oncogenic role by competitively 
binding to miR-125b to promote Eukaryotic initiation factor 5A2 expression. 
Additionally, Wang et al. [51] demonstrated that LINC00520 expression level was 
elevated in NSCLC tissues and cells, and LINC00520 up-regulation was distinctly 
correlated with advanced tumor stage and shorter survival time in NSCLC pa-
tients. Zeybek et al. [52] showed that expression of miR-125b was significantly 
up-regulated in stage I LUAD tissues and the AUC was 0.875, which indicates 
that miR-125b might be a prognostic and diagnostic biomarker for LUAD. Zhao 
et al. [53] revealed the prognostic value of BCL2 in NSCLC patients, i.e. high ex-
pression of BCL2 protein in carcinoma cells did predict good disease-free sur-
vival and goodOS in NSCLC. Our results are consistent with these previous re-
sults, suggesting that the bioinformatics analysis of our study has high reliability 
and accuracy. 

It is worth mentioning that the association between the expression level of 
miR-181d and prognosis with LUAD has not been reported until now. However, 
miR-181d, LINC00520, and BCL2 were identified as independent prognostic 
factors of LUAD using univariate and multivariate Cox regression analyses in 
this study. Based on this prognosis-associated LINC00520/miR-181d/BCL2 ceRNA, 
we established a risk score signature for survival prediction in LUAD patients, in 
which patients with high-risk scores exhibited a poor survival rate according to 
the result of the Kaplan-Meier survival curve and the risk score distribution plot. 
Unfortunately, subsequent univariate and multivariate Cox regression analyses 
found that this novel ceRNA signature could not independently predict OS in 
LUAD patients, and the most likely reason is the small sample size.  

Emerging evidence has indicated that TF plays crucial role in regulating the 
aberrant expression of lncRNAs in human cancers [54]. In this study, JASPAR 
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was employed to predict TFs for LINC00520, and 5 ZNF family members were 
identified as candidates to regulate LINC00520. The roles of ZNF family mem-
bers in autophagy-related chemoresistance in cancer have been confirmed. Cui 
et al. [55] demonstrated that ZNF263 increased chemoresistance by activating 
Endoplasmic Reticulum Stress (ERS) related autophagy, functioning as a func-
tional ERS-related tumor activator and a potential target for hepatocellular car-
cinoma therapy. In addition, Gao et al. [56] found that ZNF148 and TOP2A re-
gulated each other through ceRNA regulatory mechanism in colorectal cancer, 
which has biological effects on cell proliferation. These results suggested that 
ZNF family members might affect autophagy and chemoresistance in tumors by 
regulating target genes through ceRNA regulatory mechanisms. Finally, we con-
structed a ZNF regulatory ceRNA subnetwork, which might provide novel the-
rapeutic strategies for LUAD and new directions for further study of LUAD. 

5. Conclusion 

In this study, we successfully constructed an autophagy-related ceRNA regula-
tory network and explored the differential expression of lncRNAs, miRNAs, and 
autophagy-related mRNAs in DDP-resistant LUAD cells for the first time. In 
addition, the prognosis risk score model was established based on the indepen-
dent prognostic factors (LINC00520/miR-181d/BCL2). Furthermore, the ZNF 
regulatory ceRNA subnetwork was constructed according to the regulatory roles 
of TF-lncRNA crosstalk. This study might contribute to our understanding of 
the molecular mechanism of LUAD chemoresistance. However, to shed lighter 
on the novel biomarkers and therapeutic targets of LUAD, further experi-
mental studies are warranted. 
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