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Abstract 
This paper used trade data with the year 2001-2018 to construct the global 
manufacturing multi-layer trade network, analyzed the characteristics of the 
network and predicted the development trend of the network. The results 
show that global manufacturing trade has been on the rise and focus on the 
increase of trade flow; trade be more likely to cooperate with core economic 
or trade organization; the orientation of returning to manufacturing makes a 
positive impact on manufacturing trade; network accessibility and compact-
ness are strong, and it tends to be mature. Core-periphery analysis reveals 
that the United States and China will be the core countries of high, medium 
and low technology products. The trade forecast results show that the United 
States and China will conduct fierce manufacturing competition, and the 
world will form three manufacturing trade dominant regions of North American 
three countries, Asia-pacific cluster and European cluster. 
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1. Introduction 

To manufacturing as the core foundation of the real economy is to maintain na-
tional competitiveness and the healthy development of the economy, has become 
the consensus of the world. Especially after the 2008 global financial crisis, the 
importance of the real economy was re-cognition, a new round of technological 
and industrial revolution was on the rise, competition pattern and development 
trend of manufacturing industry were facing a major adjustment (IMF, 2019). 
Manufacturing trade is currently the most representative and can reflect changes 
in the current international trade pattern. How to track the evolution of manu-
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facturing trade and a clearer understanding of the status of various trading 
countries in the overall trade pattern is an important aspect of the current em-
pirical study of returning to manufacturing. 

The international trade network is complex and consists of more than 200 
countries and regions around the world and the trade relations between them. 
Therefore, it is difficult to adopt local national or regional research methods to 
explain the global trade pattern. The complex network analysis method that 
emerged at the end of the 20th century reveals the mechanism and evolution of 
international trade from a global perspective, and explores the interaction mode 
of trade between countries or regions with its influence on system structure and 
function. Complex networks are a kind of perspective and method for studying 
complex systems. Paying attention to the topological structure of individual in-
teractions in the system is the basis for understanding the nature and function of 
complex systems. 

In this paper, quantitative research on 18 years of global trade in manufactur-
ing goods to reveal its network features with complex network analysis. Analyz-
ing the topology of the network, describing the formation and evolution process 
of manufacturing trade network, reflecting the changes in the status of countries 
or regions in the process of manufacturing trade transfer, and making a predic-
tion of short-term manufacturing trade. Simultaneously, this study is also a 
practice of applying complex network analysis methods at the manufacturing 
trade level. It analyzes the development process of the manufacturing trade pat-
tern over the past 18 years and helps people to understand the development 
trends in the past 18 years, and provides assistance for other industries that are 
still in the process of globalization. 

Hence, the aim of this paper is to examine changes in trade patterns of manu-
facturing. The rest of the paper is organized as follows. Section 2 presents the 
methodology and data. Section 3 introduces the overview of manufacturing trade. 
Section 4 searches for Manufacturing trade characteristics. Section 5 explores the 
relationship between manufacturing trading economies. Section 6 forecasts the 
future development of manufacturing trade. Section 7 finishes with the conclu-
sions. 

2. Methods and Data 

Over the past 15 years, complex network research has developed rapidly. Scho-
lars in various fields have proposed many definitions, methods and tools to find 
the basic principles and dynamic models of complex networks (Zhang et al., 
2017). The first phase mainly revolves around a single static network, including 
emerging concepts, small-world property (Watts & Strogatz, 1998), scale-free 
behavior (Barabasi & Albert, 1999), community structure (Girvan & Newman, 
2001) etc. In the second stage, in order to understand complex networks, analy-
sis and modeling of temporary empirical networks, such as scientific collabora-
tive networks (Barabasi et al., 2002), biological, Internet, etc., analyze the orga-
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nizational mechanism of network evolution. The third phase of multi-layer 
complex network applications has attracted wide attention, including the net-
work’s centrality, clustering and reciprocity (Federico, Vincenzo, & Vito, 2014; 
Gemmetto, Squartini, Picciolo, Ruzzenenti, & Garlaschelli, 2015; Halu, Mukher-
jee, & Bianconi, 2015; Solé-Ribalta, Domenico, Gómez, & Arenas, 2016). 

As a hot spot of emerging research, complex networks have been widely used 
in international trade by global scholars. The international trade network is a 
complex system consisting of a set of nodes composed of countries (regions) and 
a set of trade relations. According to the nature of the network, the international 
trade network can be divided into different expressions such as unweighted 
network, weighted network, directed network and undirected network. Some 
scholars have used complex networks to study bilateral commodity flows be-
tween 186 countries (Tzekina, Danthi, & Rockmore, 2008). Xiaohang Zhang 
compared the differences in commodity levels and focuses on key countries and 
regions to analyze typical features in different matrices (Zhang et al., 2017). In 
an aspect of Topological properties, Squartini et al. (Squartini, Fagiolo, & Garla-
schelli, 2011) use the maximum-likelihood estimation of maximum-entropy 
models to obtain the results that network descriptions of trade can be signifi-
cantly simplified by considering the degree sequence only. Barigozzi et al. (Mat-
teo, Giorgio, & Diego, 2010) show that link-weight distributions of commodi-
ty-specific networks are extremely heterogeneous and log normality of aggregate 
link-weight distribution is generated as a sheer outcome of aggregation. Com-
modity-specific networks also display average connectivity, clustering, and cen-
trality levels very different from their aggregate counterpart. Shi et al. (Shi et al., 
2014) apply the flow analysis method developed in ecology to trading flow net-
works of different products. They pointed out that the flow networks of products 
with higher added values and complexity such as machinery and transport 
equipment have larger exponents, meaning that their trade flow networks are 
more hierarchical. Assaf Almog (Almog, Squartini, & Garlaschelli, 2015) tries to 
make an important step forward in the unification of those two frameworks, by 
proposing a new gross domestic product (GDP) driven model which can simul-
taneously reproduce the binary and the weighted properties of the international 
trade network. 

With the research of network science theory, scholars began to use the edge as 
a breakthrough point to study the connection between systems. A multi-layer 
network is a network set consisting of multiple single-vertex networks. Each sin-
gle-vertex network corresponds to one network layer. The network-connected 
edges contain interconnected edges in the network layer and also contain dif-
ferent layers (Boccaletti et al., 2014; Kivelä et al., 2014) (Figure 1). In recent 
years, scholars have begun to build a multi-layer network model of international 
trade, and then study the impact of the coupling between different systems on 
the international trade system (Lee & Goh, 2016). Saracco et al. built a 96-layer 
international merchandise trade network and proposed a multiplicity and mul-
ti-reciprocity indicator to measure the relationship between different layers of  
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Figure 1. Multi-layer trade network model diagram. 

 
networks in this multi-layer network (Saracco, Clemente, Gabrielli, & Squartini, 
2015). In general, research on the maturity of the manufacturing trade network 
is still limited. 

There are several differences between multi-layer complex networks and or-
dinary complex networks: One is that the properties of nodes in the same layer 
network are the same, and the evolution rules are consistent; The other is that 
the nature of the nodes in different layers of the network is different, which 
presents another evolutionary rule; There are also evolution rules between dif-
ferent layers of networks. Each evolution rule has different characteristics, and 
the evolution rule in the same layer is equivalent to a single-layer complex net-
work; different layers of evolution rules are different due to the nature of the 
nodes; the third evolutionary rule involves the relationship between related 
sub-networks that promote each other or weaken each other. 

2.1. Construction of Multi-Layer Complex Network  

Multi-layer complex network is essentially a network set composed of multiple 
(directed or undirected, weighted or unweight) single-layer networks. It is diffi-
cult for a single complex network to describe the interrelationship between dif-
ferent trade products in different countries. The purpose of this paper is to re-
veal the evolutionary trend of international trade relations and trade volume 
over 18 years. In this study, the transition from single-layer to multi-layer 
networks, based on a multi-layer network model of trade as the main research 
method. Use mathematical formulas to show it is ( ), ,G V E C=  (De Domenico 
et al., 2014), G stands for multi-layer network, here assumes G total M layer, 

{ }1, , mV V V=   represents a collection of nodes in each layer of the network, 
{ }1, , mE E E=   is the collection of contiguous edges in all individual network 

layers, aE  indicates that all nodes are from the set of connected edges formed 
by the nodes in aV , ( ){ }, : , ,a i j i jE v v i j v v V= ≠ ∈ . The network structure of 
the single-layer network α can be expressed as ( ),V Eα αα = .  

{ }{ } ; , 1, , ,C E V V Mαβ α β= ⊆ × α β∈ α ≠ β  is also a collection of side edges 
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from two different network layers. Eα  means intra-layer relationships, Eαβ  
represents the relationship between layers, When a multi-layer network with 
multiple subsystems is represented by G, the single-layer networkαis an abstrac-
tion of a certain subsystem. 

In practical applications, each layer of a multi-layer complex network model 
can represent one or a type of product. The solid line connection in the layer al-
so needs to consider the direction and weight of trade, that is, the direction is the 
direction of trade import and export, and the weight can be traded volume. Un-
weight networks cannot consider the size difference of trade flows, and can only 
simply describe the existence or non-existence of trade relations between coun-
tries in the network. However, the scale of the weights in the actual international 
trade system is very different, and there are trade relations with different 
strengths and weaknesses. The binary representation method of non-zero or 1 
cannot accurately describe the characteristics of the international trade system. 
The weighted network analysis can be used to identify the strength of trade rela-
tions, based on the weight network architecture, combined with the network to-
pology, the internal mechanism and evolution characteristics of the international 
trade network can be more clearly analyzed.  

From the above, this study intends to construct a weighted multi-layer manu-
facturing trade network. The nodes in the network represent the countries or re-
gions involved in the trade. The connection between the nodes indicates that 
there is a corresponding commodity trade relationship between the correspond-
ing pairs of nodes. The direction of the connected side reflects the trade direc-
tion, and the outgoing edge of the node indicates the export trade of the node, 
the entry into the border is import trade. Correspondingly, the weight of the 
outgoing or incoming edge symbolizes the specific import and export trade vo-
lume of the node and related nodes. 

2.2. Data 

According to the 2001-2018 manufacturing trade statistics, the top 50 countries 
or regions with the arithmetic mean are selected as research objects. The manu-
facturing trade of these 50 countries accounts for more than 90% of global man-
ufacturing trade (see Annex 1, Table A1). The manufacturing trade in this pa-
per is mainly for finished products, so we selected three categories in the 
UNCTAD STAT database, low-tech manufactures, medium-tech manufactures 
and high-tech manufactures for data collection, including merchandise trade 
flow data (Table 1). According to Lall (2000), this study is used to classify the 
technical content of products (Lall, 2000), taking into account the role of tech-
nology in product competitive advantage in terms of R & D weight, economies 
of scale, barriers to entry, and learning effects. The data presents merchandise 
trade by trading partner and product based on the SITC commodity classifica-
tion, Revision 3, at the one- and two-digit level, expressed in thousands of Unit-
ed States dollars. 

https://doi.org/10.4236/ajibm.2020.105059


J. Jiang, L. C. Qu 
 

 

DOI: 10.4236/ajibm.2020.105059 881 American Journal of Industrial and Business Management 
 

Table 1. Technological classification.  

Low-tech  
manufactures L 

L1 Textile/fashion cluster Textile fabrics, clothing, headgear, footwear, leather manufactures, travel goods 

L2 Other low technology Pottery, simple metal parts/structures, furniture, jewellery, toys, plastic products 

Medium-tech 
manufactures M 

M1 Automotive products Passenger vehicles and parts, commercial vehicles, motorcycles and parts 

M2 
Medium technology process  
industries 

Synthetic fibres, chemicals and paints, fertilizers, plastics, iron, pipes/tubes 

M3 
Medium technology engineering 
industries 

Engines, motors, industrial machinery, pumps, switchgear, ships, watches 

High-tech  
manufactures H 

H1 Electronics and electrical products 
Office/data processing/telecommunications equip, TVs, transistors, turbines, 
power-generating equipment 

H2 Other high technology Pharmaceuticals, aerospace, optical/measuring instruments, cameras 

 
(Data from web  

http://unctadstat.unctad.org/wds/ReportFolders/reportFolders.aspx). 
According to whether the products corresponding to the nodes in the mul-

ti-layer trade network are the same, the multi-layer international trade network 
constructed in this paper has two forms: multi-layer manufacturing trade net-
work based on product technology content classification and time-based mul-
ti-layer manufacturing trade network. The former, multi-layer network is a por-
trait of the three major categories of products a year trade relationship, a total of 
17 years of trade data, which eventually build a 17-storey complex network. In 
the latter case, each layer of the network in the network represents the global 
manufacturing trade of similar products in different years. Therefore, this study 
finally constructed a total of 17 three-tier trade networks based on product 
technology content classification and three time-based 17-storey trade networks. 

In order to ensure that each layer network has the same number of nodes, this 
study will take reservation measures for isolated nodes without even edges. A 
few countries may not have import and export traffic on certain types of com-
modities in a certain year, and we still keep the corresponding nodes of the 
country in the single-layer network constructed by such commodities. The 
missing observations accounted for 4% of the theoretical observations, well be-
low the 12% missing values (Roberts, 2004), so the missing values have less ef-
fect. 

There are four trade flows of data contains the annual import and export trade 
situation: the export of country A to country B, the import of country A from 
country B, the export of country B to country A, and import of country B from 
country A. In theory, the value of export trade from country A to country B 
should be the same as the value of import trade from country B to country A. 
Otherwise, the import trade volume from country A to country B should be 
equal to the export quota of country B to country A. However, in actual interna-
tional trade, the traders’ prices for traded products are inconsistent. Importing 
countries generally use CIF prices for imported products, while exporting coun-
tries use FOB prices for export products. The FOB price includes the cost of 
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goods and domestic transportation costs. Compared with the FOB price, the CIF 
price also includes the cost of ocean transportation and insurance premiums. 
Therefore, under normal circumstances, the total trade volume of imported 
products in the importing country will be higher than the total trade volume of 
the same batch of products exported by the exporting country. To solve this 
problem, it is necessary to unify the statistical caliber of both parties to the trade. 
Simultaneously, the import and export data of country B is treated the same. In 
this way, the import value of country A is in agreement with the export value of 
country B. 

On the basis of processing the weighted directed matrix, the statistical charac-
teristics of the manufacturing trade network are analyzed R software and Ucinet. 
The processed trade data is imported into the statistical analysis software R as a 
network adjacency matrix, and the complex network package iGraph of R is 
used to construct the network. The overall size of the final two types of mul-
ti-layer networks is as follows (Table 2, Table 3). 

3. Analysis of the Overall Pattern of Manufacturing Trade 

The quantitative changes in manufacturing trade from 2000 to 2018 of the se-
lected economies were shown in Figure 2 with an upward curve. In terms of 
overall scale, global manufacturing trade maintained steady growth in 2001- 
2008. There was a significant fluctuation in the rise and fall between 2009 and 
2014. In 2014, the scale of manufacturing trade reached a peak of 1131.8 trillion US 
dollars. Between 2017, manufacturing trade slowed down steadily. The declined  
 
Table 2. The 3-tier manufacturing trade network based on product technology content 
(17 networks). 

Year NO. of nodes NO. of connections Year NO. of nodes NO. of connections 

2001 150 7079 2010 150 7429 

2002 150 7094 2011 150 7417 

2003 150 7385 2012 150 7426 

2004 150 7401 2013 150 7419 

2005 150 7408 2014 150 7408 

2006 150 7404 2015 150 7417 

2007 150 7425 2016 150 7409 

2008 150 7423 2017 150 7412 

2009 150 7424 2018 150 7426 

 
Table 3. 17-storey international trade network based on time (3 networks). 

Technical content NO. of nodes NO. of connections 

High-tech 850 41,904 

Medium-tech 850 42,092 

Low-tech 850 42,084 
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Figure 2. Amount of trade in manufactured goods of different technical content (2001-2018). 
 
trade in 2009 was mainly affected by the global financial crisis, which led to dif-
ferent degrees of international trade. In 2012, due to the gloom of the European 
debt crisis, the slowdown of the U.S. economy and the prevalence of trade pro-
tectionism led to a significant decline in global trade. 

In observation of trade structure, low-tech products are mainly composed of 
necessities and low value goods. Therefore, they are the lowest in the three cate-
gories of products. During the period of 2001-2018, they maintained a slow 
growth and were not significantly affected by external factors. Medium-tech 
products, as the largest proportion of manufacturing trade, are basically in line 
with global manufacturing trade changes, but have maintained a gradual upward 
trend between 2016 and 2017. High-tech products have maintained a slow 
growth overall, but there has been a small decline in 2013 and 2017, especially in 
the global trade disputes in 2017. The trade relations between USA and China 
which the two major trading powers have been ups and downs, which has 
resulted in significant impact on high-tech products. 

4. Analysis of Statistical Characteristics of Manufacturing  
Trade Network 

The characteristics of manufacturing trade network can through network dis-
tribution, network centrality, network correlation, network clustering identify 
the imbalanced structure and agglomeration characteristics of global trade, and 
discuss the status and influence of different economic entities in the global man-
ufacturing trade network. The detection based on network characteristics is a 
new idea for international trade research decision-making and mining the po-
tential value behind trade big data. 

4.1. Network Degree Distribution  

The degree of a node refers to the number of edges connected to the node in the 
network, and is a first-order properties. The degree of value in international 
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trade indicates the total number of direct trade relations of a country, reflecting 
the direct trade impact of the country. The larger the value, indicating that the 
country has more direct trade relations, the greater its influence can reach the 
node range. For a directed network, each node has an out-degree and in-degree, 
and the out-degree distribution Pout(k) and the in-degree distribution Pin(k) re-
spectively indicate that a node is taken arbitrarily, and the in-degree value and 
the out-degree value are k probability.  

Scholars have found that the complete random network degree distribution 
has the characteristics of Poisson distribution, that is, the probability of occur-
rence of each edge is the same, the degrees of most nodes are basically equal, and 
close to the network average, far from the peak degree. Another type of network 
with power-law distribution is called scale-free network, its degree distribution 
obeys P(k)~k-γ, γ is power law index, usually takes 2 or 3. Most of the nodes in 
the network are low in degree, and only a few core nodes (hub nodes) are high 
degree of value. 

In this research, by the strength of this indicator will edge weight combined 
with even number of edges, a measure of trade in the country for distribution to 
portray weighted network, helping people learn more about the importance of 
network degree distribution. The greater of value, the more important a country 
is in the network. The calculation method of the output strength and the input 
strength of the network node is as follows: 

1
Nout

i ijjS
=

= ω∑  

1
Nin

i jijS
=

= ω∑  

ijω  is the weight between node i and node j, which is the trade volume be-
tween the corresponding countries. The strength of each node corresponds to 
the trade volume of each country, the total strength of each node is the total 
network trade volume. 

Since the average output strength and average input strength of the global 
manufacturing trade multi-layer network are equal, and the research methods 
and research conclusions are similar, the evolution law and distribution of the 
intensity are represented in this section. Figure 3 gives an evolution curve 
showing the average annual output strength of the manufacturing trade network 
based on product technology. The output strength reflects the average export 
trade volume of countries in the manufacturing trade network. In Figure 3, ex-
cept for a slight decrease in 2009, the average intensity during the 17 years is 
generally on the rise. Although the intensity of competition in manufacturing 
trade continues to increase, with the rise of emerging industries and the maturity 
of product technology, manufacturing trade is still booming. 

Figure 4 shows the Average output strength of international trade networks of 
three different types of products. H, M and L represent high, medium and low 
manufactures, respectively. The degree distribution of the three types of prod-
ucts is similar, the degree of the nodes above 60% is 50, and only a small part of  
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Figure 3. Average output strength curve. 

 

 
Figure 4. Average output strength of three different types of products. 

 
the node is less than 40. It means that trade network in this study is neither a 
Poisson distribution nor a scale-free network, but a completely regular network 
style. There are connections between any two nodes, and the connections are 
tight, but the trade volume between countries is obviously different. There are 
trade flows in any two countries in the manufacturing trade network, but the in-
tensity distribution of nodes in the trade network is not random, but there is a 
great heterogeneity. The key to determining the heterogeneity of node strength 
is the weight distribution between nodes in the network. In the weight structure 
of international trade networks, very few countries have most of the trade flows 
in the network. This reveals that the current focus of the international manufac-
turing trade system has shifted from establishing trade relations to increasing 
trade volume. 

4.2. Network Centrality 

The status of the network reflects the influence of the state in the trade network. 
The centrality is used to measure the quantitative measure of power of the net-
work nodes, including indicators such as Centrality of a Point, Closeness Cen-
trality, and Betweenness Centrality.  
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4.2.1. Closeness Centrality 
Closeness Centrality reflects the location of a node at the center of the network. 
The more central the country, the shorter its total distance from all other nodes. 
The larger the value, the larger the proximity of the node, that is, the central po-
sition, which is a measure for not accepting the control of others. If a point is 
short “distance” with all other points in the network, the point is said to have a 
higher near center. The closeness of a point is the sum of the shortcut distance of 
the point and all other points. Its expression is (Almog et al., 2015):  

1

1
i N

ijj

Closeness
d

=

=
∑

 

where ijd  is the shortest path length from node i to node j. The larger the value 
close to the center, the point is not the core point of the network. 

4.2.2. Betweenness Centrality  
In contrast to Closeness Centrality, the Betweenness Centrality considers a 
cost-effective node for spreading to a much larger, more comprehensive net-
work, which represents the importance of the node with the shortest number of 
paths through the node. When nodes are on many shortest paths, it shows the 
node’s ability to control the flow of resources in the network. The Betweenness 
Centrality is defined as: 

n n
i jkj kBetweenness SP= ∑ ∑  

where jkSP  indicates whether the shortest path between node j and node k 
passes through node i, if passes the node i SP = 1, otherwise SP = 0. Betweenness 
Centrality does not distinguish between in and out. If the Betweenness Centrali-
ty is 0, it means that the point cannot control any trade subject, at the edge of the 
network. If the Betweenness Centrality is 1, it is thought that this point can con-
trol 100% of other trade entities, and it has a lot of power at the core of the net-
work. Betweenness Centrality degree does not distinguish between in and out. If 
the Betweenness Centrality is 0, it means that the point cannot control any trade 
subject and is at the edge of the network. If the Betweenness Centrality is 1, it is 
thought that this point can control 100% of other trade entities, and it has a lot 
of power at the core of the network. 

With the help of the characteristics of network centrality, the status of global 
manufacturing trade countries or regions is analyzed. Table 4 shows the top 5 
nodes and their attributes of the manufacturing trade network’s access the out-
put strength and the input strength, Closeness Centrality and Betweenness Cen-
trality. Measure represents the type of central indicator, and Centralization 
represents the central indicator score. 

From 2013 to 2011, China ranked the top 5 input strength, and the export 
product types were high-tech products, indicating that China’s manufacturing 
trade volume has benefited from domestic innovation-driven policy guidance in 
the past five years, and was no longer limited to low-tech products. The focus of 
the product has shifted to high-tech products and has become an important hub  
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Table 4. The top 5 of the manufacturing trade network centrality.  

Measure Node Type Year Centralization 

Output strength China High-tech 2013 378,860,984.4 

Output strength China High-tech 2014 392,745,275.9 

Output strength China High-tech 2015 387,971,233.1 

Output strength China High-tech 2016 368,827,039 

Output strength China High-tech 2017 412,474,878.4 

Intput strength United States of America High-tech 2014 249,451,389.7 

Intput strength United States of America High-tech 2015 259,142,456.8 

Intput strength United States of America High-tech 2016 257,737,313.3 

Intput strength United States of America High-tech 2017 277,658,417.6 

Intput strength United States of America Medium-tech 2017 244,659,672.8 

Out-closeness centrality Argentina High-tech 2001 0.000275398 

Out-closeness centrality Kuwait High-tech 2001 0.000290576 

Out-closeness centrality Nigeria High-tech 2001 0.000298566 

Out-closeness centrality Venezuela (Bolivarian Rep. of) High-tech 2001 0.000277744 

Out-closeness centrality Viet Nam High-tech 2001 0.000284709 

In-closeness centrality Indonesia High-tech 2001 4.47E−05 

In-closeness centrality Indonesia Medium-tech 2001 4.50E−05 

In-closeness centrality Indonesia Low-tech 2001 4.53E−05 

In-closeness centrality Indonesia Medium-tech 2002 4.50E−05 

In-closeness centrality Indonesia Low-tech 2002 4.53E−05 

Betweenness Centrality Venezuela (Bolivarian Rep. of) Low-tech 2010 4949 

Betweenness Centrality Venezuela (Bolivarian Rep. of) Low-tech 2014 5270 

Betweenness Centrality Venezuela (Bolivarian Rep. of) Low-tech 2015 5366 

Betweenness Centrality Venezuela (Bolivarian Rep. of) Low-tech 2016 5151 

Betweenness Centrality Venezuela (Bolivarian Rep. of) Low-tech 2017 5236 

 
for the manufacturing trade system. World high-tech manufacturing centers are 
being gradually shifting eastward. The USA ranked top 5 output strength, as the 
major exporting countries, is strongly dependent on exports from other coun-
tries. Interestingly, in 2014-2016, only high-tech products depended strongly, 
and import demand for medium-tech products in 2017 also began to soar. In-
donesia occupied the top 5 in the period from 2001 to 2002 in aspect of 
in-closeness centrality, indicating that during this period, Indonesia has import 
trade flows from many countries, with a high degree of import dependence and a 
wide range of products. The top five Betweenness Centrality was occupied by 
Venezuela, which was a relay station for low-tech product trade flows, which was 
also consistent with the fact that the national production capacity was low, and 
low-tech products such as textiles and plastics also needed to rely on imports. 
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The top five nodes close to out-closeness Centrality were all high-tech products, 
and the countries were scattered, including Argentina, Tweed, Nigeria, Venezu-
ela (Bolivia) and Vietnam. In terms of technical classification, high-tech prod-
ucts have become the leading force in the development of international trade 
due to their high technical content, high monopoly and high value, and have re-
ceived widespread attention from all countries. From the time of trade occur-
rence, in addition to the Closeness Centrality inter-node trade between 2001 and 
2002, other high-central node trades occurred in the past five years, which ex-
plained after the financial crisis, the incentive orientation of countries to return 
to manufacturing has had a relatively positive impact on world manufacturing 
trade. 

4.3. Network Degree Correlation 

Degree correlation is one of the characteristics of a real network that is, ran-
domly selecting the association of two nodes connected by one edge on the de-
gree value. A random network is the correlation of non-existence, because the 
characteristic of a random network is to randomly select two nodes that are not 
connected to connect, so there is no correlation of degrees. However, the reality 
network is often the relevance of the existence, that is, the connection between 
the nodes follows a certain law. For example, the nodes whose degree distribu-
tion obeys the power law distribution tend to connect to the more moderate 
nodes. When a node of height tends to connect with nodes of other heights, it is 
called homogenous mixing; when a node of height tends to connect with other 
low-degree nodes, it is called non-homogeneous mixing. Vazquez proposes a 
method for quantifying vertex degree correlation (Vázquez, Pastorsatorras, & 
Vespignani, 2002), the average of the nearest neighbors of node i is defined as: 

( )
( )

nn j i
j V i

k i k k
∈

 
=   
 
∑  

V(i) represents the set of neighbor nodes of i. 
Average the nearest neighbor averages for nodes with degree K: 

( ) ( )
( )

nnki K
nn

k i
K K

NP K
== ∑  

NP(K) means the number of nodes with degree K. If ( )nnK K  increases as K 
increases, the node has a tendency to connect to nodes of the same or greater 
degree, that is, a homogeneous hybrid network. Conversely, if ( )nnK K  de-
creases as K increases, nodes with small degrees tend to connect with the hub 
node as a heterogeneous hybrid network. 

Figure 5 shows the degree-correlation curve of the manufacturing trade net-
work during the period 2001-2018. As the network continues to evolve, the scat-
ter points in the graph continue to aggregate, forming a curve that decreases 
with K, indicating the manufacturing trade network in this study. Countries with 
low node degrees tend to develop trade relations with countries with high node  
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Figure 5. The pictures of manufacturing trade network degree correlation evolution. 

 
degrees. This indicates that due to geographical proximity and cultural similari-
ty, small countries in local areas tend to develop manufacturing trade relations 
with hub countries in the region, and then form a regional economic coopera-
tion organization with regional powers as the core. Nowadays, the world’s larg-
est regional economic organizations include the European Union, APEC, the 
North American Free Trade Area, and ASEAN. The development of regional 
economic integration was most remarkable in 2015. Since the US Trump ad-
ministration took office in 2016, regional economic integration and current iso-
lationism, protectionism, and closures have escalated, and the K point has in-
creased between 2016 and 2018. 

4.4. Clustering Efficient and Average Path Length 

The Clustering Efficient is the probability that there is a trade relationship be-
tween trading partners of a country in the network, reflecting the connectivity 
between the trading partners of the country. If the country’s trading partners are 
closely relative, then the country’s Clustering Efficient is higher; on the contrary, 
if the relationship between a country’s trading partners is loose, then the coun-
try’s clustering coefficient is low. The Clustering Efficient is used to describe the 
degree of aggregation among nodes in the network. The Clustering Efficient iC  

of a certain node indicates the ratio of the actually existing connection iN  and 
the most likely connection among all neighbor nodes ik  of the node. Only 
those vertices with at least two neighbors have a practical meaning in calculating 
the clustering coefficients. The network Clustering Efficient C is the average of 
the clustering coefficients of all nodes, and is specifically defined as: 
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Obviously, 0 1C≤ ≤ . When C = 0, it means that all nodes in the network are 
isolated nodes, that is, there are no connected edges. When C = 1, it means that 
any two nodes in the network are directly connected, it means that the network 
is a completely regular network. If the degree of aggregation of nodes in the 
network is high, the clustering efficient is large and the connection between 
nodes is closer. 

Distance is a hot issue in the field of international trade, and an important 
measure of the characteristics of complex network structures. It has an impor-
tant influence on attributes such as network connectivity. The distance ijl  be-
tween any two nodes in the network is the number of steps from one of the 
nodes to the shortest path of the other node. The network average path length L 
is defined as the average of the clusters of all nodes in the network, that is, 

( )
1

1 1

2
1

N N

ij
i j i

L l
N N

−

= = +

=
− ∑ ∑  

The average clustering efficient of network nodes in the world’s manufactur-
ing trade for nearly 17 years is calculated. It is found that the average aggrega-
tion coefficient of the network nodes is between 0.9465 and 0.9430, indicating 
that there is a close trade relationship among the selected 50 countries or re-
gions. It means highly credible of the research subjects representing global man-
ufacturing trade. It can be seen from Table 5, the average path length shows a 
downward trend, and the clustering efficient keeps rising slightly from 2001 to 
2010, and tends to be stable in 2011-2018. The world manufacturing trade coun-
tries or regions between 2001 and 2018 have remained relatively stable, with 
strong accessibility and closeness, and high efficiency in the transmission of  
 
Table 5. Clustering efficient and average path length of manufacturing trade network. 

Year 
Average Path 

Length 
Clustering Efficient Year 

Average Path 
Length 

Clustering Efficient 

2001 1.671013883 0.943844369 2010 1.664983 0.946839 

2002 1.66933109 0.944938077 2011 1.666128 0.946299 

2003 1.669427609 0.945790851 2012 1.665522 0.946034 

2004 1.668080808 0.946033779 2013 1.66633 0.945758 

2005 1.667474747 0.946033779 2014 1.66835 0.943769 

2006 1.667138047 0.946839142 2015 1.66734 0.943769 

2007 1.665454545 0.946033779 2016 1.668081 0.944036 

2008 1.665723906 0.946574076 2017 1.667744 0.944281 

2009 1.665656566 0.946574076 2018 1.667823 0.944421 
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commodity trade. With the acceleration of the globalization process, due to the 
improvement of the multilateral trading system and the strengthening of region-
al economic exchanges, the regional economic grouping in the manufacturing 
trade network system has matured. 

5. Core-Periphery Structure Analysis 

If the point of a network is skewed and the point is positively correlated with the 
point strength, the network has a core-periphery structure (Vázquez et al., 2002). 
The core-periphery structure analysis is based on the close relationship among 
the nodes in the network. Considering the nodes in the network into two as-
pects, namely the core area and the periphery area, the density between the core 
area members is maximized, and the density between the members of the peri-
phery areas is the smallest. The close relationship between the two areas is not 
considered, and the core is at the core. The nodes of the area occupy a relatively 
important position in the network. 

This study uses Ucinet software to construct the core-periphery structure of 
the multi-layer network in manufacturing trade network and divides three types 
of different products into core members and periphery members. The specific 
grouping is shown in Table 6. China and the United States are core nodes in the 
three types of products and are the leaders in today’s world manufacturing trade 
system. In the low-tech product trade network, there are two core countries, and 
trade occurred in 2014, indicating that 2014 was the peak period of low-tech 
product trade. The core countries or regions of medium-tech products were dis-
tributed in 2017, the old manufacturing powerhouses of Canada, Germany, Ja-
pan and emerging manufacturing economies in Mexico. Hong Kong, China has 
become one of the three representatives of the core areas of high-tech products 
in 2017. For the time perspective, high-tech and medium-tech products became 
the core countries’ trade targets in 2017, indicating that high-tech and medium-tech  
 
Table 6. Core-periphery structure of three types of products.  

Product classification Core node Year 

Low-tech China 2014 

Low-tech United States of America 2014 

Medium-tech Canada 2017 

Medium-tech China 2017 

Medium-tech Germany 2017 

Medium-tech Japan 2017 

Medium-tech Mexico 2017 

Medium-tech United States of America 2017 

High-tech China 2017 

High-tech China, Hong Kong SAR 2017 

High-tech United States of America 2017 
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manufacturing have become the focus of strategic competition among econo-
mies in the world. 

The density matrix of the core-periphery structure is calculated to verify the 
validity of the model (Table 7). Dividing the density relationship of the entire 
network into four areas, namely core area, periphery area, core to periphery 
area, periphery to core area. In this matrix, all data in the core area is 1, all data 
in the periphery area is 0, and data in the non-diagonal area is missing. The cor-
relation between the ideal model matrix and the actual resulting density matrix 
was calculated by QAP program. The final fits of the three types of products 
were 0.567, 0.537, and 0.521, respectively, three of which were statistically sig-
nificant. This illustrates the model and data fit, which proves that the manufac-
turing trade network has a core-periphery structure. 

6. Trend of Global Manufacturing Trade  

The international trading system is a typical and evolving nonlinear complex 
system. The development of trade is affected by various factors such as macroe-
conomic growth, trade policy changes, technological progress, international en-
vironment and natural disasters.etc. The above factors and their non-linear ef-
fects are often partly reflected in the evolutionary sequence of international im-
port and export trade, and this evolution cannot be fully accommodated by li-
near relationships. Making the quantitative forecasting (short-term one year) of 
three types products in aspects of trade trend and trade flow based on above 
analysis of the manufacturing trade network (see Annex 2, Table A2, Table A3). 
The traditional econometric model predicts trade-related problems, it mainly es-
tablishes regression models through variables with causality, such as one-dim- 
ensional linear model, stepwise regression model, multi-level hierarchical re-
gression model, etc. However, the above methods hardly eliminate the influence 
of “spurious-regression” between variables. This study selects the HoltWinters 
algorithm in the time series. HoltWinters. The HoltWinters algorithm belongs 
to the cubic exponential smoothing model. It considers more influencing factors 
than the primary/quadratic smoothing exponential model. The degree of fitting 
is related to the stability of historical data changes. If there are certain rules in 
historical data changes, the algorithm will often capture the law. 
 
Table 7. Density matrix of core-periphery structure. 

Product classification Role Core Periphery 

High-tech 
Core 0.486 0.135 

Periphery 0.206 0.027 

Medium-tech 
Core 0.528 0.350 

Periphery 0.171 0.051 

Low-tech 
Core 0.650 0.123 

Periphery 0.277 0.077 
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The HoltWinters function in R is used to construct a trade forecasting model 
for three types of products for global manufacturing trade, and to predict and 
visualize models on the trade data from 2001 to 2018 (Figures 6-8). The short-term  
 

 
Figure 6. High-tech products trade network (short-term forecast). 

 

 
Figure 7. Medium-tech products trade network (short-term forecast). 
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Figure 8. Low-tech products trade network (short-term forecast). 
 
trend of high-tech products has continued to rise. Major trading importers in-
clude the United States, China, Hong Kong, Germany, and Japan. The major 
trade exporters include China, the United States, Germany, South Korea, and 
Taiwan. The trading trend of medium-tech products is more diversified. The 
United States is the largest importer, and its import volume is more than twice 
that of the second place China. Japan, Canada, Germany, and Mexico are also 
major trading countries of medium-tech products. The world’s largest exporter 
of low-tech products is China. The largest importer of low-tech products is the 
United States. The United Kingdom, Japan, Hong Kong and Germany also 
maintain close trade relations with China in trade of low-tech products. From 
the perspective of overall manufacturing trade, China is currently the most 
competitive manufacturing country, but it is facing rising pressure on manufac-
turing costs. The United States and China will compete for the first place in the 
future. The US manufacturing industry will gradually recover its competitive-
ness due to its continuous productivity growth, exchange rate stability and 
energy cost advantages. The forecast data reveals that there will be three strong 
manufacturing regional clusters in the future which dominates the competitive 
landscape, namely North America (US, Canada and Mexico), European clusters 
(Germany and UK) and Asia Pacific clusters (China, Japan, Korea, Taiwan, and 
Hong Kong, China). From the perspective of products, global manufacturing 
trade will transform into high and medium tech manufacturing, creating a com-
petitive advantage for the future of the economy.  
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7. Conclusion 

By constructing a global weighted network of manufacturing trade in 2001-2018, 
this paper analyzes its network degree distribution, network centrality, network 
degree correlation, network clustering and other characteristics, and carries out 
core-periphery analysis of the network. Based on the above research, we will 
make short-term predictions on the future trend of global manufacturing trade 
network development, and draw the following conclusions: 

1) The average strength of global manufacturing trade in the past 18 years 
showed an overall upward trend, except for the impact of the global financial 
crisis in 2009. The trend of intensity distribution of products with different 
technical contents is similar. The current focus of the manufacturing trade sys-
tem has shifted to enhanced trade flows, and very few countries occupy most of 
the trade flows in the network. 

2) The focus of manufacturing trade in China is not limited to low-tech prod-
ucts, but to high-tech products, thus pushing the world’s manufacturing center 
to move eastward. As the first importing country, the United States has not only 
relied heavily on high-tech products in recent years, but its demand for me-
dium-tech products has soared in 2018 as well. Most of the high-central node 
trades have occurred in the past five years, indicating that countries have played 
a more active role in world manufacturing trade under the guidance of returning 
to manufacturing. 

3) Trade networks have evolved over time, and researches have found that 
countries with low node degrees tend to develop trade relations with countries 
with high node degrees. Due to the proximity of geographical location and cul-
tural similarity, small countries in local areas tend to develop manufacturing 
trade relations with hub countries in the region, and then form a regional eco-
nomic cooperation organization with regional powers as the core. 

4) The average clustering efficient of network in 50 countries or regions se-
lected in this study is between 0.9465 and 0.9430, which indicates that the rela-
tionship between networks is relatively stable, the accessibility and tightness are 
strong, the trade efficiency of commodity is high, and the network system tends 
to mature. 

5) Nowadays, China and the United States are the core countries of the three 
categories of high, medium and low-grade products, and their status is stable 
and difficult to be replaced. The core countries of medium-tech products are 
distributed widely, and the core countries of high-tech products are mainly dis-
tributed in North America and Asia. Since 2018, high and medium-tech prod-
ucts have become the core countries’ trade targets, indicating that the medium 
and high manufacturing industry has become the focus of global strategic com-
petition among economies. 

6) In the future, most of the trade flows of manufacturing trade are still in the 
hands of a few trading countries. China and the United States, two manufactur-
ing powers, will face more intense competition. Global manufacturing trade will 
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form a three-group situation: North American three countries (US, Canada, and 
Mexico), European clusters (Germany and the United Kingdom), and Asia-Pacific 
clusters (China, Japan, South Korea, Taiwan, China and Hong Kong, China). 
The global manufacturing industry will shift to the direction of high- and me-
dium-tech products. 

In this article, we combined time and space to explore the evolutions of global 
manufacturing trade by using multi-layer complex network. This study makes 
significant contributions to look for features of manufacturing trade networks 
and try to draw a blueprint for trade relations among economies in terms of 
technological classification. The insights gained from this study may be of assis-
tance to identify the core trade cooperation groups. Also, we highlight the future 
pattern of manufacturing trade network by methods of HoltWinters. Through 
this study, we hope to provide a more systematic, comprehensive, dynamic and 
objective view of international trade in manufacturing, so as to promote the 
deepening and improvement of manufacturing trade in the future.  
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Annex 1 
Table A1. Top 50 countries or regions in manufacturing trade (2001-2108). 

NO. countries or regions % of trade NO. countries or regions % of trade 

1 Argentina 0.03% 26 Kuwait 0.44% 

2 Australia 1.29% 27 Malaysia 1.39% 

3 Austria 1.08% 28 Mexico 2.26% 

4 Belgium 3.05% 29 Netherlands 3.99% 

5 Brazil 1.25% 30 Nigeria 0.46% 

6 Canada 3.15% 31 Norway 0.89% 

7 Chile 0.42% 32 Philippines 0.40% 

8 China 10.04% 33 Venezuela (Bolivarian Rep. of) 0.61% 

9 China, Hong Kong SAR 3.09% 34 Poland 1.04% 

10 China, Taiwan Province of 1.93% 35 Portugal 0.40% 

11 Czechia 0.88% 36 Romania 0.33% 

12 Denmark 0.74% 37 Russian Federation 2.44% 

13 Finland 0.56% 38 Saudi Arabia 1.65% 

14 France 4.02% 39 Singapore 2.33% 

15 Germany 9.34% 40 Slovakia 0.41% 

16 Greece 0.21% 41 South Africa 0.52% 

17 Hungary 0.63% 42 Spain 1.85% 

18 India 1.42% 43 Sweden 1.23% 

19 Indonesia 0.85% 44 Switzerland, Liechtenstein 1.60% 

20 Iran (Islamic Republic of) 0.56% 45 Thailand 1.28% 

21 Ireland 0.92% 46 Turkey 0.82% 

22 Israel 0.42% 47 United Arab Emirates 1.56% 

23 Italy 3.54% 48 United Kingdom 3.45% 

24 Japan 5.43% 49 United States of America 9.67% 

25 Korea, Republic of 3.08% 50 Viet Nam 0.61% 

Annex 2 
Table A2. Top 10 countries or regions in world manufacturing import (short-term forecast). 

High-tech product ranking Medium-tech product ranking Low-tech product ranking 

Countries or regions Volume Countries or regions Volume Countries or regions Volume 

United States of America 267,697,865.4 United States of America 237,077,856.7 United States of America 17,573,0221.3 

China 236,587,274.6 China 119,870,560.7 Germany 80,058,404.67 

China, Hong Kong SAR 159,141,429.7 Germany 113,952,338.1 France 48,887,101.11 

Germany 106,366,594.2 United Kingdom 65,259,394.97 United Kingdom 46,286,610.35 

Japan 63,130,724.61 France 61,230,405.14 Japan 42,494,961.75 
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Netherlands 60,288,013.13 Canada 56,303,628.33 China 37,119,526.52 

United Kingdom 57,690,516.43 Mexico 48,590,699.88 Netherlands 34,715,176.62 

France 52,804,296 Italy 43,144,779.2 China, Hong Kong SAR 33,364,497.25 

Korea, Republic of 49,319,061.38 Netherlands 40,157,230.41 Italy 31,320,273.76 

Singapore 44,456,627.44 Japan 40,039,531.56 Canada 28,750,886.87 

 
Table A3. Top 10 countries or regions in world manufacturing export (short-term forecast). 

High-tech product ranking Medium-tech product ranking Low-tech product ranking 

Countries or regions Volume Countries or regions Volume Countries or regions Volume 

China 403,465,758.2 Germany 202,983,336 China 297,313,103.8 

United States of America 145,409,985.5 China 162,031,630 Germany 74,089,406.54 

Germany 12,828,9087.8 United States of America 155,211,320.1 United States of America 53,340,033.25 

Korea, Republic of 93,662,773.63 Japan 121,335,135.4 Italy 51,272,346.85 

China, Taiwan Province of 92,684,257.22 Korea, Republic of 65,070,376.41 Viet Nam 35,011,295.85 

China, Hong Kong SAR 80,096,581.69 Mexico 62,363,828.35 France 32,649,872.38 

Japan 74,854,817.38 Italy 58,465,672.64 India 30,514,951.82 

Singapore 58,082,187.81 France 55,417,532.46 Japan 28,409,121.2 

France 55,591,772.75 United Kingdom 47,973,418.18 Netherlands 26,508,993.17 

Malaysia 51,864,036.66 Netherlands 42,369,351.71 Korea, Republic of 25,665,407.51 
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