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Abstract 
With the advent of the era of big data and the increasing demand for privacy 
protection, decentralized portfolio optimization has garnered significant at-
tention in practical implementations. This paper addresses the problem of 
decentralized portfolio optimization within the mean-variance portfolio frame-
work. A decentralized multi-period portfolio optimization model is estab-
lished using the alternating direction method of multipliers (ADMM). The 
methodology incorporates a distributed event-triggered approach to imitate 
the professional investment manager for each sub-portfolio, where each in-
vestment manager independently triggers the rebalancing moment of the re-
spective sub-portfolio. Empirical analysis is conducted on four well-known 
stock trading markets to demonstrate the performance of the decentralized 
multi-period portfolio optimization model. 
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1. Introduction 

In asset management, low risk and high returns are the most ideal investment 
types for every investor, but it is like a coin with two sides that cannot be achieved 
simultaneously. In investment activities, every investor’s risk management ef-
forts aim to seek a balance between risk and return. Allocating total wealth to 
various risk assets can effectively reduce unsystematic risk during the investment 

How to cite this paper: Wang, H. J., & Ai, 
W. (2024). A Distributed Event-Triggered 
Approach for Decentralized Multi-Period 
Portfolio Optimization via the Alternating 
Direction Method of Multipliers. American 
Journal of Industrial and Business Man-
agement, 14, 590-602. 
https://doi.org/10.4236/ajibm.2024.144030 
 
Received: March 18, 2024 
Accepted: April 25, 2024 
Published: April 28, 2024 
 
Copyright © 2024 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/

  Open Access

https://www.scirp.org/journal/ajibm
https://doi.org/10.4236/ajibm.2024.144030
https://www.scirp.org/
https://doi.org/10.4236/ajibm.2024.144030
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


H. J. Wang, W. Ai 
 

 

DOI: 10.4236/ajibm.2024.144030 591 American Journal of Industrial and Business Management 
 

process. The key to portfolio optimization is to determine the optimal allocation 
proportions for each risky product. In the 1950s, Markowitz (1952) pioneered 
the famous portfolio theory, which introduced the mean and variance of risk 
product returns to measure return and risk, laying the foundation for the devel-
opment of modern portfolio theory. 

In financial institutions (e.g., banks, mutual funds, and pension fund invest-
ment management departments), there are two decision-making processes: cen-
tralized investment and decentralized investment (Sharpe, 1981). To put it 
simply, centralized investment is a portfolio made by one professional financial 
institution, while decentralized investment is a portfolio made by multiple pro-
fessional financial institutions. Each institution rationally and independently 
makes decisions within its own area. In the past time, there has been a large 
body of work on centralized portfolio selection (Shi, Li, Leung, & So, 2022; Zhao 
& Liu, 2021; Dhaini & Mansour, 2021). However, centralized portfolio process 
requires a high degree of information sharing, which can easily lead to privacy 
leakage. In addition, centralized portfolio strategy ignores that certain invest-
ment products and wealth cannot be transferred (Lee, Kwon, & Lee, 2016), and 
centralized computing can easily lead to single points of failure with the growth 
of large global funds. Therefore, the application of centralized investment man-
agement is limited. There is an increasing focus on decentralized investment 
management (Cremers, Ferreira, Matos, & Starks, 2016), that is, the total assets 
are divided into multiple investment categories, and the portfolio of each cate-
gory is constructed by a professional investment manager in the category. De-
centralized investment management can not only diversify risks, but also pro-
vide more professional asset allocation strategies because each category has pro-
fessional investment managers. 

Decentralized optimization refers to decomposing the optimization problem 
into multiple subproblems and solving the overall optimization problem through 
collaboration and communication among multiple agents. In decentralized op-
timization, each agent can only access local data and does not exchange raw data 
with neighboring agents, thus providing privacy protection. The alternating 
direction method of multipliers (ADMM) (Lin, Li, & Fang, 2022) is a method 
for solving large-scale constrained optimization problems, which has become 
the preferred method for problems involving big data. And many variants of 
ADMM have appeared with the development (Zeng, Yao, & Xia, 2024). In 
ADMM framework, the optimization problem is decomposed into several sub-
problems, which are solved in a distributed manner. Its good scalability has been 
applied to many practical problems (Shi et al., 2022; Boyd et al., 2011). This pa-
per will use the 1 -norm with sparse properties as an auxiliary variable for im-
plementing the ADMM algorithm to solve the decentralized portfolio optimiza-
tion problem. 

Portfolio models can be divided into single-period static models and mul-
ti-period dynamic models from another perspective. The single-period portfolio 
model solves the one-time asset allocation problem, using a fixed asset allocation 
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weight throughout the entire investment period. For individual or institutional 
investors, they usually do not stick with a same portfolio strategy to the end of 
the investment period. Instead, they are more likely to dynamically adjust the 
portfolio based on changes in the financial market. Multi-period portfolio origi-
nates from these pioneering work (Mossin, 1968; Merton, 1969; Samuelson, 
1975), and has received significant research attention in recent years (Gupta, 
Mehlawat, & Khan, 2021; Wei, Yang, Jiang, & Liu, 2021; Nesaz, Jasemi, & Mon-
plaisir, 2020). For long-term stock investments, accurately establishing a portfo-
lio model suitable for the entire investment period is highly challenging. The 
trading market is a complex system with market conditions constantly changing. 
Therefore, multi-period portfolio models that consider rebalancing asset alloca-
tion are a research topic with great practical value. 

Event-triggered control is a way of control based on demand. Compared with 
the traditional communication strategy with a constant time period, event-triggered 
control has different triggering intervals. The event-triggered control uses a trig-
gering function to replace the time constant in traditional periodic strategies. 
Event-triggered control has been studied in various fields such as communica-
tion, control, and optimization (Cao & Başar, 2020; Dai, Fang, & Chen, 2020; Ge, 
Han, & Wang, 2017). In multi-period portfolio selection, event-triggered strate-
gies only rebalance the portfolio when certain events occur, and it is like a pro-
fessional investment manager. Predefined event-triggered rules may consider 
any potentially valuable information from the market (Ding, Han, Ge, & Zhang, 
2017). Centralized event-triggered control involves all agents jointly satisfying a 
global triggering function, while distributed event-triggered control is different. 
Each agent has its own local triggering function, and the agent can proceed to 
the next operation when the local information satisfies the function. 

Based on the above discussion, the contribution of this work is to provide a 
new method for solving the decentralized portfolio optimization problem, that is, 
using alternating direction method of multipliers (ADMM) to solve the problem. 
In addition, in order to realize the dynamic adjustment of each sub-portfolio 
along with market information, we proposed two distributed event-triggered 
functions. Through distributed event-triggered functions, each sub-portfolio can 
be adjusted independently and dynamically. Distributed event-triggered func-
tions are introduced into the decentralized portfolio optimization problem, so a 
new decentralized multi-period portfolio optimization model is established. This 
model not only fulfills the decentralized requirements of distributed investment 
management but also achieves dynamic adjustment of allocation weights based 
on market information. 

2. Preliminaries 
2.1. Portfolio Optimization 

Assume that a portfolio model is constructed for n risky assets. Let [ ]0,1 n∈w  
be the proportions of a total wealth allocated to n risky assets, n∈µ  be the 
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expected rate of return, and Σ  be the covariance matrix of n risky assets. The 
mean and covariance matrix of historical sample return rates are usually used as 
estimates of µ  and Σ . Markowitz’s mean-variance portfolio model introduc-
es estimates of the expected return vector and covariance matrix for given assets 
into the mean-variance model. The purpose is to find the minimum risk portfo-
lio weight under the target return or the maximum return portfolio weight un-
der the target risk. The formula is expressed as:  

 
min

min

s.t. , 1, 0

Τ

Τ Τ≥ = ≥
w

w w

w w w

Σ

µ 1µ
 (1) 

or  

 
max

max

s.t. , 1, 0,

Τ

Τ Τ≤ = ≥
w

w

w w w wΣ

µ

1σ
 (2) 

where minµ  is the minimum expected return of the portfolio, maxσ  is is the 
maximum risk of the portfolio, and 1  is the column vector of all ones. 1Τ =w1  
represents the budget constraint, and the nonnegativity constraint implies that 
no short selling is allowed. 

In addition to the above basic model, the mean-variance portfolio model can 
also be expressed as a quadratic programming problem:  

 
min

s.t. 1, 0,

Τ Τ

Τ

−

= ≥
w

w w w

w w

Σ µ

1

γ
 (3) 

where ( )0,1∈γ  is a predefined risk parameter. The smaller γ  indicates that 
investors are more risk-taking. In Section 3.1, we will solve a decentralized port-
folio optimization problem based on ADMM. 

2.2. Alternating Direction Method of Multipliers (ADMM) 

ADMM is an iterative algorithm for solving convex optimization problems. It 
combines the decomposability of the dual ascent method and the superior con-
vergence property of the multiplier method. ADMM is usually used to solve op-
timization problems with constrained separable objective functions, as follows:  

 
( ) ( )min

s.t. ,
f g+

+ =

x y
Ax By c

 (4) 

where m∈x   and n∈y   are target variables. d∈c   is the constant vector, 
and d m×∈A   and d n×∈B  . Use the augmented Lagrangian function to bring 
the constraints of the original optimization problem into the objective function, 
that is,  

 ( ) ( ) ( ) ( ) 2, , ,
2

L f g Τ= + + + − + + −x y x y Ax By c Ax By cλ λρ
ρ  (5) 

where λ  is the Lagrangian dual variable, and 0>ρ  is a penalty parameter. 
ADMM iteratively optimizes the problem through the following process:  
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 ( )1 : arg min , , ,t t tL+ =
x

x x y λρ  (6) 

 ( )1 1: arg min , , ,t t tL+ +=
y

y x y λρ  (7) 

 ( )1 1 1: .t t t t+ + += + + −Ax By cλ λ  (8) 

In addition to the above form, ADMM can usually be written in a more con-
venient form, that is, using the scaled augmented Lagrangian function:  

 ( ) ( ) ( ) 2 2, , ,
2 2

f g= + + + − + −x y x y Ax By cµ µ µρ
ρ ρ  (9) 

where 1
=µ λ
ρ

 is the scaled dual variable. After using the scaled form, the up-

date process of ADMM is as follows:  

 ( )1 : arg min , , ,t t t+ =
x

x x y µρ  (10) 

 ( )1 1: arg min , , ,t t t+ +=
y

y x y µρ  (11) 

 ( )1 1 1: .t t t t+ + += + + −Ax By cµ µ  (12) 

3. Problem Formulation  
3.1. Decentralized Portfolio Optimization  

In decentralized management, a portfolio is divided among multiple professional 
investment institutions for joint construction. In other words, the portfolio is 
divided into K sub-portfolios. Let { }1, , Kµ µ  represent the expected rates of 
return, { }1, , Kw w

 represent the weights of wealth invested to the risky assets, 
and { }1, , KΣ Σ  represent the covariance matrices under K sub-portfolios. 
Based on problem (3), a decentralized portfolio optimization problem is written 
as:  

 
( )

1

1 1

min

s.t. ,

k

K

k k k k k k
k

K K

k k k
k k

c

Τ Τ

=

Τ

= =

−

=

∑

∑ ∑

w
w w w

w

Σ µ

1

γ
 (13) 

where 1 1K
kk c

=
=∑ , kγ  is the risk parameter for the kth sub-portfolio, which is 

constructed by each investment manager based on their own investment strate-
gies and goals. kn

k ∈1  is the column vector where kn  is the number of risky 
assets in k sub-portfolio. k k k k k k

Τ Τ−w w wΣ µγ  is called local objective function. 
In order to solve the problem (13) in decentralized manner, we first introduce 

the 1 -norm of the weight vector kw  into the problem, which can make the 
result sparse. Problem (13) is rewritten as:  

 
( ) 1

1 1
min

s.t. , 1, , .
k

K K

k k k k k k k
k k

k k kc k K

Τ Τ

= =

Τ

− +

= =

∑ ∑
w

w w w w

w 

Σ µ

1

γ λ
 (14) 

Problem (14) is reformulated into the following equivalent form through va-
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riable separation:  

 
( ) 1

1 1
min

s.t. , , 1, , ,
k

K K

k k k k k k k
k k

k k k k kc k K

Τ Τ

= =

Τ

− +

= = =

∑ ∑
w

w w w z

w w z 

Σ µ

1

γ λ
 (15) 

where 0>λ  is a regularization parameter, and kc  is the weight of the total 
wealth given to sub-portfolio k. 

The scaled augmented Lagrangian function Lρ  of problem (15) is as follows:  
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∑ ∑

w z u

w w w z w

w z u u

Σ µ 1

ρ

ρ ργ λ

ρ ρ

 (16) 

where u and û  are dual variables of constraints in (15), and 0>ρ  is the pe-
nalty parameter. Using the ADMM algorithm to solve this optimization problem, 
the alternating iterative optimization process is as follows:  

 ( ) ( )( )11 ˆ2 ,t t t t
k k k k k k k k k k k k kc u

−+ Τ= + + − + − +w I z uΣ µ1 1 1 1ρ ρ γ ρ  (17a) 

 ( )1 1 ˆ ,t t t
k k k
+ += +z w uλ

ρ

 (17b) 

 1 1 ,t t t
k k k k ku u c+ Τ += + −w1  (17c) 

 1 1 1ˆ ˆ ,t t t t
k k k k
+ + += + −u u w z  (17d) 

where k kn n
k

×∈I   is the identity matrix of dimension kn , and   is the soft 
threshold operator (Bredies & Lorenz, 2008):  

 ( )
,

0,
,

a a
a a

a a

− >
= ≤
 + < −

κ

κ κ
κ

κ κ
 (18) 

After achieving decentralized solving for the decentralized portfolio optimiza-
tion problem, we will introduce appropriate distributed event-triggered func-
tions to realize decentralized multi-period portfolio optimization in Section 3.2. 

3.2. Distributed Event-Trigged Function  

Stock prices are time-varying and markets are also dynamically changing. Ob-
taining valuable information from the market can enhance the performance of 
portfolio, and event-triggered functions can fuse these valuable information. In 
addition, a significant advantage of the event-triggered strategy is that its computa-
tional cost is very low. Inspired by (Skomorokhov, Wang, Ovchinnikov, Burnaev, 
& Oseledets, 2023), there are two types of distributed event-triggered functions 
available for portfolio problems. We propose two distributed event-triggered 
functions to implement decentralized multi-period portfolio optimization. The 
first is defined as:  
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 ( ) ( ), , 1
1

, 1, , ,
kn

k i k i
i

r t w t k K
=

≤ =∑ λ  (19) 

where ( ),k ir t  is the sample return rate of stock i belonging to market k at mo-
ment t, which is defined as  

 ( ) ( ) ( )
( )

, ,
,

,

1
,

1
k i k i

k i
k i

p t p t
r t

p t
− −

=
−

 (20) 

where ( ),k ip t  is the price of stock i belonging to market k at moment t. 1λ  is 
a predetermined threshold, usually µ  or fr , which means that the portfolio 
return at the moment is compared with the current average rate of return or the 
risk-free rate of return. Equation (19) is interpreted as if the current portfolio 
performance is below a certain threshold, then the portfolio should be restruc-
tured. 

The second type of distributed event-triggered function is defined as:  

 ( ) ( ) ( ) ( )prev
, , , , 2

1 1
, 1, , ,

k kn n

k i k i k i k i
i i

r t w t r t w t k K
= =

− ≥ =∑ ∑ λ  (21) 

where 2λ  is any positive number. ( )prev
,k ir t  is sample return rate of stock i be-

longing to market k from the initial investment moment to the current moment, 
and the formula can be written as:  

 ( ) ( ) ( )
( )

, ,prev
,

,

0
.

0
k i k i

k i
k i

p t p
r t

p
−

=  (22) 

Equation (21) takes into account the return at the triggering moment and the 
return of the entire portfolio. A major difference between the two distributed 
event-triggered functions is that the threshold 1λ  changes because the average 
return rate µ  is different in each period. The risk-free return rate fr , al-
though usually assumed to be constant, can also be influenced by market factors, 
economic conditions, and other variables. The threshold 2λ  is fixed throughout 
the entire investment period. 

A pseudocode for the decentralized event-triggered multi-period portfolio op-
timization is given in Algorithm 1.  

4. Experiments  
4.1. Experimental Setup 

In our experiments, we choose datasets commonly used in decentralized portfo-
lio optimization problems (Wang & Gan, 2023; Leung, Wang, & Che, 2022; 
Leung, Wang, & Li, 2021). At the same time, in order to reflect regional charac-
teristics, we selected stock trading markets from different countries, and finally 
selected four stock trading markets: 1) HKSE; 2) NASDAQ; 3) LSE; 4) TSE. Se-
lecting weekly adjusted price data of 100 stocks from each market, ranging from 
January 1, 2000, to January 1, 20181. These data generate 4 datasets of different 
sizes, i.e. 10, 30, 60 and 100 stocks per market. Datasets are divided into in-sample  
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Algorithm 1. Decentralized event-triggered multi-period portfolio optimization via ADMM. 

 
 
data and out-of-sample data. The in-sample data consists of 521 observations 
from 2000 to 2010, and the out-of-sample data consists of 417 observations from 
2011 to 2018. In-sample data is used to select hyper-parameters and fit the mod-
el, while out-of-sample data are used to test model performance. 

In our experiment, it is assumed that the risk preferences of professional in-
vestment managers in each market are the same, that is, 0.5k =γ , 1, ,4k =  . 
Referring to the experimental setting of (Leung et al., 2021), we assume that the 
proportion of total assets allocated to each market are the same, that is, 

0.25kc = , 1, ,4k =  . We will determine the hyper-parameters through grid 
search during in-sample experiments. 

This work will choose the well-known Sharpe ratio (SR) to measure the per-
formance of a portfolio model. The Sharpe ratio comprehensively considers the 
risk and return of a portfolio, and it is simple to compute and widely used. The 
Sharpe ratio is defined as (Sharpe, 1998):  

 SR ,frΤ

Τ

−
=

w

w wΣ

µ
 (23) 

where fr  is the risk-free return rate, which is commonly chosen as 0.03. If the 
Sharpe ratio is positive, it means that the average return rate of the portfolio ex-
ceeds the risk-free rate. If it is a negative value, it means that the average return 
rate of the portfolio is lower than the risk-free interest rate, and there is a risk of 
loss. The higher the SR value, the better the portfolio. 

4.2. Experimental Results 

In this work, we compare three portfolio models: a distributed event-triggered 
decentralized multi-period portfolio optimization based on ADMM (DMPP), a 
decentralized single-period portfolio optimization based on ADMM (DP), and 
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an equal-weighted portfolio model (EP). The equal-weight portfolio model is a 
highly competitive benchmark model and is widely used (Hsu, Han, Wu, & Cao, 
2018). Figure 1 shows the cumulative log returns for the three portfolio models. 
A vertical red dashed line divides the dataset into two parts. Data from 2000 to 
2010 is used to train the model, and the training results are utilized as the initial 
asset allocation weights for a decentralized multi-period portfolio model. Data 
from 2011 to 2018 serves as the test set, and the decentralized multi-period 
portfolio model will dynamically allocate assets during this period. The results in 
the figure show that the cumulative log returns of two decentralized portfolio 
models, DMPP and DP, are significantly higher than the equally weighted port-
folio model EP. In addition, the cumulative log returns of the dynamic decentra-
lized multi-period portfolio model DMPP are higher than the static decentra-
lized portfolio model DP, and the advantage becomes more pronounced as the 
data scale increases. 

Table 1 provides the annualized returns and annualized risks of these three 
models. The results in the table show that in each experiment, DMPP has the 
highest annualized returns, and the lowest annualized risk is the equally weighted 
portfolio model EP. In the experiment with 30 stocks in each market, DMPP 
achieved the highest returns and lowest risk. Further comparing between DMPP 
and DP, in the experiment with 10 stocks in each market, DMPP achieved the 
highest annualized return at 0.144603, and DP exhibited the lowest annualized 
risk at 0.208614. However, as the data scale increases, DMPP has higher annual-
ized returns and lower annualized risk than DP. 

 

 

Figure 1. The cumulative log returns for the three portfolio models in different dataset sizes.  
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Table 1. Annualized risks and returns of three portfolio models in different dataset sizes. 

Datasize Model Annualized return Annualized risk 

10 DMPP 0.144603 0.214312 

 DP 0.141074 0.208614 

 EP 0.086857 0.200912 

30 DMPP 0.165106 0.198289 

 DP 0.155512 0.231436 

 EP 0.077837 0.209714 

60 DMPP 0.163731 0.186914 

 DP 0.160646 0.193069 

 EP 0.069626 0.176770 

100 DMPP 0.162221 0.178968 

 DP 0.156120 0.184550 

 EP 0.076429 0.172620 
 

Table 2. SR value of three portfolio models in four datasets with 10, 30, 60 and 100 stocks 
per market. 

 Datasize Model Overall HKEX JYP LSE Nasdaq 

In
-s

am
pl

e 

10 DMPP 0.941645 0.405476 0.424834 0.685359 0.500077 

 DP 0.920825 0.384902 0.312197 0.620250 0.608229 

 EP 0.203181     

30 DMPP 1.111540 0.684962 0.545692 0.611723 0.591732 

 DP 1.006025 0.608240 0.437749 0.607806 0.617202 

 EP 0.285610     

60 DMPP 1.318233 0.826391 0.447431 0.804308 0.830503 

 DP 1.234574 0.796821 0.415003 0.732514 0.827139 

 EP 0.363972     

100 DMPP 1.465699 0.838616 0.529777 0.908153 0.919805 

 DP 1.419070 0.749867 0.494402 0.987722 0.858681 

 EP 0.403217     

O
ut

-o
f-

sa
m

pl
e 

10 DMPP 0.415725 0.136842 0.130012 0.020139 0.445197 

 DP 0.355467 0.102437 0.112504 0.015487 0.392548 

 EP 0.493651     

30 DMPP 0.604115 0.201213 0.250172 0.302175 0.361124 

 DP 0.578124 0.189924 0.211842 0.315487 0.341102 

 EP 0.612245     

60 DMPP 0.641124 0.005724 0.504975 0.466482 0.501123 

 DP 0.620003 0.004906 0.478852 0.431198 0.512914 

 EP 0.695142     

100 DMPP 0.532201 0.037598 0.906291 0.038451 0.621031 

 DP 0.503251 0.020156 0.889245 0.032015 0.601937 

 EP 0.575139     
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Table 2 provides the Sharpe Ratio (SR) values of the three portfolio models, 
including the SR values of each sub-portfolio model in the decentralized portfo-
lio model. In both in-sample and out-of-sample experiments, the SR values of 
DMPP are higher than DP, and the SR value of the sub-portfolios of the dynamic 
DMPP model are almost all greater than those of the static DP model. By intro-
ducing the distributed event-triggered strategies to decentralized portfolio model, 
each specialized investment institution has greater flexibility to independently 
adjust its sub-portfolio model based on the current market environment. In the 
in-sample experiments, DMPP has the highest SR value, and in the out-of-sample 
experiments, EP has the highest SR value. However, the SR value of DMPP can 
also be very close to EP. 

5. Conclusion 

This paper implements the solution of a decentralized portfolio optimization 
problem based on the alternating direction method of multipliers, and obtains 
four alternating optimization processes. The algorithm has no central coordina-
tor, and each sub-portfolio model is constructed by local nodes. This approach 
protects data privacy and prevents single-point failures caused by large-scale da-
ta. Furthermore, considering that the market is a dynamic process, we introduce 
distributed event-triggered strategies into decentralized portfolio optimization 
problems, proposing a distributed event-triggered decentralized multi-period 
investment portfolio optimization problem. Experimental results show that the 
decentralized multi-period portfolio model based on ADMM and distributed 
event-triggered strategies performs better. Decentralized multi-period portfolio 
optimization can provide more professional investment decisions, leading to a 
wide range of practical applications. 
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