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Abstract 
Since Grover’s algorithm was first introduced, it has become a category of 
quantum algorithms that can be applied to many problems through the ex-
ploitation of quantum parallelism. The original application was the unstruc-
tured search problems with the time complexity of O( N ). In Grover’s al-
gorithm, the key is Oracle and Amplitude Amplification. In this paper, our 
purpose is to show through examples that, in general, the time complexity of 
the Oracle Phase is O(N), not O(1). As a result, the time complexity of Grov-
er’s algorithm is O(N), not O( N ). As a secondary purpose, we also attempt 
to restore the time complexity of Grover’s algorithm to its original form, 
O( N ), by introducing an O(1) parallel algorithm for unstructured search 
without repeated items, which will work for most cases. In the worst-case 
scenarios where the number of repeated items is O(N), the time complexity of 
the Oracle Phase is still O(N) even after additional preprocessing. 
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1. Introduction 

Quantum Computing [1] [2] [3] [4] [5] is a field of computing that leverages the 
principles of Quantum Mechanics. Traditional computers use bits as the funda-
mental unit of information, which can exist in one of two states: 0 or 1. Quan-
tum computers, on the other hand, use qubits, which can exist in multiple states 
simultaneously. Quantum Computing has strange phenomena known as Super-
position and Entanglement.  

Grover’s algorithm [6] is one of the most famous quantum algorithms that 
provide a quadratic speedup over the best classical algorithms for unstructured 

How to cite this paper: Liu, Y. (2024) 
Time Complexity of the Oracle Phase in 
Grover’s Algorithm. American Journal of 
Computational Mathematics, 14, 1-10. 
https://doi.org/10.4236/ajcm.2024.141001 
 
Received: February 15, 2024 
Accepted: March 22, 2024 
Published: March 25, 2024 
 
Copyright © 2024 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/ajcm
https://doi.org/10.4236/ajcm.2024.141001
https://www.scirp.org/
https://doi.org/10.4236/ajcm.2024.141001
http://creativecommons.org/licenses/by/4.0/


Y. Liu 
 

 

DOI: 10.4236/ajcm.2024.141001 2 American Journal of Computational Mathematics 
 

search problems, i.e. from T = O(N) to T = O( N ). It was proposed by Lov 
Grover [6] in 1996 and is a fundamental algorithm in the field of Quantum 
Computing. Its efficiency arises from the exploitation of quantum parallelism 
and quantum interference. Furthermore, it has evolved into a category of algo-
rithms that can be applied to many problems, such as SAT [7], and Subset Sum 
[8]. 

Grover’s algorithm [6] is: 
Initialization; 
Oracle; 
for ( i = 0; i < O( N ), i++) 
     Amplitude Amplification; 
Measurement; 
where: 
Initialization: Start with a superposition of all possible states. If there are N = 

2n possible solutions, where n is the number of qubits, this superposition is 
created over N states. 

Oracle: Introduce an Oracle gate that identifies the target solution.  
Amplitude Amplification: Apply a series of quantum operations that amplify 

the amplitude of the marked state and suppress the amplitudes of the other 
states. 

Repeat Amplification: Amplifications are repeated for a certain number of 
iterations. 

Measurement: The quantum state is measured, and with high probability, the 
correct solution is obtained. 

We will divide Grover’s algorithm into two phases: Oracle Phase and Ampli-
tude Amplification Phase, where the Oracle Phase consists of Initialization and 
Oracle. The job of the Oracle is to mark the solution. Amplitude Amplification is 
the constructive and destructive interference that occurs during the Amplitude 
Amplification step. The amplitudes of incorrect states experience destructive in-
terference, reducing their probabilities, while the amplitude of the correct state 
experiences constructive interference, increasing its probability.  

To date, no one has challenged the main conclusion of Grover’s algorithm: T 
= O( N ) for both Amplitude Amplification and the entire algorithm. Inexpli-
citly, the algorithm assumes that Oracle Phase, Initialization and Oracle, has T = 
O(1). In Grover’s algorithm, the starting superposition of all possible states is 
given in Equation (5), which is indeed O(1). In this paper, we will show that T = 
O(1) for the Oracle Phase only applies to scenarios where: 
• the target number can be found in the unstructured data, and 
• there are no repeated items in the unstructured data. 

We will show that if any one of the above conditions is violated, then, T = 
O(N) for the Oracle Phase. Furthermore, if both of the above conditions are sa-
tisfied, the algorithm’s behavior is predictable, i.e. there is no need for the algo-
rithm at all. 
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When the target is not in the list, the target must be rejected by the Oracle 
Phase so the algorithm will not enter into the next phase. However, if the list 
does not contain the target item, the oracle operation will not find any valid so-
lution to mark and stop the algorithm. This step requires all of the items in the 
unsorted list to be encoded into the initial superposition state, which is O(N). 

When the list has repeated items, the normalization of the initial superposi-
tion state must be reconstructed if it is required to find all of the matching items. 
All of the items in the unsorted list need to be encoded into the initial superposi-
tion state, which is also O(N). 

This paper will make a high-level logical discussion rather than whether a par-
ticular task is possible or not at the quantum circuit level. For example, we will 
simply assume that we can produce an initial superposition state based on a 
given list with respect to each item in the list. 

Clearly, if the time complexity of the Oracle Phase is O(N), then Grover’s al-
gorithm is also O(N). Even if we have shown that the Oracle has T = O(N), we 
will need to at least attempt to show that this is not trivial, i.e. there are no trivial 
solutions to restore the time complexity of Oracle Phase to O(1). We can restore 
the time complexity of Grover’s algorithm to O( N ) by introducing an O(1) 
parallel SIMD algorithm for unstructured search without repeated items, which 
will work for most cases. In the worst-case scenarios where the number of re-
peated items is O(N), the time complexity of the Oracle Phase is still O(N). The 
SIMD architecture is not readily available, especially when a search list is large, 
so this is only a solution in theory. 

This paper is organized as follows: 
Section ‘2. Basic Notation and Background’ first introduces X = {0,1}d space. 

Then, we will introduce the notation for superposition vectors.  
Section ‘3. T = O(1) for the Oracle Phase’ describes the situation where the in-

itialization is fixed and is independent of a particular unsorted list to be 
searched. 

Section ‘4. Two Problems for the Oracle Phase’ describes the necessity of en-
coding the initial superposition states from the unsorted list. 

Section ‘5. An O(1) Parallel Algorithm for Unstructured Search without Re-
peated Items’ attempts to restore the time complexity of Grover’s algorithm to 
O( N ) with a SIMD algorithm. This algorithm works for most cases. Because 
it is not really practical to build a SIMD architecture for a large amount of 
processing units, this is a solution in theory. 

Section ‘6. A Parallel Algorithm for Unstructured Search with Repeated Items’ 
shows that in the worst-case scenarios, the time complexity of the Oracle Phase 
is still O(N). 

2. Basic Notation and Background 

Throughout this paper,  
n is the number of qubits; 
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N = 2n is the number of states; 
L <= N is the number of items in an unsorted list; 
M is the unsorted list. 
The unstructured search problems have: 

( ) ( )O O 2nT N= =                            (1) 

Grover’s algorithm [6] provides a quadratic speedup over the best classical 
algorithms for unstructured search problems, i.e. from T = O(N) to T = O( N ). 
Today, Grover’s algorithm is also a category of algorithms that can be applied to 
many problems [7] [8]. 

An Instance Space, X = {0, 1}n, is a set of all instances given in Equation (2): 

{ }0 00,0 01,0 10,0 11,X = � � � � �                   (2) 

An instance of X is x X∈ , where x = 00∙∙∙0, or, 0∙∙∙01, ∙∙∙ , and |X| = 2n
 . An 

instance, x, is a binary string, which can be converted into a decimal number: 

{ }0,1,2,3, , 1X N= −�                        (3) 

An instance, x, can be the qubits. It can appear as a binary string or a decimal 
number. Examples are: 000 0= , 001 1= , � , 111 7= . 

In Grover’s algorithm, the starting superposition of all possible states, 

( )
1

0

N

x
a x xψ

−

=

= ∑ ,                          (4) 

is always: 
1

0

1 N

x
x

N
ψ

−

=

= ∑                            (5) 

Here a(x) in Equation (4) are the amplitudes. Equation (5) comes from: 

1 1 0nx x xψ −= ⊗ ⊗ ⊗�                       (6) 

where: 

( )

( )

0

1

1 0 1 0
2

1 0 1 0
2

x H

x H

= + = + =

= + = + =

�

                    (8) 

where H is the Hadamard gate. The time complexity for Equation (5) is O(1). 
Note that although there are n qubits and each qubit will go through Equation 
(9): 

0H+ =                              (9) 

the n steps proceed in parallel so the time for Equation (7), (8), … , together is 
O(1). For the same reason, the superposition of ψ in equation (6) from n qubit, 
{ }2 1 0, , ,x x x� , is also O(1). 
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The advantage of the unstructured search problem is that the Oracle is easy to 
construct, i.e. the Oracle merely marks the target number, which is given. For 
example, let n = 3, and we want to search a target, 5 101= , from an arbitrary 
random list, M = {3, 4, 6, 0, 1, 2, 7, 5}. Since we know |101⟩ is the solution, the 
Oracle simply marks the 101  state.  

3. T = O(1) for the Oracle Phase 

Grover’s algorithm starts with the initialization, which starts with a superposi-
tion of all possible states. If there are N = 2n possible solutions, where n is the 
number of qubits, this superposition is created over N states given in Equation 
(5). Already, we have noticed that the Initialization is search-list independent. 
The only requirements are that the random list: 

{ }0 1 1, , , LM m m m −= �                         (10) 

can be encoded into n qubits in theory.  
The Oracle identifies the target; since the target in the random-list search 

problem is given, the Oracle’s job is simply to mark it. One thing is immediately 
obvious. Assuming that we want to find 5 from two arbitrary search lists, say, {3, 
4, 6, 0, 1, 2, 7, 5} and {3, 4, 6, 0, 7, 5, 1, 2}, the initial superposition states will be 
the same in both cases, because the initial superposition state is Equation (5). 

In fact, Grover’s algorithm, based on the initial superposition state alone, can 
always find a target from {0, 1, 2, … , N − 1}. Any search problem will result in 
exactly the same answer: Found. Furthermore, the behavior of the algorithm is 
fixed and predictable; therefore, there is no need to even run through Grover’s 
algorithm at all, because we already know the answer: Found.  

In other words, the very existence of Grover’s algorithm is not necessary, be-
cause we know the outcome of the algorithm ahead of time: there is only one 
answer: Found. This, of course, is exactly the problem, as we can see from the 
examples below. 

Example 1. Finding 5 from {3, 4, 6, 0, 1, 2, 7, 5}. 
Answer: found 5, because algorithm has only one answer. 
Example 2. Finding 6 from {3, 4, 6, 0, 7, 5, 1, 2}. 
Answer: found 6, because algorithm has only one answer. 
Example 3. Finding 7 from {3, 3, 0, 0, 4, 2, 0, 0}. 
Answer: found 7, because algorithm has only one answer. 
You can see the problem in Example 3; the target is not in the list and the an-

swer is wrong. 

4. Two Problems for the Oracle Phase 

The Amplitude Amplification Phase cannot reject a state. When the target is not 
in the list, the target must be rejected by the Oracle Phase. The Oracle is de-
signed to mark the target solution in the quantum state. The Oracle would flip 
the sign of the amplitude of the state representing the target. However, if the list 
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does not contain the target item, the Oracle will not find any valid solution to 
mark and stop the algorithm. 

Equation (5), which contains all of the possible items in the unsorted list, is no 
longer valid now. All of the items in the list, and only all of the items in the list, 
can be encoded into the initial superposition state. Given an unsorted list,  

{ }0 1 1, , , LM m m m −= � , 

the initial superposition state should be: 

( )
1

0

L

x x
x

a m mψ
−

=

= ∑ .                      (11) 

This initialization is problem-dependent. Equation (11) is built from Equation 
(10) by looping each item in Equation (10). The time complexity for the loop is 
O(N) rather than O(1). This is the cost of correcting Example 3. 

Example 3. Finding 7 from {3, 3, 0, 0, 4, 2, 0, 0}.  
The initial superposition state below has O(N) steps by going through each 

item in the unsorted list: 

( )

1 1 1 1 1011 011 000 000
8 2 2 4 4

1 1100 010 000 000
4 4

1 2 011 4 000 100 010
8

ψ = + + +


+ + + + 


= + + +

 

The Oracle is designed to mark the target solution in the quantum states. In 
this example, however, the list does not contain the target item, 7 111= . The 
Oracle would stop the algorithm. The cost for the Oracle is O(N) instead of 
O(1). 

Also, repeated items will introduce an extra factor because the superposition 
state is normalized; for example, in the above example, because item, 0, appears 
four times, it has an extra normalization factor: 

1 000
4

 

The extra factor depends on the number of times an item is repeated, which 
can be found by looping through the list, which again is O(N).To summarize, 
there are problems: 
• The search target is not in the random list; 
• There are repeated items in the random search list. 

If Equation (11) has O(N), Grover’s algorithm has lost all of its advantages, at 
least for the unstructured search problem. Even if we have shown that the Oracle 
has T = O(N), we will need to at least attempt to show that there are no trivial 
solutions to restore the time complexity of Oracle to O(1). In the following, we 
attempt to restore the time complexity of Grover’s algorithm to O( N ) with a 
SIMD algorithm. This algorithm works for most cases. Because it is not really 
practical to build a SIMD architecture for a large number of processing units, 
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this is a solution in theory.  

5. An O(1) Parallel Algorithm for Unstructured Search  
without Repeated Items 

In this section, we will introduce an O(1) parallel algorithm for unstructured 
search without repeated items. 

SIMD [9] [10] [11] [12] [13] stands for Single Instruction, Multiple Data. It is 
a parallel computing architecture that performs the same operation on multiple 
data points simultaneously. In SIMD, a single instruction is executed across 
multiple processing elements, each operating on a different set of data. 

We assume the number of processing elements is the same as the number of 
items in the random list. We further assume that the processing elements are 
fully connected. 

Message passing is a communication paradigm used in parallel computing to 
enable communication and coordination between different processing units, 
such as processing elements. In message passing, processes communicate by 
sending and receiving messages through a communication network or inter-
connect. Each processing element has its own address, but can exchange data 
and synchronize with other processes using messages. 

Send and Receive Operations [9] [10] [11] [12] [13] are defined as processes 
that can send messages to each other using “Send” operations and receive mes-
sages using “Receive” operations. A process initiates a send operation to trans-
mit a message to another processing element, specifying the destination 
processing element and the data to be sent. The destination process then initiates 
a receive operation to receive the message. The pseudo codes for Send and Re-
ceive are: 

Send (destination-address, message), 
Receive (). 
Each processing element is labeled by its address:  

{ }0,1,2,3, , 1P N= −�                        (12) 

i.e. processing element, P0 or P[0], has an address of 0, … . 
We will assign a variable (or array), m, to each processing element, for receiv-

ing messages with the following initialization: 

0

1

1,
1,

P m
P m
⋅ = −

⋅ = −
�

 

Given an unsorted list,  

{ }0 1 1, , , LM m m m −= � , 

And a SIMD array in Equation (12), one can simply match each item in the 
unsorted list to its corresponding processing element, i.e. match m0 with P0, m1 

with P1, … . By assumption, each processing element will send and receive once. 
The element, P[i] = Pi, i= 0, 1, 2, 3, …, will send a message: 
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Pi∙Send(mi ,i); 
and receive a message from some other element: 
Pi∙m = Receive(); 
By assumption, there is no repeated item in the unsorted list, so receiving 

once is enough. We will use Pi and P[i] interchangeably. We will use an example 
to show the algorithm. 

Example. Finding 5 and 3 from a random list: {1, 3, 7, 2, 4, 6, 0}. 
Unsorted list: { }1,3,7,2,4,6,0M =  
Processing element: { }1, 1, 1, 1, 1, 1, 1, 1P m⋅ = − − − − − − − −  
Step 0: Input 

• P[0] matches M[0] = 1,  
• P[1] matches M[1] = 3,  
• … 

Step 1. Send 
• P[0] sends its address, 0, to element, M[0] = 1, i.e. sends to P[1] 
• P[1] sends its address, 1, to element, M[1] = 3, i.e. sends to P[3] 
• … 

Step 2. Receive 
• P[0]∙m receives 7, 
• P[1]∙m receives 0, 
• … 

Now: { }7,0,3,1,5, 1,6,2P m⋅ = −  
Step 3. Find 5 and 6. 

• To find item 5, go to P[5] and get P[5]∙m = -1, i.e., not found.  
• To find item 3, go to P[3] and get P[3]∙m = 1, i.e., the item found at position 

1. 
The SIMD algorithm is:  
Input data: 
Match 

{ }0 1 1, , , LM m m m −= � ; 

With 

{ }0,1,2,3, , 1P N= −�  

Element i: 
Send: Pi∙Send(mi ,i); 
Receive: Pi∙m = Receive(); 
Search: 
let Pk address be the target, return Pk∙m. 
The time complexity of this algorithm is O(1) because of SIMD parallelism. If 

we preprocess the data with the above SIMD hardware, Grover’s algorithm will 
still have T = O( N ). One can argue that (1) this algorithm has already solved 
the search problem; (2) the proposed SIMD architecture is hard to build; and (3) 
the proposed SIMD architecture is impossible for a large list; however, Grover’s 
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algorithm is a category of algorithms that has gone beyond the unstructured 
search [7] [8]. 

6. A Parallel Algorithm for Unstructured Search with  
Repeated Items 

For a random list with repeated items, the parallel algorithm proposed in the last 
section will need to be modified. Assuming the maximum number of repeated 
items is K, the single receiving step, Pi∙m = Receive(), will be replaced by 

            k = 0; 
            while ( (Pi∙m[k] = Receive())  != -1 ) 
                k++; 
This algorithm will solve the second problem in Section 5, the normalization 

problem for repeated items. The time complexity is T = O(K). In the worst sce-
narios where K is order of N, for example, K = N/2 or K = N/3, time complexity 
is T = O(N). 

7. Conclusion 

In this paper, we have shown that only under special cases where the outcome is 
predictable and Grover’s algorithm is unnecessary, the time complexity of the 
Oracle Phase is O(1) and the time complexity of Grover’s algorithm is O( N ). 
In general, the time complexity of the Oracle Phase is O(N) and the time com-
plexity of Grover’s algorithm for the unstructured search problems is O(N).  

We attempt to restore the time complexity of Grover’s algorithm to O( N ) 
with a non-trivial SIMD architecture, which is an O(1) parallel algorithm for 
unstructured search without repeated items. This SIMD algorithm will work for 
most cases. In the worst-case scenarios where the number of repeated items is 
O(N), the time complexity of the Oracle Phase is still O(N). 
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