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Abstract 
This research extensively evaluates three leading mathematical software pack-
ages: Python, MATLAB, and Scilab, in the context of solving nonlinear sys-
tems of equations with five unknown variables. The study’s core objectives 
include comparing software performance using standardized benchmarks, em-
ploying key performance metrics for quantitative assessment, and examining 
the influence of varying hardware specifications on software efficiency across 
HP ProBook, HP EliteBook, Dell Inspiron, and Dell Latitude laptops. Results 
from this investigation reveal insights into the capabilities of these software 
tools in diverse computing environments. On the HP ProBook, Python con-
sistently outperforms MATLAB in terms of computational time. Python also 
exhibits a lower robustness index for problems 3 and 5 but matches or sur-
passes MATLAB for problem 1, for some initial guess values. In contrast, on 
the HP EliteBook, MATLAB consistently exhibits shorter computational times 
than Python across all benchmark problems. However, Python maintains a 
lower robustness index for most problems, except for problem 3, where 
MATLAB performs better. A notable challenge is Python’s failure to converge 
for problem 4 with certain initial guess values, while MATLAB succeeds in 
producing results. Analysis on the Dell Inspiron reveals a split in strengths. 
Python demonstrates superior computational efficiency for some problems, 
while MATLAB excels in handling others. This pattern extends to the ro-
bustness index, with Python showing lower values for some problems, and 
MATLAB achieving the lowest indices for other problems. In conclusion, this 
research offers valuable insights into the comparative performance of Python, 
MATLAB, and Scilab in solving nonlinear systems of equations. It unders-
cores the importance of considering both software and hardware specifica-

How to cite this paper: Azure, I., Wiredu, 
J.K., Musah, A. and Akolgo, E. (2023) AI- 
Enhanced Performance Evaluation of Py-
thon, MATLAB, and Scilab for Solving 
Nonlinear Systems of Equations: A Com-
parative Study Using the Broyden Method. 
American Journal of Computational Ma-
thematics, 13, 644-677. 
https://doi.org/10.4236/ajcm.2023.134036 
 
Received: September 30, 2023 
Accepted: December 25, 2023 
Published: December 28, 2023 
 
Copyright © 2023 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/ajcm
https://doi.org/10.4236/ajcm.2023.134036
https://www.scirp.org/
https://doi.org/10.4236/ajcm.2023.134036
http://creativecommons.org/licenses/by/4.0/


I. Azure et al. 
 

 

DOI: 10.4236/ajcm.2023.134036 645 American Journal of Computational Mathematics 
 

tions in real-world applications. The choice between Python and MATLAB 
can yield distinct advantages depending on the specific problem and compu-
tational environment, providing guidance for researchers and practitioners in 
selecting tools for their unique challenges. 
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System of Nonlinear Equations, Broyden Method, Robustness Index,  
Artificial Intelligence (AI), MATLAB, SCILAB, Python 

 

1. Introduction 

In the realm of computational mathematics and scientific computing, the choice 
of software can profoundly impact the efficiency and accuracy of numerical so-
lutions. This research represents a significant follow-up to the pioneering work 
of Isaac Azure, aimed at delving deeper into the performance attributes of three 
prominent mathematical software packages: Python, MATLAB, and Scilab. These 
software tools serve as cornerstones in the arsenal of mathematicians, engineers, 
and scientists, enabling them to tackle complex mathematical problems and si-
mulations with relative ease [1] [2] [3] [4].  

The core objective of this study was to conduct a comprehensive assessment 
of these software packages’ capabilities when confronted with the formidable 
challenge of solving nonlinear systems of equations, each comprising five un-
known variables. This is a critical endeavor, as nonlinear systems frequently arise 
in a myriad of scientific and engineering disciplines, necessitating efficient and 
reliable numerical techniques for their resolution [5] [6] [7] [8]. 

A general mathematical representation of a system of nonlinear equations in-
volving “n” variables can be expressed as follows: 

Let “x” represent the vector of variables: ( )1 2, , , nx x x x=  . 
The system of nonlinear equations can then be written as: 

( )
( )

( )

1

2

0
0

0m

f x
f x

f x

=
=

=


                             (1) 

Here, “m” represents the number of equations in the system, and each ( )if x  
is a nonlinear function of the variables 1 2, , , nx x x  that must equal zero. In a 
more compact vector form, the system can be represented as: 

( )

( )
( )

( )

1

2

0

0

0

m

f x
f x

F x

f x

   
   
   = =   
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    

 

                        (2) 

The objective of solving such a system is to find a vector “x” that simulta-

https://doi.org/10.4236/ajcm.2023.134036


I. Azure et al. 
 

 

DOI: 10.4236/ajcm.2023.134036 646 American Journal of Computational Mathematics 
 

neously satisfies all “m” equations ( ) 0F x = . This often involves iterative nu-
merical methods, as analytical solutions are typically not available for arbitrary 
nonlinear systems [9] [10] [11] [12]. 

1.1. The Broyden Method 

To navigate this intricate terrain, the Broyden method, a widely recognized nu-
merical approach, was chosen as the numerical workhorse for our investigations. 
The specific focus on nonlinear systems and the utilization of a consistent nu-
merical method provides a controlled and rigorous framework for the compara-
tive analysis of Python, MATLAB, and Scilab [13]. 

The Broyden method, also known as the Broyden–Fletcher–Goldfarb–Shanno 
(BFGS) update method, is an iterative numerical technique used to solve systems 
of nonlinear equations. It is named after its developers, Charles W. Broyden and 
Roger Fletcher, and it is an extension of the more well-known Broyden method 
for solving nonlinear systems. The BFGS variant is primarily used for solving 
unconstrained nonlinear optimization problems, while the original Broyden me-
thod is designed for solving systems of nonlinear equations [14]. 

The Broyden method was developed as an alternative to traditional Newton’s 
method for solving nonlinear equations. Newton’s method involves iteratively 
linearizing a nonlinear system of equations and solving the linearized system at 
each iteration. However, Newton’s method can be computationally expensive, 
especially when dealing with large systems, because it requires the computation 
of the Jacobian matrix (a matrix of partial derivatives) at each iteration [15] [16]. 

The Broyden method aims to overcome this computational burden by ap-
proximating the Jacobian matrix with each iteration, rather than recomputing it 
from scratch. It does so by updating an initial approximation of the Jacobian 
matrix using information from previous iterations. This update makes the me-
thod more efficient and less computationally demanding than Newton’s method 
[17]. 

The Broyden method is adopted as the numerical technique for solving the 
nonlinear systems in each software package, providing a consistent approach for 
performance assessment. According to Charles Broyden, (1965), two methods 
can be used to find the approximate solution for nonlinear systems of equations 
as reported in [18].  

The first method gives an approximate matrix for kB  using the following 
assumption; 

kB  must satisfy the secant equation 
( ) ( )k k

kB s y=                              (3) 

where 

 ( ) ( ) ( )1k k ks x x −= −                            (4)  

and 

 ( ) ( )( ) ( )( )1k k ky F x F x −= −                         (5) 
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However, Broyden’s method involves the computation of 1
kB−  and not kB , 

this brings our attention to the next theorem. 
THEOREM: (Sherman-Morrison Formula) If B is a nonsingular matrix and x 

and y are vectors, then tB xy+  is nonsingular provided that 1 1ty A x− ≠ −  and 

 ( )
1 11 1

11

t
t

t
B xy BB xy B

y B x

− −− −
−+ = −

+
                      (6)      

The theorem above is a matrix inverse formula. It allows 1
kB−  to be com-

puted directly using 1
1kB−
− , rather than computing kB  and then its inverse at  

each iteration. Hence, using the theorem and setting 1kB B += , 1
2

2

i k k

k

y B sx
s

−−
= , 

and ky s= , as well as using kB  as defined above we have that 
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Hence, we get 

( )1 1
1 11 1

1 1
1

t
k k k k k

k k t
k k k

s B y s B
B B

s B y

− −
− −− −

− −
−

−
= +                    (10)  

From the assumption above, Broyden’s method is defined as  
( ) ( ) ( )( )1 1k k k

kx x B F x+ −= −                       (11)   

where 1
kB−  is computed using Equation (10). 

1.2. Related Works 

Nonlinear equations, unlike their linear counterparts, feature at least one nonli-
near term, making them considerably more challenging to solve. In tackling 
these intricate equations, numerical methods come to the rescue, often relying 
on an initial guess [19]. 

In a closely related study, five numerical techniques for resolving nonlinear 
equations were investigated after obtaining their solutions manually. The Bisec-
tion method, Newton-Raphson method, Regula Falsi method, Secant method, 
and Fixed-Point Iteration method were all subject to comparison. Researchers 
developed manual computational algorithms for each approach and employed 
them to manually find a root using a TI-Inspire calculator. All methods even-
tually converged to an exact solution. However, the Bisection method reached 
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convergence by the 14th iteration, the Fixed-Point Iterative Method by the 7th 
iteration, the Secant method by the 5th iteration, and both the Regula Falsi and 
Newton Raphson methods by the 2nd iteration [20]. 

In another pertinent study, the challenge of finding roots for nonlinear equa-
tions, arising frequently in practical applications across science and engineering, 
was extensively explored. The process of locating a root is referred to as root- 
finding, with the value of “x” that satisfies ( ) 0f x =  termed a root of ( ) 0f x = . 
This research meticulously compared the convergence rates of two prevalent 
root-finding methods: Bisection and Newton-Raphson. MATLAB software was 
harnessed to locate the root of a specific function and juxtapose the outcomes of 
these two methods. The study’s conclusion favored Newton’s approach, which 
outperformed the Bisection method [20]. 

Throughout these aforementioned studies, MATLAB software took center 
stage in estimating the roots of nonlinear equations. In a related comparative 
analysis, Python emerged as the frontrunner due to its remarkable efficiency and 
precision. Python achieved fitting approximations with the fewest iterations and 
minimal computational time. Notably, the research underscored the Newton- 
Raphson method’s robustness, as it consistently converged efficiently with mi-
nimal iteration counts across various benchmark problems. This underscored 
the method’s superiority in terms of efficiency and reliability, especially when 
dealing with complex nonlinear equations [21]. 

This research is a continuation of the work aimed at identifying which mathe-
matical software package performs better numerical analysis. It however, set out 
to discern the disparities among three mathematical software packages: Python, 
Scilab, and MATLAB, particularly in the context of solving a system of nonlinear 
equations using the Broyden method on different computer environments [3]. 

2. Objectives of the Study 

The objectives of this study are:  
1) To assess and compare the performance of Python, MATLAB, and Scilab in 

solving nonlinear systems of equations with five unknown variables. 
2) To utilize a set of five standardized benchmark problems, featuring nonli-

near equations, to provide a consistent platform for comparative analysis. 
3) To employ key performance metrics, including computational time, conver-

gence iterations, and robustness index, to quantitatively evaluate software per-
formance. 

4) To investigate the influence of varying computer hardware specifications 
on software performance, emphasizing the importance of hardware considera-
tions in software selection and real-world applications. 

3. Methodology 

The methodology employed in this research builds upon the seminal work of Isaac 
Azure, aiming to rigorously assess the performance of three prominent mathe-

https://doi.org/10.4236/ajcm.2023.134036


I. Azure et al. 
 

 

DOI: 10.4236/ajcm.2023.134036 649 American Journal of Computational Mathematics 
 

matical software packages: Python, MATLAB, and Scilab. The research seeks to 
comprehensively investigate their capabilities in solving nonlinear systems of 
equations featuring five unknown variables. Key metrics, including computa-
tional time, the number of iterations for convergence, and the robustness index, 
are utilized to differentiate the software packages. Furthermore, the study ex-
plores the influence of varying computer hardware specifications on computa-
tional performance and solution robustness, ultimately providing valuable in-
sights for software selection and real-world applications. 

3.1. Benchmark Problems Selection 

Five benchmark problems comprising of a system of nonlinear equations with 
five unknowns were chosen to serve as test cases, ensuring standardized evalu-
ation across the software packages. 

Problem 1 

( ) ( )1 2
2 3 4 5e sin cos 2x x x x x+ − + − =  

( ) ( )31
2

2 4 5ln tan 1x x x x x+ + + − =  

( ) ( )2
3

2
1 4 5sie n cos 3xx x x x+ + + =−                (12) 

( ) ( ) ( )3
1 2 3 4 5cos ln tan 0x x x x x+ + + =−  

( ) ( ) ( ) 5
1 2 3 4tan sin c eos 1xx x x x− +− + =  

Problem 2 

( ) ( ) ( )2
2 31 4 5ln sin cos 1.5x x xx x+ − + − =  

( ) ( )2 2
1 2 3 4 5ln tan 2x x xx x+ + + − =  

( ) ( )21
4 53 sin cose e 3x x x x x− + + + =                (13) 

( ) ( ) ( )2
1 2 3 4 5cos ln tan 0x x x x x+ + + =−  

( ) ( ) ( ) 5
1 2 3 4tan sin c eos 1xx x x x− +− + =  

Problem 3 

( ) ( )1 2
2 3 4 5e sin cos 2x x x x x+ − + − =  

( ) ( )31 54
2
2 tan ln 1x x x x x+ + + − =  

( ) ( )22
1 3 4 5sie n cos 3xx x x x+ + + =−                 (14) 

( ) ( ) ( )2
1 2 3 4 5cos ln tan 0x x x x x+ + + =−  

( ) ( ) ( ) 5
1 2 3 4tan sin c eos 1xx x x x− +− + =  

Problem 4 

( ) ( ) ( )2
2 31 4 5ln sin cos 1.5x x xx x+ − + − =  

( ) ( )2 2
1 2 3 4 5ln tan 2x x xx x+ + + − =  

( ) ( )21
4 53 sin cose e 3x x x x x− + + + =                (15) 
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( ) ( ) ( )2
1 2 3 4 5cos ln tan 0x x x x x+ + + =−  

( ) ( ) ( ) 5
1 2 3 4tan sin c eos 1xx x x x− +− + =  

Problem 5 

( ) ( )1 2
2 3 4 5e sin cos 2x x x x x+ − + − =  

( ) ( )31 54
2
2 tan ln 1x x x x x+ + + − =  

( ) ( )2
3

2
1 4 5sie n cos 3xx x x x+ + + =−                 (16) 

( ) ( ) ( )2
1 2 3 4 5cos ln tan 0x x x x x+ + + =−  

( ) ( ) ( ) 5
1 2 3 4tan sin c eos 1xx x x x− +− + =  

The following initial guess values (Table 1) were used for the estimation of 
the root of the benchmark problems with the help of the Broyden method. 

3.2. Numerical Methodology 

Below is the Broyden’s method algorithm: 
STEP 1: Let ( ) ( ) ( ) ( )( )0 0 0 0

1 2, , , nx x x x= 
 be the initial vector given. 

STEP 2: Calculate ( )( )0F x . 
STEP 3: In this step we compute 1

0B− . Because we do not have enough infor-
mation to compute 0B  directly, Broyden’s method permits us to let ( )( )0

0B J x= , 
which implies that ( )( ) 101

0B J x
−

− = . 
 

Table 1. Selected initial guess values for benchmark problems. 

PROBLEM INITIAL GUESS VALUES (IG) 

Problem 1 

IG 1:  0.1, 0.2, −0.3, 0.4, 0.5 
IG 2:  0.2, 0.3, −0.4, 0.5, 0.6 
IG 3:  0.2, 0.2, −0.4, 0.4, 0.6 
IG 4:  0.3, 0.4, −0.5, 0.6, 0.7 

Problem 2 

IG 1:  0.8, 1.2, −0.6, 0.3, 1.7 
IG 2:  0.9, 1.3, −0.7, 0.4, 1.8 
IG 3:  0.9, 1.2, −0.7, 0.3, 1.8 
IG 4:  1.0, 1.4, −0.8, 0.5, 1.9 

Problem 3 

IG 1:  1.2, 0.6, −0.8, 0.4, 1.5 
IG 2:  1.3, 0.7, −0.9, 0.5, 1.6 
IG 3:  1.3, 0.6, −0.9, 0.4, 1.6 
IG 4:  1.4, 0.8, −1.1, 0.6, 1.8 

Problem 4 

IG 1:  1.0, 0.8, −0.4, 0.2, 1.2 
IG 2:  1.1, 0.9, −0.5, 0.3, 1.3 
IG 3:  1.1, 0.8, −0.5, 0.2, 1.3 
IG 4:  1.2, 1.0, −0.6, 0.4, 1.4 

Problem 5 

IG 1:  0.7, 0.9, −0.3, 0.5, 1.3 
IG 2:  0.8, 1.0, −0.4, 0.6, 1.4 
IG 3:  0.8, 0.9, −0.4, 0.5, 1.4 
IG 4:  0.9, 1.1, −0.5, 0.7, 1.5 
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STEP 4: Calculate ( ) ( ) ( )( )1 0 01
0x x B F x−= − . 

STEP 5: Calculate ( )( )1F x . 
STEP 6: Take ( )( )0F x  and ( )( )1F x  and calculate ( )( ) ( )( )1 0

1y F x F x= − . 
Next, take the first two iterations of ( )kx  and calculate ( ) ( )1 0

1s x x= − . 
STEP 7: Calculate 1

1
t
k k ks B y−

− . 

STEP 8: Compute ( )1 1 1 1
1 0 1 0 1 1 01

1 0 1

1 t
tB B s B y s B

s B y
− − − −

−
 = + −  . 

STEP 9: Take 1
1B−  that we found in step 8, and calculate  

( ) ( ) ( )( )2 1 11
1x x B F x−= − . 

STEP 10: Repeat the process until it converges at x , i.e. when ( ) ( )1k kx x x+= = . 
This will indicate that we have solved of the system.  

Broyden’s method as well as all of the Quasi-Newton methods converge su-
perlinear, which means that 

( )

( )

1

lim 0
k

k k

x p

x p

+

→∞

−
=

−
                     (17) 

where p is the solution to ( ) 0F x = , and ( )kx  and ( )1kx +  are successive ap-
proximations to p. 

3.3. Performance Metrics 

A triad of pivotal performance metrics guided our exploration: computational 
time, the number of iterations needed for convergence, and the robustness index. 
These metrics collectively encapsulate the essence of software performance in nu-
merical problem-solving. Computational time offers insights into the efficiency 
and speed of each software package, iterations unveil the underlying numerical 
convergence properties, and the robustness index serves as a gauge of solution 
reliability and stability. 

The robustness index is a quantitative measure of how well a given solution 
satisfies a system of nonlinear equations. The algorithm for the calculation of the 
robustness index for the system of nonlinear equations: 

STEP 1: Define the system of nonlinear equations: Begin with a set of nonli-
near equations, typically represented as ( ) 0F x = , where F is a vector-valued 
function of x, and x is the vector of the unknowns you want to solve. 

STEP 2: Find a solution: Use a numerical solver or method (Broyden method) 
to find a solution *x  that approximately satisfies the system of equations, i.e., 
( )* 0F x ≈ . 
STEP 3: Calculate the Residual Vector: The residual vector, denoted as R, is 

defined as the vector of the differences between the left-hand side (LHS) and the 
right-hand side (RHS) of the equations for the solution *x . Mathematically, it 
can be expressed as:  

( ) ( )* *R x F x= .  

where:  
( )*R x  is the residual vector. 
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( )*F x  is the vector of equations evaluated at the solution *x . 
STEP 4: Calculate the Norm (Magnitude) of the Residual Vector: The 2-norm 

(Euclidean norm) of the residual vector is computed to measure how far the so-
lution is from satisfying the equations. The 2-norm of a vector υ is calculated as: 

2
12 ii

nυ υ
=

= ∑  

where: 

2υ  is the 2-norm of the vector υ. 

iυ  represents the i-th component of vector υ. 
n is the dimension of the vector. 
In our case, υ is the residual vector ( )*R x . 
STEP 5: Display the robustness index: The robustness index is simply the val-

ue of the 2-norm of the residual vector ( )*R x . It quantifies how well the solu-
tion *x  satisfies the equations. A smaller robustness index indicates a solution 
that is closer to satisfying the equations. In summary, the robustness index is 
calculated by finding a solution to the system of nonlinear equations, calculating 
the residual vector that measures how well the solution satisfies the equations, 
and then computing the 2-norm (Euclidean norm) of the residual vector to 
quantify the solution’s robustness or closeness to satisfying the equations. 

3.4. Experimental Setup 

The study involved multiple facets of experimentation, ranging from software 
configuration to hardware variation. In the case of the software configuration, 
the 2023 versions of the Python, MATLAB, and Scilab packages were employed 
for the study. Codes were developed for each benchmark problem using the 
Broyden method and ensuring that each code looked out for the root of the 
problems, computational time, number of iterations, and the robustness index. 

The second part of the experimental setup considered the hardware variation. 
Here, four laptops with different specifications were used simultaneously to run 
the codes (Python, MATLAB, Scilab) developed to solve the benchmark prob-
lems. The table below (Table 2) shows the specifications of the laptop computers 
used for this study: 

 
Table 2. Specifications of Laptop devices. 

No DEVICE NAME PROCESSOR INSTALLED RAM SYSTEM TYPE WINDOWS EDITION 

1 HP PROBOOK 
Intel® CoreTM i5-8265U 

CPU@ 1.60GHZ 1.80GHZ 
8.00 GB  

(7.78 GB usable) 
64-bit Operating System, 

x64-based processor 
Windows 10 

2 
HP ELITEBOOK 

FOLIO 9470m 
Intel® CoreTM i5-3427U 

CPU@ 1.80GHZ 2.30GHZ 
8.00 GB  

(7.87 GB usable) 
64-bit Operating System, 

x64-based processor 
Windows 10 

3 DELL INSPIRON 
Intel® CoreTM i7-8550U 

CPU@ 1.80GHZ 1.99GHZ 
12.00 GB  

(11.9 GB usable) 
64-bit Operating System, 

x64-based processor 
Windows 11 

4 DELL LATITUDE 
Intel® CoreTM i7-4310U 

CPU@ 2.00GHZ 2.60GHZ 
8.00 GB 

64-bit Operating System, 
x64-based processor 

Windows 10 
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4. Results and Discussion 

Pursuant to the fourth objective of this investigation, we subjected the codes 
crafted for the three mathematical software packages to rigorous testing on a 
spectrum of four distinct laptop computers, each characterized by unique speci-
fications, as detailed in Table 2. The overarching aim was to evaluate the per-
formance of Python, MATLAB, and Scilab in root-finding for five designated 
benchmark problems. This evaluation encompassed the computation time, itera-
tion count, and robustness index, all adjudicated through the lens of the Broyden 
method. Notably, these software packages were examined across an eclectic ar-
ray of computing environments, namely the HP Probook, HP Elitebook, Dell 
Inspiron, and Dell Latitude laptops. 

It is worth highlighting that within this triad of mathematical tools, Scilab 
faced convergence challenges for all five benchmark problems across the four 
computers employed in this study. Consequently, our dataset predominantly re-
lies on the outcomes produced by MATLAB and Python software. Each table 
below is accompanied by a graphical representation, facilitating a comprehensive 
juxtaposition of computational times and robustness indices for Python and 
MATLAB across diverse computing environments. 

Using the initial guess values in Table 1 above, the solutions of the bench-mark 
problems using the HP Probook laptop is shown in Table 3 below are graphs 
showing each problem was solved using the software. 

 
Table 3. Results of HP Probook Laptop. 

PRO- 
BLEM 

PAC- 
KAGE 

ROOT ITERA- 
TIONS 

CT RI 
x1 x2 x3 x4 x5 

1 

PYTHON         

IG 1 0.9703856 0.33640073 1.78248243 0.70765518 −1.25063674 78 0.002707190 0.97113728 

IG 2 0.97150346 0.33724451 1.78485727 0.7072669 −1.25077743 83 0.00210545 0.97110238 

IG 3 0.96928977 0.33656571 1.78236457 0.7149359 −1.2518972 115 0.0030783653 0.97105340 

IG 4 0.8167544 −0.35966987 1.32197719 0.16833372 −0.71637541 84 0.0024866318 1.2295925548 

MATLAB         

IG 1 0.9716 0.3363 1.7865 0.7119 −1.2533 66 0.0702 0.9710 

IG 2 0.9716 0.3363 1.7865 0.7119 −1.2533 83 0.0529 0.9710 

IG 3 0.9959 0.2987 1.7370 0.1282 −0.8380 67 0.0512 1.0835 

IG 4 0.9716 0.3363 1.7865 1.7119 −1.2533 76 0.0681 0.9710 

SCILAB - - - - - - - - 

2 

PYTHON         

IG 1 0.7410159 0.616552 −0.68722343 1.40086399 1.83923133 82 0.0026665 6.9985642 

IG 2 0.73498977 0.62935176 −0.67192174 1.40004509 1.84389973 76 0.0024065518 6.99792766 

IG 3 0.72778208 0.61529578 −0.67099376 1.40235684 1.84342885 62 0.0017950415 6.9979516 

IG 4 0.72746388 0.61529185 −0.70037927 1.40542718 1.8440568 67 0.001944973 6.9996142 
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MATLAB         

IG 1 0.7326 0.6239 −0.6653 1.4011 1.8434 228 0.1732 6.9978 

IG 2 0.7326 0.6239 −0.6653 1.4011 1.8434 263 0.1744 6.9978 

IG 3 0.7326 0.6239 −0.6653 1.4011 1.8434 277 0.2148 6.9978 

IG 4 0.7326 0.6239 −0.6653 1.4011 1.8434 343 0.2690 6.9978 

SCILAB - - - - - - - - 

3 

PYTHON         

IG 1 0.64170722 −0.05649459 0.65815341 −0.0862085 0.58320854 148 0.00356941 2.615594 

IG 2 0.69352355 −0.27318825 0.2337675 0.25145785 0.46148114 80 0.00199568 2.38164651 

IG 3 0.66576994 −0.27633288 0.24413165 0.23223115 0.45262216 87 0.002296090 2.37832328 

IG 4 0.77618451 −0.31053416 0.04072139 0.24611656 0.52286966 86 0.002186186 2.41270966 

MATLAB         

IG 1 0.6353 −0.2561 0.3129 0.2223 0.4475 58 0.0470 2.3772 

IG 2 −1.4359 0.3031 0.4137 1.1899 2.1527 400 0.2333 3.9702 

IG 3 −1.4359 0.3031 0.4137 1.1899 2.1527 400 0.2441 3.9702 

IG 4 0.6621 0.0829 −0.7891 0.9747 1.8349 400 0.0726 6.8038 

SCILAB - - - - - - - - 

4 

PYTHON         

IG 1 0.99699399 0.4663226 −0.11985545 1.10630865 −0.37413413 147 0.0027879 0.4174182 

IG 2 0.79460544 −0.00306158 1.10882098 0.17891018 0.00779873 102 0.003098425 1.44879087 

IG 3 −0.21843663 −0.41870705 0.86175569 0.88075046 −1.07887289 135 0.00465234 1.6819834 

IG 4 1.03781398 0.88471088 0.01948704 0.78311119 0.67483508 77 0.0020654129 1.752369535 

MATLAB         

IG 1 0.9518 0.4318 −0.0050 1.1308 −0.4562 196 0.1592 0.4052 

IG 2 0.9518 0.4318 −0.0050 1.1308 −0.4562 276 0.1527 0.4052 

IG 3 0.9518 0.4318 −0.0050 1.1308 −0.4562 225 0.1425 0.4052 

IG 4 0.9518 0.4318 −0.0050 1.308 −0.4562 184 0.1123 0.4052 

SCILAB - - - - - - - - 

5 

PYTHON         

IG 1 7.93165560e−01 −8.55523324e−04 1.12190615e+00 1.66453597e−01 2.19405901e−03 107 0.002276010 1.44110698 

IG 2 0.79460544 −0.00306158 1.10882098 0.17891018 0.00779873 102 0.003278701 1.44879087 

IG 3 −0.21843663 −0.41870705 0.86175569 0.88075046 −1.07887289 135 0.00465234 1.6819834 

IG 4 1.82494083e+00 2.35951827e−02 1.82997012e+00 −1.19703799e−07 1.49325421e+00 162 0.00445223 1.352219796 

MATLAB         

IG 1 0.6353 −0.2561 0.3129 0.2223 0.4475 94 0.0504 2.3772 

IG 2 0.6353 −0.2561 0.3129 0.2223 0.4475 91 0.0507 2.3772 

IG 3 0.6353 −0.2561 0.3129 0.2223 0.4475 91 0.0448 2.3772 

IG 4 0.6353 −0.2561 0.3129 0.2223 0.4475 86 0.0473 2.3772 

SCILAB - - - - - - - - 
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The collected data from running the codes on an HP Probook laptop reveals 
noteworthy insights. Python consistently exhibited significantly shorter compu-
tational times across all five benchmark problems when compared to MATLAB 
and this can be seen in Figures 1(a)-5(a). Specifically, Python’s computational 
time ranged from 0.0017950 seconds as the lowest to 0.00465234 seconds as the 
highest, whereas MATLAB’s computational time spanned from 0.0448 seconds 
(minimum) to 0.2690 seconds (maximum). 

Regarding the robustness index, Python outperformed MATLAB by achieving 
a lower index in problems 3 and 5. Notably, for problem 1, Python achieved an 
identical index as MATLAB for initial guess values 1 and 2. However, Python 
surpassed MATLAB for initial guess 3, while MATLAB exhibited better perfor-
mance for initial guess values 4 (Figures 1(b)-5(b)). 
 

 
(a) 

 
(b) 

Figure 1. (a) CT against IG for Problem 1; (b) RI against IG for Problem 1. 
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(a) 

 
(b) 

Figure 2. (a) CT against IG for Problem 2; (b) RI against IG for Problem 2. 
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(b) 

Figure 3. (a) CT against IG for Problem 3; (b) RI against IG for Problem 3. 
 

 
(a) 

 
(b) 

Figure 4. (a) CT against IG for Problem 4; (b) RI against IG for Problem 4. 
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(a) 

 
(b) 

Figure 5. (a) CT against IG for Problem 5; (b) RI against IG for Problem 5. 
 

Table 4 is a summary of results obtained from HP Elitebook Laptop.  
When examining the data collected on the HP Elitebook laptopas shown in 

Table 4, intriguing disparities emerged, presenting a stark contrast to the findings 
on the Probook HP device. Unlike the Probook HP laptop, MATLAB consis-
tently exhibited notably shorter computational times than Python for all four 
benchmark problems investigated in this study, resulting in significant differ-
ences between the two software platforms. 
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Table 4. Results of HP Elitebook Laptop. 

PROBLEM PACKAGE 
ROOT 

ITERATIONS CT RI 
x1 x2 x3 x4 x5 

1 

PYTHON         

IG 1 0.97039 0.336401 1.78248 0.70766 −1.2506 78 0.00359 0.971137 

IG 2 0.97150 0.337244 1.78486 0.70727 −1.2507 83 0.00399 0.971102 

IG 3 0.96929 0.336566 1.78236 0.71494 −1.2518 115 0.00529 0.971053 

IG 4 0.81675 −0.35967 1.32198 0.16834 −0.7163 84 0.00470 1.229526 

MATLAB         

IG 1 0.9959 0.2987 1.7370 0.1282 −0.8380 66 0.0064 1.083549 

IG 2 0.9716 0.3363 1.7865 0.7119 −1.2533 83 0.0013 0.970984 

IG 3 0.9959 0.2987 1.7370 0.1282 −0.8380 67 0.0011 1.083549 

IG 4 0.9716 0.3363 1.7865 1.7119 −1.2533 76 0.0011 0.970984 

SCILAB - - - - - - - - 

2 

PYTHON         

IG 1 0.7410 0.6166 −0.6872 1.4009 1.8392 82 0.00432 6.998564 

IG 2 0.7349 0.6294 −0.6719 1.0005 1.8439 76 0.00404 6.997928 

IG 3 0.7278 0.6153 −0.6709 1.4025 1.8434 62 0.00439 6.997952 

IG 4 0.7275 0.6153 −0.7004 1.4054 1.8441 67 0.00416 6.999614 

MATLAB         

IG 1 0.7326 0.6239 −0.6653 1.4011 1.8434 228 0.0059 6.997791 

IG 2 0.7326 0.6239 −0.6653 1.4011 1.8434 263 0.0023 6.997791 

IG 3 0.7326 0.6239 −0.6653 1.4011 1.8434 277 0.0024 6.997791 

IG 4 0.7326 0.6239 −0.6653 1.4011 1.8434 343 0.0028 0.997791 

SCILAB - - - - - - - - 

3 

PYTHON         

IG 1 0.6561 −0.3227 0.5981 −0.0842 0.6430 151 0.00706 2.663338 

IG 2 0.8312 0.3925 2.4179 0.4889 1.6708 87 0.00401 9.276602 

IG 3 0.6123 0.4125 2.3623 0.7147 1.6543 72 0.00347 10.305454 

IG 4 0.8870 0.5897 −0.4366 2.1678 1.8248 44 0.00238 8.159903 

MATLAB         

IG 1 0.6353 −0.2561 0.3129 0.2223 0.4475 72 0.0015 2.377167 

IG 2 −1.4358 0.2983 0.4158 1.1896 2.1513 400 0.0033 3.970227 

IG 3 −1.4359 0.2998 0.4148 1.1897 2.1519 400 0.0029 3.970228 

IG 4 0.6595 0.0822 −0.7859 0.9747 1.8351 400 0.0025 6.803822 

SCILAB - - - - - - - - 

4 

PYTHON         

IG 1 0.9970 0.4663 −0.1199 1.1063 −0.3741 147 0.00644 0.417418 

IG 2 - - - - - - - - 
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IG 3 1.0593 0.5232 −0.2939 1.0706 −0.2795 146 0.00652 0.481636 

IG 4 1.0378 0.8847 0.0195 0.7831 0.6748 77 0.00363 1.75236 

MATLAB         

IG 1 0.9518 0.4318 −0.0050 1.1308 −0.4562 179 0.0059 0.405212 

IG 2 0.9518 0.4318 −0.0050 1.1308 −0.4562 276 0.0026 0.405212 

IG 3 0.9518 0.4318 −0.0050 1.1308 −0.4562 225 0.0021 0.405212 

IG 4 0.9518 0.4318 −0.0050 1.308 −0.4562 184 0.0020 0.405212 

SCILAB - - - - - - - - 

5 

PYTHON         

IG 1 0.7932 −0.0008 1.1219 0.6646 0.0021 107 0.00540 1.441107 

IG 2 0.7946 −0.0031 1.1088 0.1789 0.0078 102 0.00516 1.448791 

IG 3 0.0492 −0.2693 1.1124 0.9893 −1.1836 121 0.00597 1.614661 

IG 4 1.8249 0.0236 1.8299 −1.1960 1.4933 162 0.00779 1.352203 

MATLAB         

IG 1 0.6353 −0.2561 0.3129 0.2223 0.4475 94 0.0013 2.377167 

IG 2 0.6353 −0.2561 0.3129 0.2223 0.4475 91 0.0013 2.377167 

IG 3 0.6353 −0.2561 0.3129 0.2223 0.4475 91 0.0013 2.377167 

IG 4 0.6353 −0.2561 0.3129 0.2223 0.4475 86 0.0012 2.377167 

SCILAB - - - - - - - - 

 
The analysis of the robustness index data revealed a consistent pattern. Em-

ploying the Broyden method, MATLAB consistently yielded a lower robustness 
index than Python for all benchmark problems, except for problem 5. However, 
the data obtained from the HP Elitebook laptop unveiled a distinct challenge; 
Python failed to converge for problem 4 (Figure 9(a)) with initial guess values 2, 
while MATLAB successfully delivered results for the same problem with those 
initial guess values. In general, MATLAB consistently solved all five bench-mark 
problems with lower computational time as shown in the figures above (Figures 
6(a)-10(a)). In a similar way, MATLAB recorded the least robustness index as 
compared with Python (Figures 6(b)-10(b)). 

A summary of results obtained from Dell Inspiron Laptop is displayed in Ta-
ble 5. 

Analyzing the data acquired from the Dell Inspiron laptop as shown in Table 
5, intriguing patterns emerged in terms of computational efficiency and robust-
ness. Python outshone MATLAB in terms of computational time, delivering 
quicker solutions for problems 2, 3, and 4 (Figures 12(a)-14(a)). In contrast, 
MATLAB displayed its computational prowess by surpassing Python in tackling 
problems 2 and 5 (Figure 11(a) and Figure 15(a)). 

The story was similar when it came to the robustness index. Python demon-
strated a significantly smaller robustness index for problems 1, 3, and 5, proving  
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(a) 

 
(b) 

Figure 6. (a) CT against IG for Problem 1; (b) RI against IG for Problem 1. 
 

 
(a) 
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(b) 

Figure 7. (a) CT against IG for Problem 2; (b) RI against IG for Problem 2. 
 

 
(a) 

 
(b) 

Figure 8. (a) CT against IG for Problem 3; (b) RI against IG for Problem 3. 
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(a) 

 
(b) 

Figure 9. (a) CT against IG for Problem 4; (b) RI against IG for Problem 4. 
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(b) 

Figure 10. (a) CT against IG for Problem 5; (b) RI against IG for Problem 5. 
 

Table 5. Results of Dell Inspiron Laptop. 

PROBLEM PACKAGE 
ROOT ITERATIONS CT RI 

x1 x2 x3 x4 x5    

1 

PYTHON         

IG 1 0.9704 0.3364 1.7825 0.7077 −1.2506 78 0.0056 0.9711 

IG 2 0.9715 0.3372 1.7849 0.7073 −1.2508 83 0.0019 0.9711 

IG 3 0.9693 0.3366 1.7824 0.7149 −1.2519 115 0.0029 0.9711 

IG 4 0.8168 −0.3597 1.3220 0.1683 −0.7164 84 0.0017 1.2296 

MATLAB         

IG 1 0.9959 0.2987 1.7370 0.1282 −0.8380 66 0.0053 1.0835 

IG 2 0.9716 0.3363 1.7865 0.7119 −1.2533 83 0.0017 0.9710 

IG 3 0.9959 0.2987 1.7370 0.1282 −0.8380 67 0.0015 1.0835 

IG 4 0.9716 0.3363 1.7865 0.7119 −1.2533 76 0.0015 0.9710 

SCILAB - - - - - - - - 

2 

PYTHON         

IG 1 0.7410 0.6166 −0.6872 1.4009 1.8392 82 0.0020 6.9986 

IG 2 0.7350 0.6294 −0.6719 1.4000 1.8439 76 0.0022 6.9979 

IG 3 0.7278 0.6153 −0.6710 1.4024 1.8434 62 0.0015 6.9980 

IG 4 0.7275 0.6153 −0.7004 1.4054 1.8441 67 0.0018 6.9996 

MATLAB         

IG 1 0.7326 0.6239 −0.6653 1.4011 1.8434 228 0.0028 6.9978 

IG 2 0.7326 0.6239 −0.6653 1.4011 1.8434 263 0.0029 6.9978 

IG 3 0.7326 0.6239 −0.6653 1.4011 1.8434 277 0.0030 6.9978 

IG 4 0.7326 0.6239 −0.6653 1.4011 1.8434 343 0.0038 6.9978 

SCILAB - - - - - - - - 
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3 

PYTHON         

IG 1 0.8870 0.5897 −0.4367 2.1678 1.8249 44 0.0011 8.1599 

IG 2 0.6935 −0.2732 0.2338 0.2515 0.4615 80 0.0014 2.3816 

IG 3 0.6658 −0.2763 0.2441 0.2322 0.4526 87 0.0017 2.3783 

IG 4 0.7762 −0.3105 0.0407 0.2461 0.5229 86 0.0015 2.4127 

MATLAB         

IG 1 0.6353 −0.2561 0.3129 0.2223 0.4475 72 0.0014 2.3772 

IG 2 −1.4358 0.2983 0.4158 1.1896 2.1513 400 0.0037 3.9702 

IG 3 −1.4359 0.2998 0.4148 1.1897 2.1519 400 0.0037 3.9702 

IG 4 0.6595 0.0822 −0.7859 0.9747 1.8351 400 0.0031 6.8038 

SCILAB - - - - - - - - 

4 

PYTHON         

IG 1 0.99699 0.46632 −0.11986 1.10631 −0.37413 147 0.0011 7.76307 

IG 2 1.0810 0.54755 −0.30226 1.06365 −0.26264 161 0.0011 7.76307 

IG 3 1.05933 0.52320 −0.29394 1.07058 −0.27953 146 0.0011 7.76307 

IG 4 1.03781 0.88471 0.01949 0.78311 0.67484 77 0.0011 7.76307 

MATLAB         

IG 1 0.9518 0.4318 −0.0050 1.1308 −0.4562 179 0.0023 0.4052 

IG 2 0.9518 0.4318 −0.0050 1.1308 −0.4562 276 0.0029 0.4052 

IG 3 0.9518 0.4318 −0.0050 1.1308 −0.4562 225 0.0025 0.4052 

IG 4 0.9518 0.4318 −0.0050 1.1308 −0.4562 184 0.0023 0.4052 

SCILAB - - - - - - - - 

5 

PYTHON         

IG 1 0.7932 −0.0009 1.1219 0.1665 0.0022 107 0.0028 1.4411 

IG 2 0.7946 −0.0031 1.1088 0.1789 0.0078 102 0.0022 1.4488 

IG 3 −0.2184 −0.4187 0.8618 0.8808 −1.0789 135 0.0027 1.682 

IG 4 1.8249 0.0236 1.8300 −0.0000 1.4933 162 0.0034 1.3522 

MATLAB         

IG 1 0.6353 −0.2561 0.3129 0.2223 0.4475 94 0.0018 2.3772 

IG 2 0.6353 −0.2561 0.3129 0.2223 0.4475 91 0.0015 2.3772 

IG 3 0.6353 −0.2561 0.3129 0.2223 0.4475 91 0.0014 2.3772 

IG 4 0.6353 −0.2561 0.3129 0.2223 0.4475 86 0.0014 2.3772 

SCILAB - - - - - - - - 

 
its efficiency. Conversely, MATLAB excelled by achieving the lowest robustness 
index for problems 2 and 5, showcasing its capability to handle these particular 
challenges effectively (Figures 11(b)-15(b)). 

Table 6 shows the results from the Dell Latitude Laptop.  
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(a) 

 
(b) 

Figure 11. (a) CT against IG for Problem 1; (b) RI against IG for Problem 1. 
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(b) 

Figure 12. (a) CT against IG for Problem 2; (b) RI against IG for Problem 2. 
 

 
(a) 

 
(b) 

Figure 13. (a) CT against IG for Problem 3; (b) RI against IG for Problem 3. 
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(a) 

 
(b) 

Figure 14. (a) CT against IG for Problem 4; (b) RI against IG for Problem 4. 
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(b) 

Figure 15. (a) CT against IG for Problem 5; (b) RI against IG for Problem 5. 
 
Table 6. Results of Dell Latitude Laptop. 

PROBLEM PACKAGE 
ROOTS 

ITERATIONS CT RI 
x1 x2 x3 x4 x5 

1 

PYTHON         

IG 1 0.9704 0.3364 1.7825 0.7077 −1.2506 78 0.0036 0.9711 

IG 2 0.9715 0.3372 1.7849 0.7073 −1.2508 83 0.0032 0.9711 

IG 3 0.9693 0.3366 1.7824 0.7149 −1.2519 115 0.0036 0.9711 

IG 4 0.8168 −0.3597 1.322 0.1683 −0.7164 84 0.0029 1.2296 

MATLAB         

IG 1 0.9959 0.2987 1.737 0.1282 −0.838 66 0.0013 1.0835 

IG 2 0.9716 0.3363 1.7865 0.7119 −1.2533 83 0.0015 0.971 

IG 3 0.9959 0.2987 1.737 0.1282 −0.838 67 0.0013 1.0835 

IG 4 0.9716 0.3363 1.7865 0.7119 −1.2533 76 0.0014 0.971 

SCILAB - - - - - - - - 

2 

PYTHON         

IG 1 0.741 0.6166 −0.6872 1.4009 1.8392 82 0.0039 6.9986 

IG 2 0.735 0.6294 −0.6719 1.4 1.8439 76 0.0032 6.9979 

IG 3 0.7278 0.6153 −0.671 1.4024 1.8434 62 0.0024 6.998 

IG 4 0.7275 0.6153 −0.7004 1.4054 1.8441 67 0.0025 6.9996 

MATLAB         

IG 1 0.7326 0.6239 −0.6653 1.4011 1.8434 228 0.0076 6.9978 

IG 2 0.7326 0.6239 −0.6653 1.4011 1.8434 263 0.003 6.9978 

IG 3 0.7326 0.6239 −0.6653 1.4011 1.8434 277 0.003 6.9978 

IG 4 0.7326 0.6239 −0.6653 1.4011 1.8434 343 0.0035 6.9978 

SCILAB - - - - - - - - 
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3 

PYTHON         

IG 1 0.887 0.5897 −0.4367 2.1678 1.8249 44 0.0025 8.1599 

IG 2 0.6939 0.0791 −0.8103 0.9866 1.8349 64 0.0031 6.8047 

IG 3 −1.429 0.2733 0.4147 1.1896 2.1089 132 0.0044 3.976 

IG 4 0.6632 −0.2899 −0.4178 −0.3666 1.8521 64 0.0019 7.7631 

MATLAB         

IG 1 0.6353 −0.2561 0.3129 0.2223 0.4475 58 0.0016 2.3772 

IG 2 −1.4358 0.2983 0.4158 1.1896 2.1513 400 0.0039 3.9702 

IG 3 −1.4359 0.2998 0.4148 1.1897 2.1519 400 0.0035 3.9702 

IG 4 0.6595 0.0822 −0.7859 0.9747 1.8351 400 0.003 6.8038 

SCILAB - - - - - - - - 

4 

PYTHON         

IG 1 0.99699 0.46632 −0.11986 1.10631 −0.37413 147 0.00191 7.76307 

IG 2 1.081 0.54755 −0.30226 1.06365 −0.26264 161 0.00191 7.76307 

IG 3 1.05933 0.5232 −0.29394 1.07058 −0.27953 146 0.00191 7.76307 

IG 4 1.03781 0.88471 0.01949 0.78311 0.67484 77 0.00191 7.76307 

MATLAB         

IG 1 0.9518 0.4318 −0.005 1.1308 −0.4562 196 0.0025 0.4052 

IG 2 0.9518 0.4318 −0.005 1.1308 −0.4562 276 0.003 0.4052 

IG 3 0.9518 0.4318 −0.005 1.1308 −0.4562 225 0.0025 0.4052 

IG 4 0.9518 0.4318 −0.005 1.1308 −0.4562 184 0.0024 0.4052 

SCILAB - - - - - - - - 

5 

PYTHON         

IG 1 0.7932 −0.0009 1.1219 0.1665 0.0022 107 0.0056 1.4411 

IG 2 0.7946 −0.0031 1.1088 0.1789 0.0078 102 0.004 1.4488 

IG 3 −0.2184 −0.4187 0.8618 0.8808 −1.0789 135 0.0042 1.682 

IG 4 1.8249 0.0236 1.83 0 1.4933 162 0.006 1.3522 

MATLAB         

IG 1 0.6353 −0.2561 0.3129 0.2223 0.4475 94 0.0017 2.3772 

IG 2 0.6353 −0.2561 0.3129 0.2223 0.4475 91 0.0015 2.3772 

IG 3 0.6353 −0.2561 0.3129 0.2223 0.4475 91 0.0015 2.3772 

IG 4 0.6353 −0.2561 0.3129 0.2223 0.4475 86 0.0014 2.3772 

SCILAB - - - - - - - - 

 
Upon meticulous examination of the data garnered from the Dell Latitude 

laptop as shown in Table 6, an array of captivating trends about computational 
efficiency and robustness came to light. Python took the lead in computational 
time, offering expeditious solutions for problems 2, 3, and 4 as shown in Figures 
16(a)-18(a). In contrast, MATLAB flexed its computational muscle, outper-
forming Python when it came to addressing problems 1 and 5 (Figure 19(b) and 
Figure 20(b)). 
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(a) 

 
(b) 

Figure 16. (a) CT against IG for Problem 2; (b) RI against IG for Problem 2. 
 

 
(a) 
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(b) 

Figure 17. (a) CT against IG for Problem 3; (b) RI against IG for Problem 3. 
 

 
(a) 

 
(b) 

Figure 18. (a) CT against IG for Problem 4; (b) RI against IG for Problem 4. 
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(a) 

 
(b) 

Figure 19. (a) CT against IG for Problem 1; (b) RI against IG for Problem 1. 
 

 
(a) 
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(b) 

Figure 20. (a) CT against IG for Problem 5; (b) RI against IG for Problem 5. 
 

A similar narrative unfolded regarding the robustness index. Python exhibited 
a notably lower robustness index for problems 1 and 5 as in Figure 19(a) and 
Figure 20(a), demonstrating its efficiency. Conversely, MATLAB shone by se-
curing the lowest robustness index for problems 2, 3, and 4 (Figures 16(b)-18(b)), 
underscoring its adeptness in handling these specific challenges with finesse. 

5. Conclusion and Recommendations 

This study embarked on a comprehensive evaluation of three prominent ma-
thematical software packages, namely Python, MATLAB, and Scilab, in their 
quest to solve nonlinear systems of equations with five unknown variables. Four 
primary objectives guided our research, which included comparing software 
performance using standardized benchmark problems, utilizing key perfor-
mance metrics for quantitative evaluation, and assessing the impact of varying 
computer hardware specifications on software performance. 

While numerous software packages are available for solving problems related 
to numerical analysis and computations, the most widely recognized and utilized 
ones include MATLAB, SCILAB, and Python. This prompted the authors of this 
research to conduct a comparative analysis of the results obtained from these 
software platforms. 

Before the study began, it was expected that the computational time would 
vary due to the diverse computing environments anticipated to be used. Howev-
er, this variation was not anticipated for the robustness index. 

The utilization of the Broyden method as a numerical technique paved the 
way for meticulous comparisons. Across a diverse spectrum of computing envi-
ronments represented by the HP Probook, HP Elitebook, Dell Inspiron, and Dell 
Latitude laptops, the performance of these software packages was assessed. 

Firstly, our findings on the HP Probook laptop unveiled intriguing trends. Py-
thon consistently demonstrated shorter computational times, significantly out-
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performing MATLAB. Python’s computational time ranged from 0.0017950 
seconds to 0.00465234 seconds, whereas MATLAB’s spanned from 0.0448 seconds 
to 0.2690 seconds. In terms of the robustness index, Python showcased superior-
ity by achieving a lower index in problems 3 and 5. Notably, for problem 1, Py-
thon mirrored MATLAB’s index for initial guess values 1 and 2 but outper-
formed MATLAB for initial guess 3, while MATLAB displayed better perfor-
mance for initial guess values 4. 

The HP Elitebook laptop presented contrasting results. Here, MATLAB con-
sistently exhibited notably shorter computational times than Python for all four 
benchmark problems, marking a significant divergence from the Probook HP 
device. In terms of robustness, MATLAB consistently yielded a lower index than 
Python across all benchmark problems except for problem 5. However, a distinct 
challenge emerged; Python failed to converge for problem 4 with initial guess 
values 2, whereas MATLAB successfully produced results for the same problem 
with those initial guess values. 

The data collected from the Dell Inspiron laptop uncovered intriguing pat-
terns. Python demonstrated superior computational efficiency for problems 1, 3, 
and 4, while MATLAB excelled in addressing problems 2 and 5. This pattern 
persisted in terms of the robustness index, where Python displayed a smaller in-
dex for problems 1, 3, and 5, while MATLAB secured the lowest index for prob-
lems 2 and 5. 

The examination of data from the Dell Latitude laptop revealed intriguing in-
sights into computational efficiency and robustness. Python demonstrated ex-
ceptional speed in solving problems 2, 3, and 4, making it a strong choice for 
these tasks. On the other hand, MATLAB showcased its computational prowess 
by outperforming Python in addressing problems 1 and 5. This trend was mir-
rored in the robustness index, with Python proving highly efficient for problems 
1 and 5, while MATLAB excelled in ensuring robust solutions for problems 2, 3, 
and 4. These findings highlight the strengths of each tool in different problem- 
solving scenarios, emphasizing the importance of selecting the right program-
ming language for specific computational needs. 

In summation, this study has contributed valuable insights into the compara-
tive capabilities of Python, MATLAB, and Scilab for tackling nonlinear systems 
of equations. Our findings underscore the significance of considering both soft-
ware and hardware specifications in real-world applications. Depending on the 
specific problem and computational environment, the choice between Python 
and MATLAB can yield distinct advantages. We hope that these results will guide 
researchers and practitioners in selecting the most suitable tools for their unique 
challenges. 
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