
American Journal of Computational Mathematics, 2023, 13, 644-677
https://www.scirp.org/journal/ajcm

ISSN Online: 2161-1211
ISSN Print: 2161-1203

DOI: 10.4236/ajcm.2023.134036 Dec. 28, 2023 644 American Journal of Computational Mathematics

AI-Enhanced Performance Evaluation of Python,
MATLAB, and Scilab for Solving Nonlinear
Systems of Equations: A Comparative Study
Using the Broyden Method

Isaac Azure*, Japheth Kodua Wiredu, Anas Musah, Eric Akolgo

Department of Computer Science, Regentropfen College of Applied Sciences, Bolgatanga, Ghana

Abstract
This research extensively evaluates three leading mathematical software pack-
ages: Python, MATLAB, and Scilab, in the context of solving nonlinear sys-
tems of equations with five unknown variables. The study’s core objectives
include comparing software performance using standardized benchmarks, em-
ploying key performance metrics for quantitative assessment, and examining
the influence of varying hardware specifications on software efficiency across
HP ProBook, HP EliteBook, Dell Inspiron, and Dell Latitude laptops. Results
from this investigation reveal insights into the capabilities of these software
tools in diverse computing environments. On the HP ProBook, Python con-
sistently outperforms MATLAB in terms of computational time. Python also
exhibits a lower robustness index for problems 3 and 5 but matches or sur-
passes MATLAB for problem 1, for some initial guess values. In contrast, on
the HP EliteBook, MATLAB consistently exhibits shorter computational times
than Python across all benchmark problems. However, Python maintains a
lower robustness index for most problems, except for problem 3, where
MATLAB performs better. A notable challenge is Python’s failure to converge
for problem 4 with certain initial guess values, while MATLAB succeeds in
producing results. Analysis on the Dell Inspiron reveals a split in strengths.
Python demonstrates superior computational efficiency for some problems,
while MATLAB excels in handling others. This pattern extends to the ro-
bustness index, with Python showing lower values for some problems, and
MATLAB achieving the lowest indices for other problems. In conclusion, this
research offers valuable insights into the comparative performance of Python,
MATLAB, and Scilab in solving nonlinear systems of equations. It unders-
cores the importance of considering both software and hardware specifica-

How to cite this paper: Azure, I., Wiredu,
J.K., Musah, A. and Akolgo, E. (2023) AI-
Enhanced Performance Evaluation of Py-
thon, MATLAB, and Scilab for Solving
Nonlinear Systems of Equations: A Com-
parative Study Using the Broyden Method.
American Journal of Computational Ma-
thematics, 13, 644-677.
https://doi.org/10.4236/ajcm.2023.134036

Received: September 30, 2023
Accepted: December 25, 2023
Published: December 28, 2023

Copyright © 2023 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/ajcm
https://doi.org/10.4236/ajcm.2023.134036
https://www.scirp.org/
https://doi.org/10.4236/ajcm.2023.134036
http://creativecommons.org/licenses/by/4.0/

I. Azure et al.

DOI: 10.4236/ajcm.2023.134036 645 American Journal of Computational Mathematics

tions in real-world applications. The choice between Python and MATLAB
can yield distinct advantages depending on the specific problem and compu-
tational environment, providing guidance for researchers and practitioners in
selecting tools for their unique challenges.

Keywords
System of Nonlinear Equations, Broyden Method, Robustness Index,
Artificial Intelligence (AI), MATLAB, SCILAB, Python

1. Introduction

In the realm of computational mathematics and scientific computing, the choice
of software can profoundly impact the efficiency and accuracy of numerical so-
lutions. This research represents a significant follow-up to the pioneering work
of Isaac Azure, aimed at delving deeper into the performance attributes of three
prominent mathematical software packages: Python, MATLAB, and Scilab. These
software tools serve as cornerstones in the arsenal of mathematicians, engineers,
and scientists, enabling them to tackle complex mathematical problems and si-
mulations with relative ease [1] [2] [3] [4].

The core objective of this study was to conduct a comprehensive assessment
of these software packages’ capabilities when confronted with the formidable
challenge of solving nonlinear systems of equations, each comprising five un-
known variables. This is a critical endeavor, as nonlinear systems frequently arise
in a myriad of scientific and engineering disciplines, necessitating efficient and
reliable numerical techniques for their resolution [5] [6] [7] [8].

A general mathematical representation of a system of nonlinear equations in-
volving “n” variables can be expressed as follows:

Let “x” represent the vector of variables: ()1 2, , , nx x x x=  .
The system of nonlinear equations can then be written as:

()
()

()

1

2

0
0

0m

f x
f x

f x

=
=

=


 (1)

Here, “m” represents the number of equations in the system, and each ()if x
is a nonlinear function of the variables 1 2, , , nx x x that must equal zero. In a
more compact vector form, the system can be represented as:

()

()
()

()

1

2

0

0

0

m

f x
f x

F x

f x

   
   
   = =   
   
    

 

 (2)

The objective of solving such a system is to find a vector “x” that simulta-

https://doi.org/10.4236/ajcm.2023.134036

I. Azure et al.

DOI: 10.4236/ajcm.2023.134036 646 American Journal of Computational Mathematics

neously satisfies all “m” equations () 0F x = . This often involves iterative nu-
merical methods, as analytical solutions are typically not available for arbitrary
nonlinear systems [9] [10] [11] [12].

1.1. The Broyden Method

To navigate this intricate terrain, the Broyden method, a widely recognized nu-
merical approach, was chosen as the numerical workhorse for our investigations.
The specific focus on nonlinear systems and the utilization of a consistent nu-
merical method provides a controlled and rigorous framework for the compara-
tive analysis of Python, MATLAB, and Scilab [13].

The Broyden method, also known as the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) update method, is an iterative numerical technique used to solve systems
of nonlinear equations. It is named after its developers, Charles W. Broyden and
Roger Fletcher, and it is an extension of the more well-known Broyden method
for solving nonlinear systems. The BFGS variant is primarily used for solving
unconstrained nonlinear optimization problems, while the original Broyden me-
thod is designed for solving systems of nonlinear equations [14].

The Broyden method was developed as an alternative to traditional Newton’s
method for solving nonlinear equations. Newton’s method involves iteratively
linearizing a nonlinear system of equations and solving the linearized system at
each iteration. However, Newton’s method can be computationally expensive,
especially when dealing with large systems, because it requires the computation
of the Jacobian matrix (a matrix of partial derivatives) at each iteration [15] [16].

The Broyden method aims to overcome this computational burden by ap-
proximating the Jacobian matrix with each iteration, rather than recomputing it
from scratch. It does so by updating an initial approximation of the Jacobian
matrix using information from previous iterations. This update makes the me-
thod more efficient and less computationally demanding than Newton’s method
[17].

The Broyden method is adopted as the numerical technique for solving the
nonlinear systems in each software package, providing a consistent approach for
performance assessment. According to Charles Broyden, (1965), two methods
can be used to find the approximate solution for nonlinear systems of equations
as reported in [18].

The first method gives an approximate matrix for kB using the following
assumption;

kB must satisfy the secant equation
() ()k k

kB s y= (3)

where

 () () ()1k k ks x x −= − (4)

and

 () ()() ()()1k k ky F x F x −= − (5)

https://doi.org/10.4236/ajcm.2023.134036

I. Azure et al.

DOI: 10.4236/ajcm.2023.134036 647 American Journal of Computational Mathematics

However, Broyden’s method involves the computation of 1
kB− and not kB ,

this brings our attention to the next theorem.
THEOREM: (Sherman-Morrison Formula) If B is a nonsingular matrix and x

and y are vectors, then tB xy+ is nonsingular provided that 1 1ty A x− ≠ − and

 ()
1 11 1

11

t
t

t
B xy BB xy B

y B x

− −− −
−+ = −

+
 (6)

The theorem above is a matrix inverse formula. It allows 1
kB− to be com-

puted directly using 1
1kB−
− , rather than computing kB and then its inverse at

each iteration. Hence, using the theorem and setting 1kB B += , 1
2

2

i k k

k

y B sx
s

−−
= ,

and ky s= , as well as using kB as defined above we have that

1

1 1
1 2

2

tk k k
k k k

k

y B sB B s
s

−

− −
−

 − = +
 
 

 (7)

1 11
1 1 12

21 1
1

1 1
1 2

2

1

tk k k
k k k k

k
k k

t k k k
k k

k

y B sB B s B
s

B B
y B ss B

s

− −−
− − −

− −
−

− −
−

 − +
 
 = −

 − +
 
 

 (8)

()1 1

1 11 1
1 2 21

12 2

t
k k i k k

k k t
k k k k k

B y s s B
B B

s s B y s

− −
− −− −

− −
−

−
= −

+ −
 (9)

Hence, we get

()1 1
1 11 1

1 1
1

t
k k k k k

k k t
k k k

s B y s B
B B

s B y

− −
− −− −

− −
−

−
= + (10)

From the assumption above, Broyden’s method is defined as
() () ()()1 1k k k

kx x B F x+ −= − (11)

where 1
kB− is computed using Equation (10).

1.2. Related Works

Nonlinear equations, unlike their linear counterparts, feature at least one nonli-
near term, making them considerably more challenging to solve. In tackling
these intricate equations, numerical methods come to the rescue, often relying
on an initial guess [19].

In a closely related study, five numerical techniques for resolving nonlinear
equations were investigated after obtaining their solutions manually. The Bisec-
tion method, Newton-Raphson method, Regula Falsi method, Secant method,
and Fixed-Point Iteration method were all subject to comparison. Researchers
developed manual computational algorithms for each approach and employed
them to manually find a root using a TI-Inspire calculator. All methods even-
tually converged to an exact solution. However, the Bisection method reached

https://doi.org/10.4236/ajcm.2023.134036

I. Azure et al.

DOI: 10.4236/ajcm.2023.134036 648 American Journal of Computational Mathematics

convergence by the 14th iteration, the Fixed-Point Iterative Method by the 7th
iteration, the Secant method by the 5th iteration, and both the Regula Falsi and
Newton Raphson methods by the 2nd iteration [20].

In another pertinent study, the challenge of finding roots for nonlinear equa-
tions, arising frequently in practical applications across science and engineering,
was extensively explored. The process of locating a root is referred to as root-
finding, with the value of “x” that satisfies () 0f x = termed a root of () 0f x = .
This research meticulously compared the convergence rates of two prevalent
root-finding methods: Bisection and Newton-Raphson. MATLAB software was
harnessed to locate the root of a specific function and juxtapose the outcomes of
these two methods. The study’s conclusion favored Newton’s approach, which
outperformed the Bisection method [20].

Throughout these aforementioned studies, MATLAB software took center
stage in estimating the roots of nonlinear equations. In a related comparative
analysis, Python emerged as the frontrunner due to its remarkable efficiency and
precision. Python achieved fitting approximations with the fewest iterations and
minimal computational time. Notably, the research underscored the Newton-
Raphson method’s robustness, as it consistently converged efficiently with mi-
nimal iteration counts across various benchmark problems. This underscored
the method’s superiority in terms of efficiency and reliability, especially when
dealing with complex nonlinear equations [21].

This research is a continuation of the work aimed at identifying which mathe-
matical software package performs better numerical analysis. It however, set out
to discern the disparities among three mathematical software packages: Python,
Scilab, and MATLAB, particularly in the context of solving a system of nonlinear
equations using the Broyden method on different computer environments [3].

2. Objectives of the Study

The objectives of this study are:
1) To assess and compare the performance of Python, MATLAB, and Scilab in

solving nonlinear systems of equations with five unknown variables.
2) To utilize a set of five standardized benchmark problems, featuring nonli-

near equations, to provide a consistent platform for comparative analysis.
3) To employ key performance metrics, including computational time, conver-

gence iterations, and robustness index, to quantitatively evaluate software per-
formance.

4) To investigate the influence of varying computer hardware specifications
on software performance, emphasizing the importance of hardware considera-
tions in software selection and real-world applications.

3. Methodology

The methodology employed in this research builds upon the seminal work of Isaac
Azure, aiming to rigorously assess the performance of three prominent mathe-

https://doi.org/10.4236/ajcm.2023.134036

I. Azure et al.

DOI: 10.4236/ajcm.2023.134036 649 American Journal of Computational Mathematics

matical software packages: Python, MATLAB, and Scilab. The research seeks to
comprehensively investigate their capabilities in solving nonlinear systems of
equations featuring five unknown variables. Key metrics, including computa-
tional time, the number of iterations for convergence, and the robustness index,
are utilized to differentiate the software packages. Furthermore, the study ex-
plores the influence of varying computer hardware specifications on computa-
tional performance and solution robustness, ultimately providing valuable in-
sights for software selection and real-world applications.

3.1. Benchmark Problems Selection

Five benchmark problems comprising of a system of nonlinear equations with
five unknowns were chosen to serve as test cases, ensuring standardized evalu-
ation across the software packages.

Problem 1

() ()1 2
2 3 4 5e sin cos 2x x x x x+ − + − =

() ()31
2

2 4 5ln tan 1x x x x x+ + + − =

() ()2
3

2
1 4 5sie n cos 3xx x x x+ + + =− (12)

() () ()3
1 2 3 4 5cos ln tan 0x x x x x+ + + =−

() () () 5
1 2 3 4tan sin c eos 1xx x x x− +− + =

Problem 2

() () ()2
2 31 4 5ln sin cos 1.5x x xx x+ − + − =

() ()2 2
1 2 3 4 5ln tan 2x x xx x+ + + − =

() ()21
4 53 sin cose e 3x x x x x− + + + = (13)

() () ()2
1 2 3 4 5cos ln tan 0x x x x x+ + + =−

() () () 5
1 2 3 4tan sin c eos 1xx x x x− +− + =

Problem 3

() ()1 2
2 3 4 5e sin cos 2x x x x x+ − + − =

() ()31 54
2
2 tan ln 1x x x x x+ + + − =

() ()22
1 3 4 5sie n cos 3xx x x x+ + + =− (14)

() () ()2
1 2 3 4 5cos ln tan 0x x x x x+ + + =−

() () () 5
1 2 3 4tan sin c eos 1xx x x x− +− + =

Problem 4

() () ()2
2 31 4 5ln sin cos 1.5x x xx x+ − + − =

() ()2 2
1 2 3 4 5ln tan 2x x xx x+ + + − =

() ()21
4 53 sin cose e 3x x x x x− + + + = (15)

https://doi.org/10.4236/ajcm.2023.134036

I. Azure et al.

DOI: 10.4236/ajcm.2023.134036 650 American Journal of Computational Mathematics

() () ()2
1 2 3 4 5cos ln tan 0x x x x x+ + + =−

() () () 5
1 2 3 4tan sin c eos 1xx x x x− +− + =

Problem 5

() ()1 2
2 3 4 5e sin cos 2x x x x x+ − + − =

() ()31 54
2
2 tan ln 1x x x x x+ + + − =

() ()2
3

2
1 4 5sie n cos 3xx x x x+ + + =− (16)

() () ()2
1 2 3 4 5cos ln tan 0x x x x x+ + + =−

() () () 5
1 2 3 4tan sin c eos 1xx x x x− +− + =

The following initial guess values (Table 1) were used for the estimation of
the root of the benchmark problems with the help of the Broyden method.

3.2. Numerical Methodology

Below is the Broyden’s method algorithm:
STEP 1: Let () () () ()()0 0 0 0

1 2, , , nx x x x= 
 be the initial vector given.

STEP 2: Calculate ()()0F x .
STEP 3: In this step we compute 1

0B− . Because we do not have enough infor-
mation to compute 0B directly, Broyden’s method permits us to let ()()0

0B J x= ,
which implies that ()() 101

0B J x
−

− = .

Table 1. Selected initial guess values for benchmark problems.

PROBLEM INITIAL GUESS VALUES (IG)

Problem 1

IG 1: 0.1, 0.2, −0.3, 0.4, 0.5
IG 2: 0.2, 0.3, −0.4, 0.5, 0.6
IG 3: 0.2, 0.2, −0.4, 0.4, 0.6
IG 4: 0.3, 0.4, −0.5, 0.6, 0.7

Problem 2

IG 1: 0.8, 1.2, −0.6, 0.3, 1.7
IG 2: 0.9, 1.3, −0.7, 0.4, 1.8
IG 3: 0.9, 1.2, −0.7, 0.3, 1.8
IG 4: 1.0, 1.4, −0.8, 0.5, 1.9

Problem 3

IG 1: 1.2, 0.6, −0.8, 0.4, 1.5
IG 2: 1.3, 0.7, −0.9, 0.5, 1.6
IG 3: 1.3, 0.6, −0.9, 0.4, 1.6
IG 4: 1.4, 0.8, −1.1, 0.6, 1.8

Problem 4

IG 1: 1.0, 0.8, −0.4, 0.2, 1.2
IG 2: 1.1, 0.9, −0.5, 0.3, 1.3
IG 3: 1.1, 0.8, −0.5, 0.2, 1.3
IG 4: 1.2, 1.0, −0.6, 0.4, 1.4

Problem 5

IG 1: 0.7, 0.9, −0.3, 0.5, 1.3
IG 2: 0.8, 1.0, −0.4, 0.6, 1.4
IG 3: 0.8, 0.9, −0.4, 0.5, 1.4
IG 4: 0.9, 1.1, −0.5, 0.7, 1.5

https://doi.org/10.4236/ajcm.2023.134036

I. Azure et al.

DOI: 10.4236/ajcm.2023.134036 651 American Journal of Computational Mathematics

STEP 4: Calculate () () ()()1 0 01
0x x B F x−= − .

STEP 5: Calculate ()()1F x .
STEP 6: Take ()()0F x and ()()1F x and calculate ()() ()()1 0

1y F x F x= − .
Next, take the first two iterations of ()kx and calculate () ()1 0

1s x x= − .
STEP 7: Calculate 1

1
t
k k ks B y−

− .

STEP 8: Compute ()1 1 1 1
1 0 1 0 1 1 01

1 0 1

1 t
tB B s B y s B

s B y
− − − −

−
 = + −  .

STEP 9: Take 1
1B− that we found in step 8, and calculate

() () ()()2 1 11
1x x B F x−= − .

STEP 10: Repeat the process until it converges at x , i.e. when () ()1k kx x x+= = .
This will indicate that we have solved of the system.

Broyden’s method as well as all of the Quasi-Newton methods converge su-
perlinear, which means that

()

()

1

lim 0
k

k k

x p

x p

+

→∞

−
=

−
 (17)

where p is the solution to () 0F x = , and ()kx and ()1kx + are successive ap-
proximations to p.

3.3. Performance Metrics

A triad of pivotal performance metrics guided our exploration: computational
time, the number of iterations needed for convergence, and the robustness index.
These metrics collectively encapsulate the essence of software performance in nu-
merical problem-solving. Computational time offers insights into the efficiency
and speed of each software package, iterations unveil the underlying numerical
convergence properties, and the robustness index serves as a gauge of solution
reliability and stability.

The robustness index is a quantitative measure of how well a given solution
satisfies a system of nonlinear equations. The algorithm for the calculation of the
robustness index for the system of nonlinear equations:

STEP 1: Define the system of nonlinear equations: Begin with a set of nonli-
near equations, typically represented as () 0F x = , where F is a vector-valued
function of x, and x is the vector of the unknowns you want to solve.

STEP 2: Find a solution: Use a numerical solver or method (Broyden method)
to find a solution *x that approximately satisfies the system of equations, i.e.,
()* 0F x ≈ .
STEP 3: Calculate the Residual Vector: The residual vector, denoted as R, is

defined as the vector of the differences between the left-hand side (LHS) and the
right-hand side (RHS) of the equations for the solution *x . Mathematically, it
can be expressed as:

() ()* *R x F x= .

where:
()*R x is the residual vector.

https://doi.org/10.4236/ajcm.2023.134036

I. Azure et al.

DOI: 10.4236/ajcm.2023.134036 652 American Journal of Computational Mathematics

()*F x is the vector of equations evaluated at the solution *x .
STEP 4: Calculate the Norm (Magnitude) of the Residual Vector: The 2-norm

(Euclidean norm) of the residual vector is computed to measure how far the so-
lution is from satisfying the equations. The 2-norm of a vector υ is calculated as:

2
12 ii

nυ υ
=

= ∑

where:

2υ is the 2-norm of the vector υ.

iυ represents the i-th component of vector υ.
n is the dimension of the vector.
In our case, υ is the residual vector ()*R x .
STEP 5: Display the robustness index: The robustness index is simply the val-

ue of the 2-norm of the residual vector ()*R x . It quantifies how well the solu-
tion *x satisfies the equations. A smaller robustness index indicates a solution
that is closer to satisfying the equations. In summary, the robustness index is
calculated by finding a solution to the system of nonlinear equations, calculating
the residual vector that measures how well the solution satisfies the equations,
and then computing the 2-norm (Euclidean norm) of the residual vector to
quantify the solution’s robustness or closeness to satisfying the equations.

3.4. Experimental Setup

The study involved multiple facets of experimentation, ranging from software
configuration to hardware variation. In the case of the software configuration,
the 2023 versions of the Python, MATLAB, and Scilab packages were employed
for the study. Codes were developed for each benchmark problem using the
Broyden method and ensuring that each code looked out for the root of the
problems, computational time, number of iterations, and the robustness index.

The second part of the experimental setup considered the hardware variation.
Here, four laptops with different specifications were used simultaneously to run
the codes (Python, MATLAB, Scilab) developed to solve the benchmark prob-
lems. The table below (Table 2) shows the specifications of the laptop computers
used for this study:

Table 2. Specifications of Laptop devices.

No DEVICE NAME PROCESSOR INSTALLED RAM SYSTEM TYPE WINDOWS EDITION

1 HP PROBOOK
Intel® CoreTM i5-8265U

CPU@ 1.60GHZ 1.80GHZ
8.00 GB

(7.78 GB usable)
64-bit Operating System,

x64-based processor
Windows 10

2
HP ELITEBOOK

FOLIO 9470m
Intel® CoreTM i5-3427U

CPU@ 1.80GHZ 2.30GHZ
8.00 GB

(7.87 GB usable)
64-bit Operating System,

x64-based processor
Windows 10

3 DELL INSPIRON
Intel® CoreTM i7-8550U

CPU@ 1.80GHZ 1.99GHZ
12.00 GB

(11.9 GB usable)
64-bit Operating System,

x64-based processor
Windows 11

4 DELL LATITUDE
Intel® CoreTM i7-4310U

CPU@ 2.00GHZ 2.60GHZ
8.00 GB

64-bit Operating System,
x64-based processor

Windows 10

https://doi.org/10.4236/ajcm.2023.134036

I. Azure et al.

DOI: 10.4236/ajcm.2023.134036 653 American Journal of Computational Mathematics

4. Results and Discussion

Pursuant to the fourth objective of this investigation, we subjected the codes
crafted for the three mathematical software packages to rigorous testing on a
spectrum of four distinct laptop computers, each characterized by unique speci-
fications, as detailed in Table 2. The overarching aim was to evaluate the per-
formance of Python, MATLAB, and Scilab in root-finding for five designated
benchmark problems. This evaluation encompassed the computation time, itera-
tion count, and robustness index, all adjudicated through the lens of the Broyden
method. Notably, these software packages were examined across an eclectic ar-
ray of computing environments, namely the HP Probook, HP Elitebook, Dell
Inspiron, and Dell Latitude laptops.

It is worth highlighting that within this triad of mathematical tools, Scilab
faced convergence challenges for all five benchmark problems across the four
computers employed in this study. Consequently, our dataset predominantly re-
lies on the outcomes produced by MATLAB and Python software. Each table
below is accompanied by a graphical representation, facilitating a comprehensive
juxtaposition of computational times and robustness indices for Python and
MATLAB across diverse computing environments.

Using the initial guess values in Table 1 above, the solutions of the bench-mark
problems using the HP Probook laptop is shown in Table 3 below are graphs
showing each problem was solved using the software.

Table 3. Results of HP Probook Laptop.

PRO-
BLEM

PAC-
KAGE

ROOT ITERA-
TIONS

CT RI
x1 x2 x3 x4 x5

1

PYTHON

IG 1 0.9703856 0.33640073 1.78248243 0.70765518 −1.25063674 78 0.002707190 0.97113728

IG 2 0.97150346 0.33724451 1.78485727 0.7072669 −1.25077743 83 0.00210545 0.97110238

IG 3 0.96928977 0.33656571 1.78236457 0.7149359 −1.2518972 115 0.0030783653 0.97105340

IG 4 0.8167544 −0.35966987 1.32197719 0.16833372 −0.71637541 84 0.0024866318 1.2295925548

MATLAB

IG 1 0.9716 0.3363 1.7865 0.7119 −1.2533 66 0.0702 0.9710

IG 2 0.9716 0.3363 1.7865 0.7119 −1.2533 83 0.0529 0.9710

IG 3 0.9959 0.2987 1.7370 0.1282 −0.8380 67 0.0512 1.0835

IG 4 0.9716 0.3363 1.7865 1.7119 −1.2533 76 0.0681 0.9710

SCILAB - - - - - - - -

2

PYTHON

IG 1 0.7410159 0.616552 −0.68722343 1.40086399 1.83923133 82 0.0026665 6.9985642

IG 2 0.73498977 0.62935176 −0.67192174 1.40004509 1.84389973 76 0.0024065518 6.99792766

IG 3 0.72778208 0.61529578 −0.67099376 1.40235684 1.84342885 62 0.0017950415 6.9979516

IG 4 0.72746388 0.61529185 −0.70037927 1.40542718 1.8440568 67 0.001944973 6.9996142

https://doi.org/10.4236/ajcm.2023.134036

I. Azure et al.

DOI: 10.4236/ajcm.2023.134036 654 American Journal of Computational Mathematics

Continued

MATLAB

IG 1 0.7326 0.6239 −0.6653 1.4011 1.8434 228 0.1732 6.9978

IG 2 0.7326 0.6239 −0.6653 1.4011 1.8434 263 0.1744 6.9978

IG 3 0.7326 0.6239 −0.6653 1.4011 1.8434 277 0.2148 6.9978

IG 4 0.7326 0.6239 −0.6653 1.4011 1.8434 343 0.2690 6.9978

SCILAB - - - - - - - -

3

PYTHON

IG 1 0.64170722 −0.05649459 0.65815341 −0.0862085 0.58320854 148 0.00356941 2.615594

IG 2 0.69352355 −0.27318825 0.2337675 0.25145785 0.46148114 80 0.00199568 2.38164651

IG 3 0.66576994 −0.27633288 0.24413165 0.23223115 0.45262216 87 0.002296090 2.37832328

IG 4 0.77618451 −0.31053416 0.04072139 0.24611656 0.52286966 86 0.002186186 2.41270966

MATLAB

IG 1 0.6353 −0.2561 0.3129 0.2223 0.4475 58 0.0470 2.3772

IG 2 −1.4359 0.3031 0.4137 1.1899 2.1527 400 0.2333 3.9702

IG 3 −1.4359 0.3031 0.4137 1.1899 2.1527 400 0.2441 3.9702

IG 4 0.6621 0.0829 −0.7891 0.9747 1.8349 400 0.0726 6.8038

SCILAB - - - - - - - -

4

PYTHON

IG 1 0.99699399 0.4663226 −0.11985545 1.10630865 −0.37413413 147 0.0027879 0.4174182

IG 2 0.79460544 −0.00306158 1.10882098 0.17891018 0.00779873 102 0.003098425 1.44879087

IG 3 −0.21843663 −0.41870705 0.86175569 0.88075046 −1.07887289 135 0.00465234 1.6819834

IG 4 1.03781398 0.88471088 0.01948704 0.78311119 0.67483508 77 0.0020654129 1.752369535

MATLAB

IG 1 0.9518 0.4318 −0.0050 1.1308 −0.4562 196 0.1592 0.4052

IG 2 0.9518 0.4318 −0.0050 1.1308 −0.4562 276 0.1527 0.4052

IG 3 0.9518 0.4318 −0.0050 1.1308 −0.4562 225 0.1425 0.4052

IG 4 0.9518 0.4318 −0.0050 1.308 −0.4562 184 0.1123 0.4052

SCILAB - - - - - - - -

5

PYTHON

IG 1 7.93165560e−01 −8.55523324e−04 1.12190615e+00 1.66453597e−01 2.19405901e−03 107 0.002276010 1.44110698

IG 2 0.79460544 −0.00306158 1.10882098 0.17891018 0.00779873 102 0.003278701 1.44879087

IG 3 −0.21843663 −0.41870705 0.86175569 0.88075046 −1.07887289 135 0.00465234 1.6819834

IG 4 1.82494083e+00 2.35951827e−02 1.82997012e+00 −1.19703799e−07 1.49325421e+00 162 0.00445223 1.352219796

MATLAB

IG 1 0.6353 −0.2561 0.3129 0.2223 0.4475 94 0.0504 2.3772

IG 2 0.6353 −0.2561 0.3129 0.2223 0.4475 91 0.0507 2.3772

IG 3 0.6353 −0.2561 0.3129 0.2223 0.4475 91 0.0448 2.3772

IG 4 0.6353 −0.2561 0.3129 0.2223 0.4475 86 0.0473 2.3772

SCILAB - - - - - - - -

https://doi.org/10.4236/ajcm.2023.134036

I. Azure et al.

DOI: 10.4236/ajcm.2023.134036 655 American Journal of Computational Mathematics

The collected data from running the codes on an HP Probook laptop reveals
noteworthy insights. Python consistently exhibited significantly shorter compu-
tational times across all five benchmark problems when compared to MATLAB
and this can be seen in Figures 1(a)-5(a). Specifically, Python’s computational
time ranged from 0.0017950 seconds as the lowest to 0.00465234 seconds as the
highest, whereas MATLAB’s computational time spanned from 0.0448 seconds
(minimum) to 0.2690 seconds (maximum).

Regarding the robustness index, Python outperformed MATLAB by achieving
a lower index in problems 3 and 5. Notably, for problem 1, Python achieved an
identical index as MATLAB for initial guess values 1 and 2. However, Python
surpassed MATLAB for initial guess 3, while MATLAB exhibited better perfor-
mance for initial guess values 4 (Figures 1(b)-5(b)).

(a)

(b)

Figure 1. (a) CT against IG for Problem 1; (b) RI against IG for Problem 1.

https://doi.org/10.4236/ajcm.2023.134036

I. Azure et al.

DOI: 10.4236/ajcm.2023.134036 656 American Journal of Computational Mathematics

(a)

(b)

Figure 2. (a) CT against IG for Problem 2; (b) RI against IG for Problem 2.

(a)

https://doi.org/10.4236/ajcm.2023.134036

I. Azure et al.

DOI: 10.4236/ajcm.2023.134036 657 American Journal of Computational Mathematics

(b)

Figure 3. (a) CT against IG for Problem 3; (b) RI against IG for Problem 3.

(a)

(b)

Figure 4. (a) CT against IG for Problem 4; (b) RI against IG for Problem 4.

https://doi.org/10.4236/ajcm.2023.134036

I. Azure et al.

DOI: 10.4236/ajcm.2023.134036 658 American Journal of Computational Mathematics

(a)

(b)

Figure 5. (a) CT against IG for Problem 5; (b) RI against IG for Problem 5.

Table 4 is a summary of results obtained from HP Elitebook Laptop.
When examining the data collected on the HP Elitebook laptopas shown in

Table 4, intriguing disparities emerged, presenting a stark contrast to the findings
on the Probook HP device. Unlike the Probook HP laptop, MATLAB consis-
tently exhibited notably shorter computational times than Python for all four
benchmark problems investigated in this study, resulting in significant differ-
ences between the two software platforms.

https://doi.org/10.4236/ajcm.2023.134036

I. Azure et al.

DOI: 10.4236/ajcm.2023.134036 659 American Journal of Computational Mathematics

Table 4. Results of HP Elitebook Laptop.

PROBLEM PACKAGE
ROOT

ITERATIONS CT RI
x1 x2 x3 x4 x5

1

PYTHON

IG 1 0.97039 0.336401 1.78248 0.70766 −1.2506 78 0.00359 0.971137

IG 2 0.97150 0.337244 1.78486 0.70727 −1.2507 83 0.00399 0.971102

IG 3 0.96929 0.336566 1.78236 0.71494 −1.2518 115 0.00529 0.971053

IG 4 0.81675 −0.35967 1.32198 0.16834 −0.7163 84 0.00470 1.229526

MATLAB

IG 1 0.9959 0.2987 1.7370 0.1282 −0.8380 66 0.0064 1.083549

IG 2 0.9716 0.3363 1.7865 0.7119 −1.2533 83 0.0013 0.970984

IG 3 0.9959 0.2987 1.7370 0.1282 −0.8380 67 0.0011 1.083549

IG 4 0.9716 0.3363 1.7865 1.7119 −1.2533 76 0.0011 0.970984

SCILAB - - - - - - - -

2

PYTHON

IG 1 0.7410 0.6166 −0.6872 1.4009 1.8392 82 0.00432 6.998564

IG 2 0.7349 0.6294 −0.6719 1.0005 1.8439 76 0.00404 6.997928

IG 3 0.7278 0.6153 −0.6709 1.4025 1.8434 62 0.00439 6.997952

IG 4 0.7275 0.6153 −0.7004 1.4054 1.8441 67 0.00416 6.999614

MATLAB

IG 1 0.7326 0.6239 −0.6653 1.4011 1.8434 228 0.0059 6.997791

IG 2 0.7326 0.6239 −0.6653 1.4011 1.8434 263 0.0023 6.997791

IG 3 0.7326 0.6239 −0.6653 1.4011 1.8434 277 0.0024 6.997791

IG 4 0.7326 0.6239 −0.6653 1.4011 1.8434 343 0.0028 0.997791

SCILAB - - - - - - - -

3

PYTHON

IG 1 0.6561 −0.3227 0.5981 −0.0842 0.6430 151 0.00706 2.663338

IG 2 0.8312 0.3925 2.4179 0.4889 1.6708 87 0.00401 9.276602

IG 3 0.6123 0.4125 2.3623 0.7147 1.6543 72 0.00347 10.305454

IG 4 0.8870 0.5897 −0.4366 2.1678 1.8248 44 0.00238 8.159903

MATLAB

IG 1 0.6353 −0.2561 0.3129 0.2223 0.4475 72 0.0015 2.377167

IG 2 −1.4358 0.2983 0.4158 1.1896 2.1513 400 0.0033 3.970227

IG 3 −1.4359 0.2998 0.4148 1.1897 2.1519 400 0.0029 3.970228

IG 4 0.6595 0.0822 −0.7859 0.9747 1.8351 400 0.0025 6.803822

SCILAB - - - - - - - -

4

PYTHON

IG 1 0.9970 0.4663 −0.1199 1.1063 −0.3741 147 0.00644 0.417418

IG 2 - - - - - - - -

https://doi.org/10.4236/ajcm.2023.134036

I. Azure et al.

DOI: 10.4236/ajcm.2023.134036 660 American Journal of Computational Mathematics

Continued

IG 3 1.0593 0.5232 −0.2939 1.0706 −0.2795 146 0.00652 0.481636

IG 4 1.0378 0.8847 0.0195 0.7831 0.6748 77 0.00363 1.75236

MATLAB

IG 1 0.9518 0.4318 −0.0050 1.1308 −0.4562 179 0.0059 0.405212

IG 2 0.9518 0.4318 −0.0050 1.1308 −0.4562 276 0.0026 0.405212

IG 3 0.9518 0.4318 −0.0050 1.1308 −0.4562 225 0.0021 0.405212

IG 4 0.9518 0.4318 −0.0050 1.308 −0.4562 184 0.0020 0.405212

SCILAB - - - - - - - -

5

PYTHON

IG 1 0.7932 −0.0008 1.1219 0.6646 0.0021 107 0.00540 1.441107

IG 2 0.7946 −0.0031 1.1088 0.1789 0.0078 102 0.00516 1.448791

IG 3 0.0492 −0.2693 1.1124 0.9893 −1.1836 121 0.00597 1.614661

IG 4 1.8249 0.0236 1.8299 −1.1960 1.4933 162 0.00779 1.352203

MATLAB

IG 1 0.6353 −0.2561 0.3129 0.2223 0.4475 94 0.0013 2.377167

IG 2 0.6353 −0.2561 0.3129 0.2223 0.4475 91 0.0013 2.377167

IG 3 0.6353 −0.2561 0.3129 0.2223 0.4475 91 0.0013 2.377167

IG 4 0.6353 −0.2561 0.3129 0.2223 0.4475 86 0.0012 2.377167

SCILAB - - - - - - - -

The analysis of the robustness index data revealed a consistent pattern. Em-

ploying the Broyden method, MATLAB consistently yielded a lower robustness
index than Python for all benchmark problems, except for problem 5. However,
the data obtained from the HP Elitebook laptop unveiled a distinct challenge;
Python failed to converge for problem 4 (Figure 9(a)) with initial guess values 2,
while MATLAB successfully delivered results for the same problem with those
initial guess values. In general, MATLAB consistently solved all five bench-mark
problems with lower computational time as shown in the figures above (Figures
6(a)-10(a)). In a similar way, MATLAB recorded the least robustness index as
compared with Python (Figures 6(b)-10(b)).

A summary of results obtained from Dell Inspiron Laptop is displayed in Ta-
ble 5.

Analyzing the data acquired from the Dell Inspiron laptop as shown in Table
5, intriguing patterns emerged in terms of computational efficiency and robust-
ness. Python outshone MATLAB in terms of computational time, delivering
quicker solutions for problems 2, 3, and 4 (Figures 12(a)-14(a)). In contrast,
MATLAB displayed its computational prowess by surpassing Python in tackling
problems 2 and 5 (Figure 11(a) and Figure 15(a)).

The story was similar when it came to the robustness index. Python demon-
strated a significantly smaller robustness index for problems 1, 3, and 5, proving

https://doi.org/10.4236/ajcm.2023.134036

I. Azure et al.

DOI: 10.4236/ajcm.2023.134036 661 American Journal of Computational Mathematics

(a)

(b)

Figure 6. (a) CT against IG for Problem 1; (b) RI against IG for Problem 1.

(a)

https://doi.org/10.4236/ajcm.2023.134036

I. Azure et al.

DOI: 10.4236/ajcm.2023.134036 662 American Journal of Computational Mathematics

(b)

Figure 7. (a) CT against IG for Problem 2; (b) RI against IG for Problem 2.

(a)

(b)

Figure 8. (a) CT against IG for Problem 3; (b) RI against IG for Problem 3.

https://doi.org/10.4236/ajcm.2023.134036

I. Azure et al.

DOI: 10.4236/ajcm.2023.134036 663 American Journal of Computational Mathematics

(a)

(b)

Figure 9. (a) CT against IG for Problem 4; (b) RI against IG for Problem 4.

(a)

https://doi.org/10.4236/ajcm.2023.134036

I. Azure et al.

DOI: 10.4236/ajcm.2023.134036 664 American Journal of Computational Mathematics

(b)

Figure 10. (a) CT against IG for Problem 5; (b) RI against IG for Problem 5.

Table 5. Results of Dell Inspiron Laptop.

PROBLEM PACKAGE
ROOT ITERATIONS CT RI

x1 x2 x3 x4 x5

1

PYTHON

IG 1 0.9704 0.3364 1.7825 0.7077 −1.2506 78 0.0056 0.9711

IG 2 0.9715 0.3372 1.7849 0.7073 −1.2508 83 0.0019 0.9711

IG 3 0.9693 0.3366 1.7824 0.7149 −1.2519 115 0.0029 0.9711

IG 4 0.8168 −0.3597 1.3220 0.1683 −0.7164 84 0.0017 1.2296

MATLAB

IG 1 0.9959 0.2987 1.7370 0.1282 −0.8380 66 0.0053 1.0835

IG 2 0.9716 0.3363 1.7865 0.7119 −1.2533 83 0.0017 0.9710

IG 3 0.9959 0.2987 1.7370 0.1282 −0.8380 67 0.0015 1.0835

IG 4 0.9716 0.3363 1.7865 0.7119 −1.2533 76 0.0015 0.9710

SCILAB - - - - - - - -

2

PYTHON

IG 1 0.7410 0.6166 −0.6872 1.4009 1.8392 82 0.0020 6.9986

IG 2 0.7350 0.6294 −0.6719 1.4000 1.8439 76 0.0022 6.9979

IG 3 0.7278 0.6153 −0.6710 1.4024 1.8434 62 0.0015 6.9980

IG 4 0.7275 0.6153 −0.7004 1.4054 1.8441 67 0.0018 6.9996

MATLAB

IG 1 0.7326 0.6239 −0.6653 1.4011 1.8434 228 0.0028 6.9978

IG 2 0.7326 0.6239 −0.6653 1.4011 1.8434 263 0.0029 6.9978

IG 3 0.7326 0.6239 −0.6653 1.4011 1.8434 277 0.0030 6.9978

IG 4 0.7326 0.6239 −0.6653 1.4011 1.8434 343 0.0038 6.9978

SCILAB - - - - - - - -

https://doi.org/10.4236/ajcm.2023.134036

I. Azure et al.

DOI: 10.4236/ajcm.2023.134036 665 American Journal of Computational Mathematics

Continued

3

PYTHON

IG 1 0.8870 0.5897 −0.4367 2.1678 1.8249 44 0.0011 8.1599

IG 2 0.6935 −0.2732 0.2338 0.2515 0.4615 80 0.0014 2.3816

IG 3 0.6658 −0.2763 0.2441 0.2322 0.4526 87 0.0017 2.3783

IG 4 0.7762 −0.3105 0.0407 0.2461 0.5229 86 0.0015 2.4127

MATLAB

IG 1 0.6353 −0.2561 0.3129 0.2223 0.4475 72 0.0014 2.3772

IG 2 −1.4358 0.2983 0.4158 1.1896 2.1513 400 0.0037 3.9702

IG 3 −1.4359 0.2998 0.4148 1.1897 2.1519 400 0.0037 3.9702

IG 4 0.6595 0.0822 −0.7859 0.9747 1.8351 400 0.0031 6.8038

SCILAB - - - - - - - -

4

PYTHON

IG 1 0.99699 0.46632 −0.11986 1.10631 −0.37413 147 0.0011 7.76307

IG 2 1.0810 0.54755 −0.30226 1.06365 −0.26264 161 0.0011 7.76307

IG 3 1.05933 0.52320 −0.29394 1.07058 −0.27953 146 0.0011 7.76307

IG 4 1.03781 0.88471 0.01949 0.78311 0.67484 77 0.0011 7.76307

MATLAB

IG 1 0.9518 0.4318 −0.0050 1.1308 −0.4562 179 0.0023 0.4052

IG 2 0.9518 0.4318 −0.0050 1.1308 −0.4562 276 0.0029 0.4052

IG 3 0.9518 0.4318 −0.0050 1.1308 −0.4562 225 0.0025 0.4052

IG 4 0.9518 0.4318 −0.0050 1.1308 −0.4562 184 0.0023 0.4052

SCILAB - - - - - - - -

5

PYTHON

IG 1 0.7932 −0.0009 1.1219 0.1665 0.0022 107 0.0028 1.4411

IG 2 0.7946 −0.0031 1.1088 0.1789 0.0078 102 0.0022 1.4488

IG 3 −0.2184 −0.4187 0.8618 0.8808 −1.0789 135 0.0027 1.682

IG 4 1.8249 0.0236 1.8300 −0.0000 1.4933 162 0.0034 1.3522

MATLAB

IG 1 0.6353 −0.2561 0.3129 0.2223 0.4475 94 0.0018 2.3772

IG 2 0.6353 −0.2561 0.3129 0.2223 0.4475 91 0.0015 2.3772

IG 3 0.6353 −0.2561 0.3129 0.2223 0.4475 91 0.0014 2.3772

IG 4 0.6353 −0.2561 0.3129 0.2223 0.4475 86 0.0014 2.3772

SCILAB - - - - - - - -

its efficiency. Conversely, MATLAB excelled by achieving the lowest robustness
index for problems 2 and 5, showcasing its capability to handle these particular
challenges effectively (Figures 11(b)-15(b)).

Table 6 shows the results from the Dell Latitude Laptop.

https://doi.org/10.4236/ajcm.2023.134036

I. Azure et al.

DOI: 10.4236/ajcm.2023.134036 666 American Journal of Computational Mathematics

(a)

(b)

Figure 11. (a) CT against IG for Problem 1; (b) RI against IG for Problem 1.

(a)

https://doi.org/10.4236/ajcm.2023.134036

I. Azure et al.

DOI: 10.4236/ajcm.2023.134036 667 American Journal of Computational Mathematics

(b)

Figure 12. (a) CT against IG for Problem 2; (b) RI against IG for Problem 2.

(a)

(b)

Figure 13. (a) CT against IG for Problem 3; (b) RI against IG for Problem 3.

https://doi.org/10.4236/ajcm.2023.134036

I. Azure et al.

DOI: 10.4236/ajcm.2023.134036 668 American Journal of Computational Mathematics

(a)

(b)

Figure 14. (a) CT against IG for Problem 4; (b) RI against IG for Problem 4.

(a)

https://doi.org/10.4236/ajcm.2023.134036

I. Azure et al.

DOI: 10.4236/ajcm.2023.134036 669 American Journal of Computational Mathematics

(b)

Figure 15. (a) CT against IG for Problem 5; (b) RI against IG for Problem 5.

Table 6. Results of Dell Latitude Laptop.

PROBLEM PACKAGE
ROOTS

ITERATIONS CT RI
x1 x2 x3 x4 x5

1

PYTHON

IG 1 0.9704 0.3364 1.7825 0.7077 −1.2506 78 0.0036 0.9711

IG 2 0.9715 0.3372 1.7849 0.7073 −1.2508 83 0.0032 0.9711

IG 3 0.9693 0.3366 1.7824 0.7149 −1.2519 115 0.0036 0.9711

IG 4 0.8168 −0.3597 1.322 0.1683 −0.7164 84 0.0029 1.2296

MATLAB

IG 1 0.9959 0.2987 1.737 0.1282 −0.838 66 0.0013 1.0835

IG 2 0.9716 0.3363 1.7865 0.7119 −1.2533 83 0.0015 0.971

IG 3 0.9959 0.2987 1.737 0.1282 −0.838 67 0.0013 1.0835

IG 4 0.9716 0.3363 1.7865 0.7119 −1.2533 76 0.0014 0.971

SCILAB - - - - - - - -

2

PYTHON

IG 1 0.741 0.6166 −0.6872 1.4009 1.8392 82 0.0039 6.9986

IG 2 0.735 0.6294 −0.6719 1.4 1.8439 76 0.0032 6.9979

IG 3 0.7278 0.6153 −0.671 1.4024 1.8434 62 0.0024 6.998

IG 4 0.7275 0.6153 −0.7004 1.4054 1.8441 67 0.0025 6.9996

MATLAB

IG 1 0.7326 0.6239 −0.6653 1.4011 1.8434 228 0.0076 6.9978

IG 2 0.7326 0.6239 −0.6653 1.4011 1.8434 263 0.003 6.9978

IG 3 0.7326 0.6239 −0.6653 1.4011 1.8434 277 0.003 6.9978

IG 4 0.7326 0.6239 −0.6653 1.4011 1.8434 343 0.0035 6.9978

SCILAB - - - - - - - -

https://doi.org/10.4236/ajcm.2023.134036

I. Azure et al.

DOI: 10.4236/ajcm.2023.134036 670 American Journal of Computational Mathematics

Continued

3

PYTHON

IG 1 0.887 0.5897 −0.4367 2.1678 1.8249 44 0.0025 8.1599

IG 2 0.6939 0.0791 −0.8103 0.9866 1.8349 64 0.0031 6.8047

IG 3 −1.429 0.2733 0.4147 1.1896 2.1089 132 0.0044 3.976

IG 4 0.6632 −0.2899 −0.4178 −0.3666 1.8521 64 0.0019 7.7631

MATLAB

IG 1 0.6353 −0.2561 0.3129 0.2223 0.4475 58 0.0016 2.3772

IG 2 −1.4358 0.2983 0.4158 1.1896 2.1513 400 0.0039 3.9702

IG 3 −1.4359 0.2998 0.4148 1.1897 2.1519 400 0.0035 3.9702

IG 4 0.6595 0.0822 −0.7859 0.9747 1.8351 400 0.003 6.8038

SCILAB - - - - - - - -

4

PYTHON

IG 1 0.99699 0.46632 −0.11986 1.10631 −0.37413 147 0.00191 7.76307

IG 2 1.081 0.54755 −0.30226 1.06365 −0.26264 161 0.00191 7.76307

IG 3 1.05933 0.5232 −0.29394 1.07058 −0.27953 146 0.00191 7.76307

IG 4 1.03781 0.88471 0.01949 0.78311 0.67484 77 0.00191 7.76307

MATLAB

IG 1 0.9518 0.4318 −0.005 1.1308 −0.4562 196 0.0025 0.4052

IG 2 0.9518 0.4318 −0.005 1.1308 −0.4562 276 0.003 0.4052

IG 3 0.9518 0.4318 −0.005 1.1308 −0.4562 225 0.0025 0.4052

IG 4 0.9518 0.4318 −0.005 1.1308 −0.4562 184 0.0024 0.4052

SCILAB - - - - - - - -

5

PYTHON

IG 1 0.7932 −0.0009 1.1219 0.1665 0.0022 107 0.0056 1.4411

IG 2 0.7946 −0.0031 1.1088 0.1789 0.0078 102 0.004 1.4488

IG 3 −0.2184 −0.4187 0.8618 0.8808 −1.0789 135 0.0042 1.682

IG 4 1.8249 0.0236 1.83 0 1.4933 162 0.006 1.3522

MATLAB

IG 1 0.6353 −0.2561 0.3129 0.2223 0.4475 94 0.0017 2.3772

IG 2 0.6353 −0.2561 0.3129 0.2223 0.4475 91 0.0015 2.3772

IG 3 0.6353 −0.2561 0.3129 0.2223 0.4475 91 0.0015 2.3772

IG 4 0.6353 −0.2561 0.3129 0.2223 0.4475 86 0.0014 2.3772

SCILAB - - - - - - - -

Upon meticulous examination of the data garnered from the Dell Latitude

laptop as shown in Table 6, an array of captivating trends about computational
efficiency and robustness came to light. Python took the lead in computational
time, offering expeditious solutions for problems 2, 3, and 4 as shown in Figures
16(a)-18(a). In contrast, MATLAB flexed its computational muscle, outper-
forming Python when it came to addressing problems 1 and 5 (Figure 19(b) and
Figure 20(b)).

https://doi.org/10.4236/ajcm.2023.134036

I. Azure et al.

DOI: 10.4236/ajcm.2023.134036 671 American Journal of Computational Mathematics

(a)

(b)

Figure 16. (a) CT against IG for Problem 2; (b) RI against IG for Problem 2.

(a)

https://doi.org/10.4236/ajcm.2023.134036

I. Azure et al.

DOI: 10.4236/ajcm.2023.134036 672 American Journal of Computational Mathematics

(b)

Figure 17. (a) CT against IG for Problem 3; (b) RI against IG for Problem 3.

(a)

(b)

Figure 18. (a) CT against IG for Problem 4; (b) RI against IG for Problem 4.

https://doi.org/10.4236/ajcm.2023.134036

I. Azure et al.

DOI: 10.4236/ajcm.2023.134036 673 American Journal of Computational Mathematics

(a)

(b)

Figure 19. (a) CT against IG for Problem 1; (b) RI against IG for Problem 1.

(a)

https://doi.org/10.4236/ajcm.2023.134036

I. Azure et al.

DOI: 10.4236/ajcm.2023.134036 674 American Journal of Computational Mathematics

(b)

Figure 20. (a) CT against IG for Problem 5; (b) RI against IG for Problem 5.

A similar narrative unfolded regarding the robustness index. Python exhibited
a notably lower robustness index for problems 1 and 5 as in Figure 19(a) and
Figure 20(a), demonstrating its efficiency. Conversely, MATLAB shone by se-
curing the lowest robustness index for problems 2, 3, and 4 (Figures 16(b)-18(b)),
underscoring its adeptness in handling these specific challenges with finesse.

5. Conclusion and Recommendations

This study embarked on a comprehensive evaluation of three prominent ma-
thematical software packages, namely Python, MATLAB, and Scilab, in their
quest to solve nonlinear systems of equations with five unknown variables. Four
primary objectives guided our research, which included comparing software
performance using standardized benchmark problems, utilizing key perfor-
mance metrics for quantitative evaluation, and assessing the impact of varying
computer hardware specifications on software performance.

While numerous software packages are available for solving problems related
to numerical analysis and computations, the most widely recognized and utilized
ones include MATLAB, SCILAB, and Python. This prompted the authors of this
research to conduct a comparative analysis of the results obtained from these
software platforms.

Before the study began, it was expected that the computational time would
vary due to the diverse computing environments anticipated to be used. Howev-
er, this variation was not anticipated for the robustness index.

The utilization of the Broyden method as a numerical technique paved the
way for meticulous comparisons. Across a diverse spectrum of computing envi-
ronments represented by the HP Probook, HP Elitebook, Dell Inspiron, and Dell
Latitude laptops, the performance of these software packages was assessed.

Firstly, our findings on the HP Probook laptop unveiled intriguing trends. Py-
thon consistently demonstrated shorter computational times, significantly out-

https://doi.org/10.4236/ajcm.2023.134036

I. Azure et al.

DOI: 10.4236/ajcm.2023.134036 675 American Journal of Computational Mathematics

performing MATLAB. Python’s computational time ranged from 0.0017950
seconds to 0.00465234 seconds, whereas MATLAB’s spanned from 0.0448 seconds
to 0.2690 seconds. In terms of the robustness index, Python showcased superior-
ity by achieving a lower index in problems 3 and 5. Notably, for problem 1, Py-
thon mirrored MATLAB’s index for initial guess values 1 and 2 but outper-
formed MATLAB for initial guess 3, while MATLAB displayed better perfor-
mance for initial guess values 4.

The HP Elitebook laptop presented contrasting results. Here, MATLAB con-
sistently exhibited notably shorter computational times than Python for all four
benchmark problems, marking a significant divergence from the Probook HP
device. In terms of robustness, MATLAB consistently yielded a lower index than
Python across all benchmark problems except for problem 5. However, a distinct
challenge emerged; Python failed to converge for problem 4 with initial guess
values 2, whereas MATLAB successfully produced results for the same problem
with those initial guess values.

The data collected from the Dell Inspiron laptop uncovered intriguing pat-
terns. Python demonstrated superior computational efficiency for problems 1, 3,
and 4, while MATLAB excelled in addressing problems 2 and 5. This pattern
persisted in terms of the robustness index, where Python displayed a smaller in-
dex for problems 1, 3, and 5, while MATLAB secured the lowest index for prob-
lems 2 and 5.

The examination of data from the Dell Latitude laptop revealed intriguing in-
sights into computational efficiency and robustness. Python demonstrated ex-
ceptional speed in solving problems 2, 3, and 4, making it a strong choice for
these tasks. On the other hand, MATLAB showcased its computational prowess
by outperforming Python in addressing problems 1 and 5. This trend was mir-
rored in the robustness index, with Python proving highly efficient for problems
1 and 5, while MATLAB excelled in ensuring robust solutions for problems 2, 3,
and 4. These findings highlight the strengths of each tool in different problem-
solving scenarios, emphasizing the importance of selecting the right program-
ming language for specific computational needs.

In summation, this study has contributed valuable insights into the compara-
tive capabilities of Python, MATLAB, and Scilab for tackling nonlinear systems
of equations. Our findings underscore the significance of considering both soft-
ware and hardware specifications in real-world applications. Depending on the
specific problem and computational environment, the choice between Python
and MATLAB can yield distinct advantages. We hope that these results will guide
researchers and practitioners in selecting the most suitable tools for their unique
challenges.

Conflicts of Interest

The authors declare no conflicts of interest that could influence the objectivity,
integrity, or impartiality of the research presented in this paper.

https://doi.org/10.4236/ajcm.2023.134036

I. Azure et al.

DOI: 10.4236/ajcm.2023.134036 676 American Journal of Computational Mathematics

References
[1] Azure, I. (2023) An Analysis of Solutions of Nonlinear Equations Using AI Inspired

Mathematical Packages. International Journal of Systems Science and Applied Ma-
thematics, 8, 23-30. https://doi.org/10.11648/j.ijssam.20230802.12

[2] Downey, A.B. (2015) Think Python: How to Think like a Computer Scientist. Green
Tea Press, St, Erie. http://greenteapress.com/thinkpython2/html/index.html

[3] Hahn, B. and Valentine, D.T. (2020) Essential MATLAB for Engineers and Scien-
tists. Academic Press, Cambridge.

[4] Hanselman, D.C. and Littlefield, B.L. (2018) The Art of MATLAB. Cambridge Uni-
versity Press, Cambridge.

[5] Mahdy, A.M.S. (2022) A Numerical Method for Solving the Nonlinear Equations of
Emden-Fowler Models. Journal of Ocean Engineering and Science.
https://doi.org/10.1016/j.joes.2022.04.019

[6] Nagar, S. (2021) Introduction to Scilab. Notion Press, Chennai.

[7] Python Software Foundation (2021) Python 3.10.0 Documentation.
https://docs.python.org/3/

[8] Rasheed, M., Shihab, S., Rashid, A., Rashid, T., Hamed, S.H.A. and Aldulaimi, M.A.H.
(2021) An Iterative Method to Solve Nonlinear Equation. Journal of Al-Qadisiyah
for Computer Science and Mathematics, 13, 87.
https://doi.org/10.29304/jqcm.2021.13.1.753

[9] Isaac, A., Stephen, T.B. and Seidu, B. (2021) A Comparison of Newly Developed
Broyden-Like Methods for Solving System of Nonlinear Equations. International
Journal of Systems Science and Applied Mathematics, 6, 77-94.
https://doi.org/10.11648/j.ijssam.20210603.11

[10] Rasheed, M., Rashid, A., Rashid, T., Hamed, S.H.A. and Al-Farttoosi, O.A.A. (2021)
Application of Numerical Analysis for Solving Nonlinear Equation. Journal of Al-
Qadisiyah for Computer Science and Mathematics, 13, 70.
https://doi.org/10.29304/jqcm.2021.13.1.752

[11] Biswa, N.D. (2012) Lecture Notes on Numerical Solution of Root-Finding Problems
MATH 435.

[12] Martınez, J.M. (2000) Practical Quasi-Newton Methods for Solving Nonlinear Sys-
tems. Journal of Computational and Applied Mathematics, 124, 97-121.
https://doi.org/10.1016/S0377-0427(00)00434-9

[13] Mikac, M., Logožar, R. and Horvatić, M. (2022) Performance Comparison of Open
Source and Commercial Computing Tools in Educational and Other Use—Scilab
vs. MATLAB. Tehnički Glasnik, 16, 509-518.
https://doi.org/10.31803/tg-20220528171032

[14] Biegler, L.T. (2010) Nonlinear Programming: Concepts, Algorithms, and Applica-
tions to Chemical Processes. Society for Industrial and Applied Mathematics, Phila-
delphia. https://doi.org/10.1137/1.9780898719383

[15] Kelley, C.T. (1995) Iterative Methods for Linear and Nonlinear Equations. Society
for Industrial and Applied Mathematics, Philadelphia.
https://doi.org/10.1137/1.9781611970944

[16] Srivastava, R.B. and Srivastava, S. (2011) Comparison of Numerical Rate of Con-
vergence of Bisection, Newton-Raphson’s and Secant Methods. Journal of Chemical,
Biological and Physical Sciences (JCBPS), 2, 472.

[17] Xu, X.-B. (2022) An Algorithm on the Numerical Continuation of Asymmetric and

https://doi.org/10.4236/ajcm.2023.134036
https://doi.org/10.11648/j.ijssam.20230802.12
http://greenteapress.com/thinkpython2/html/index.html
https://doi.org/10.1016/j.joes.2022.04.019
https://docs.python.org/3/
https://doi.org/10.29304/jqcm.2021.13.1.753
https://doi.org/10.11648/j.ijssam.20210603.11
https://doi.org/10.29304/jqcm.2021.13.1.752
https://doi.org/10.1016/S0377-0427(00)00434-9
https://doi.org/10.31803/tg-20220528171032
https://doi.org/10.1137/1.9780898719383
https://doi.org/10.1137/1.9781611970944

I. Azure et al.

DOI: 10.4236/ajcm.2023.134036 677 American Journal of Computational Mathematics

Symmetric Periodic Orbits Based on the Broyden Method and Its Application. Chi-
nese Astronomy and Astrophysics, 63, 401-421.

[18] Tolner, F., Barta, B. and Eigner, G. (2022) Comparison of Newton’s and Broyden’s
Method as Nonlinear Solver in the Implementation of MFV-Robustified Linear Re-
gression. 2022 IEEE International Conference on Systems, Man, and Cybernetics
(SMC), Prague, 9-12 October 2022, 1518-1523.
https://doi.org/10.1109/SMC53654.2022.9945222

[19] Ebelechukwu, O.C., Johnson, B.O., Michael, A.I. and Fidelis, A.T. (2018) Compari-
son of Some Iterative Methods of Solving Nonlinear Equations. International Jour-
nal of Theoretical and Applied Mathematics, 4, 22-28.
https://doi.org/10.11648/j.ijtam.20180402.11

[20] Ahmad, A.G. (2015) Comparative Study of Bisection and Newton-Raphson Me-
thods of Root-Finding Problems. International Journal of Mathematics Trends and
Technology, 19, 121-129. https://doi.org/10.14445/22315373/IJMTT-V19P516

[21] Kazemi, M., Deep, A. and Nieto, J. (2023) An Existence Result with Numerical So-
lution of Nonlinear Fractional Integral Equations. Mathematical Methods in the Ap-
plied Sciences, 46, 10384-10399. https://doi.org/10.1002/mma.9128

https://doi.org/10.4236/ajcm.2023.134036
https://doi.org/10.1109/SMC53654.2022.9945222
https://doi.org/10.11648/j.ijtam.20180402.11
https://doi.org/10.14445/22315373/IJMTT-V19P516
https://doi.org/10.1002/mma.9128

	AI-Enhanced Performance Evaluation of Python, MATLAB, and Scilab for Solving Nonlinear Systems of Equations: A Comparative Study Using the Broyden Method
	Abstract
	Keywords
	1. Introduction
	1.1. The Broyden Method
	1.2. Related Works

	2. Objectives of the Study
	3. Methodology
	3.1. Benchmark Problems Selection
	3.2. Numerical Methodology
	3.3. Performance Metrics
	3.4. Experimental Setup

	4. Results and Discussion
	5. Conclusion and Recommendations
	Conflicts of Interest
	References

