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Abstract 
Formulated in 1859 by the mathematician Bernhard Riemann, the Riemann 
hypothesis is a conjecture. She says that the Riemann’s Zeta function non-trivial 

zeros of all have real part 1
2

. This demonstration would improve the prime 

numbers distribution knowledge. This conjecture constitutes one of the most 
important mathematics unsolved problems of the 21st century: it is one of the 
famous Hilbert problems proposed in 1900. In this article, a method for solv-
ing this conjecture is given. This work has been started by finding an analyti-
cal function which gives a best accurate 10−8 of particular zeros sample that 
this number has increased gradually and finally prooving that this function is 
always irrational. This demonstration is important as allows Riemann’s zeta 
function to be a model function in the Dirichlet series theory and be at the 
crossroads of many other theories. Also, it is going to serve as a motivation 
and guideline for new studies. 
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1. Introduction 

Published in 1859, Reimann Hypothesis attempts to predict the occurrence of 
prime numbers using a mathematical function. Prime numbers do not follow a 
pattern of occurrence. After you find one, it is impossible to predict the occur-
rence of the next prime number. Mathematical greats like Euclid, Euler, and 
Gauss are among many who attempted to address this problem. Bernhard Rie-
mann, a student of Gauss, found a pattern in the frequency of prime numbers. 
He found them to follow a pattern that could be explained with a function, 
which he called Riemann zeta function. The Riemann’s function formulation is 
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defined as [1] [2]:  

 ( )
1

1
zz

n
ζ

∞

=∑                            (1) 

● The zeta function plays an important role in mathematical research. It con-
stitutes a first link between arithmetic and analysis. It was used by Euler, Di-
richlet, Tchebychev and Riemann to study the distribution of prime numbers.  

● The Riemann zeta function and the Dirichlet L-functions are powerful ana-
lytical tools for studying the distribution of prime numbers. It seems that 
these functions are also revealing of the most hidden properties of number 
theory. They are far from being well understood!  

● In 1737, Leonhard Euler (1707-1783) studies the zeta function and discovers 
Euler’s identity between prime numbers and integers.  

● In 1900, David Hilbert (1862-1943) places the Riemann hypothesis among 
the great mathematical challenges of the 20th century  

● Since 1920, Number theory and algebraic geometry tend to be unified. These 
functions are perhaps only the fragmentary elements of a more general theory 
to be discovered. Dedekind generalized these functions and relations to in-
teger ideals and prime ideals.  

● The German Edmund Landau assumed the Riemann conjecture to be true, 
and showed that a large number of conclusions would be drawn from it. 

● The study of the complex zeta function of Riemann shows that it passes 
through the value zero. It exists:  

- trivial (uninteresting) zeros like −2, −4, 6 ... and  

- Particular zeros which seem to line up on the line of the real 1
2

.  

● The Riemann hypothesis or conjecture consists in asserting that all non-trivial  

zeros are on this line 1
2

 [3]. Novely, Mercedes Orús-Lacort and al has been  

performed a detailed analysis of Riemann’s hypothesis, dealing with the zeros 
of the analytically-extended zeta function [4]. 

● The complex issue of the Riemann’s Hypothesis and ultimately its elementary 
proof was explained by Jan Feliksiak [5], the numerically and computation-
ally provable was been provided by Suhaas Pediredla [6]. We are going to  

proove that all zeros are on the line 1
2

 with the first is in 1 .14.13
2

i+ . And 

all imaginary values are irrational [7]. 
The gap in all these researches is found in their accurates, that we are going to 

perform in this work. 
Firstly we are going to take a sample of particular zeros that the are going to 

increase gradually it number and establishing a function that accurate the whole 
and finally prooving that this function is always irrational. 

2. Methods 

Let variable X ∈  in which each element ix  the index of Riemann zeta func-
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tion non trivial zero iy  element of variable { }\Y ∈   the Riemann zeta func-
tion non trivial zero, as ( ) ( )1 1, , , ,i ix y x y  [8] [9] [10]. We wish to fit the mod-
el for 22200 10data< <   

 2
0 1 2

n
nY X X Xξ ξ ξ ξ ε= + + + + +                   (2) 

where [ ]| 0X xε = = , [ ] 2|Var X xε σ= = , and ε  is uncorrelated across 
measurements. The sum of squares for n known data points is given by:  

 ( )2
0 1 2

0

n
n

i i i n i
i

RSS y x x xξ ξ ξ ξ
=

 = − + + + + ∑               (3) 

As you can see we have n + 1 coefficients iξ ∈  in the equation. Partials derivate 
of a is given by: 

( ) ( )2
0 1 22

0 1 2
0

2
nn i i n i in

i i n i i
ii i

x x x yRSS x x x y
ξ ξ ξ ξ

ξ ξ ξ ξ
ξ ξ=

 ∂ + + + + −∂  = + + + + −
∂ ∂  

∑


  (4) 

Partial derivate of iξ  is given as: 

( )2
0 1 2

0
2

n
i n
i i i n i i

ii

RSS x x x x yξ ξ ξ ξ
ξ =

∂
= + + + + −

∂ ∑               (5) 

Now to find the minima, we will set the partial derivatives to 0. 

( )2
0 1 2

0
0

n
i n
i i i n i i

i
x x x x yξ ξ ξ ξ

=

+ + + + − =∑                (6) 

we get a generalized matrix [11] [12] [13]: 
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An overdetermined system is solved by first creating a residual function, sum-
ming the square of the residual which forms a parabola/paraboloid, and then 
finding the coefficients by finding the minimum of the parabola/paraboloid us-
ing partial derivatives. It give that since the set   is the infinity countable 
numbers, every n th non-trivial zero of the Riemann zeta function exists, which  

means that all non-trivial zeros lie on the line of real 1
2

 of the riemann zeta.  

We are going now to proove that for nth no-trivial zero existing, this zero is 
{ }\∈  . 

For this we are going to calculate all polynomial coefficients in prooved that at 
least these one of all is real [14] [15].  

3. Results and Discussion 

Frisly we are going to compute a Riemann Zéta Non trivial zeros number data 
with ( )dim data τ= < ∞  by using this code:  
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import numpy as np  
import matplotlib.pyplot as plt  
#The next library contains the zeta(), zetazero(),and siegelz() functions from 
mpmath import *  
mp.dps = 25; mp.pretty = True  
D=[]  
def graph_zeta(real, image_name):  

A,B,C = [], [], []  
for i in np.arange(0.1, , 0.1):  

function = zeta(real + 1j*i)  
function1 = siegelz(i)  
A.append(abs(function))  
B.append(function1)  
C.append(i)  

return A,B,C  
A,B,C=graph_zeta(0.5, "Z(t)_Plot.png")  
fig = plt.figure()  
ax = fig.add_subplot(111) 
ax.grid(True)  
ax.plot(C,A,label='modulus of Riemann zeta function along critical line, s = 
1/2 + it', lw=0.8)  
ax.plot(C,B, label='Riemann-Siegel Z-function, Z(t)', lw=0.8)  
ax.set_title("Riemann Zeta function - re(s)=1/2")  
ax.set_ylabel("Z(t)")  
ax.set_xlabel("t")  
D.append(zero.imag)  
#Include legend  
leg = ax.legend(shadow=True)  
#Edit font size of legend to make it fit into chart  
for t in leg.get_texts():  

t.set_fontsize('small')  
#Edit the line width in the legend  
for l in leg.get_lines():  

l.set_linewidth(2.0)  
#Plot the zeroes of zeta  
for i in range(1, \tau):  

zero = zetazero(i)  
ax.plot(zero.imag, [0.0], "ro") 

#save plot and print that it was saved  
ax.set_ylim(-7, 7)  
plt.savefig("Z(t)_Plot.png")  
print("Successfully plotted %s !" % "Z(t)_Plot.png") 
show  
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Let’s begining with 2000τ = , Figure 1.  
Here is a code to save data:  

D=[] a=np.linspace(1, 100, 2000, endpoint=True)  
for i in a:  

zero = zetazero(i)  
D.append(zero.imag)  

plt.plot(a,D,'b*',label='Mark')  
plt.xlabel('n')  
plt.ylabel('zero image')  
plt.legend(loc='upper left')  
plt.show(  

An exemple of 2000 data points are been plotted in Figure 2. 
Evidently, our study is based on much data as 22200 10τ< <  with  

( )dim dataτ = . Accordingly, evaluating those data points with polynomial re-
gression, we obtain a 00.0000000Eε =  residual for polynomial degree 5n =  
for Riemann Zéta Non trivial zeros data τ < ∞  (Figure 3). 

However, we are going to generalize for all existing zeros. Firstly let’s define 
mathematical expression of each coefficient:  
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Figure 1. For tau = 2000 data points (non trivial zero in red). 
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Figure 2. An exemple of 2000 data points plotted. 

 

 
Figure 3. An exemple of one Simulation. 

 
Using Cramer methods we get: 
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Let’s 
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Let’s 
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5
F
W

ξ =                              (23) 
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Evidently each [ ]0,1,2,3,4,5iξ ∈  varies everytime the τ  increase. We must then 
establish for each [ ]0,1,2,3,4,5iξ ∈  a function describing it evolution. By increasing 
τ  value, consequently, 

0ξ  coefficient is described as for { }\α ∈  : 

0 1 exp xxξ
α

  = − −    
                       (25) 

1ξ  coefficient is described as: 

1 1 exp xxξ
α

  = + −    
                       (26) 

2ξ  coefficient is described as for { }\γ ∈  : 

2 1 exp xxξ
γ

  
= − −  

  
                       (27) 

3ξ  coefficient is described: 

3 1 exp xxξ
γ

  
= + −  

  
                       (28) 

4ξ  coefficient is described as for { }\θ ∈  : 

4 1 exp xxξ
θ

  = − −    
                       (29) 
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For any coefficient, It is define as: 1 exp xy x
ω

  = − −    
. Necessarily therefor  

the best accurate polynomial function for non trivial Riemann zeta function ze-
ros is defined as:  

( ) ( ) ( ) ( ) ( )
5 11

0
1 1 exp

1 2
nn

n

xP x x
n n n

τ

ω ω ω
++

=

  
= + − −   = + ≠ +   
∑      (30) 

Direct computational analysis verifies that for  

( ) ( ) ( ) ( )
11 1 exp 0

1 2
n xx

n n nω ω ω
+  

+ − >   = + ≠ +   
, the residual value increase 

and the polynomial degree must been decreased for  

( ) ( ) ( ) ( )
11 1 exp 0

1 2
n xx

n n nω ω ω
+  

+ − =   = + ≠ +   
, with an existing  

( ) { }\nω ∈   maintaining residual value constant for  
x∈ →∞ , x being Riemann zeta function non trivial zero index. Consequently 
η∃ ∈  such as ∀  ( )ω η  the polynomial function is generalized as:  

 ( ) ( ) ( ) ( ) ( )
11

0
1 1 exp

1 2
xP x x

n

η
ηη

ω η ω η ω
++

  
= + − −   = + ≠ +   
∑     (31) 

This polynomial function is defined from   to { }\   for any Rieman zeta  

non trivial zero. That proove that all non trivial zeros are in ( ) 1
2

Re s =  and the 

each zero is only in { }\  . 

4. Conclusion 

In this work, we have presented a method for solving the Riemann hypothesis 
conjecture. We began our study by computing and saving Riemann’s zeta func-
tion non trivial zeros, then we fit each data points and studied the polynomial 
coefficients variations maintaining the best accurate constant and finished by 
solving the Riemann hypothesis conjecture. This work is one best demonstration 
of the validity of Riemman’s conjecture. As such, we have proven here that the 
conjecture is true, up to the best of our numerical analysis. The demonstration of 
the work is important as it allows Riemann’s zeta function to be a model func-
tion in the Dirichlet series theory and be at the crossroads of many other theo-
ries. 

Scope of Future Work 

The present investigation will be very helpful to the researchers who are engaged 
for those area research works in earth and in Universe [16] [17] [18] [19].  

1) Mathematics. This is so because any number, when broken down into its 
factors at the end, can be defined as the multiplication of prime numbers.  

2) Music, all the structures of tonal music like chords, scales, harmony, mod-
ality, it is possible to represent them all mathematically as rational structures of 
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prime numbers.  
3) Nature, many interesting examples of prime numbers exist because some 

insects like cicadas only emerge from the underground habitat after the prime 
number of years, such as 17 years. Often flowers have an odd number of petals, 
and most often these are prime numbers. For example, five is a commonly found 
number of petals in flowers.  
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List of Symbols  

( )P x : Polynomial function;  
( )zζ : Riemann’s Zéta function;  

z: Complex number;  
RSS: Squares sum of n known data points;  
 : Integers;  
 : Rational Numbers;  
 : Real Numbers;  
ε : Uncorrelated across measurements;  
τ : Riemann Zéta Non trivial zeros number;  
X: The index of Riemann zeta function non trivial zero numbers;  
Y: The Riemann zeta function non trivial zero numbers;  
var: The Variance;  
∞ : Infinity;  
E: Exponent;  

iξ : Polynomial coefficients;  

∑ : Sum;  
α : Parameter;  
γ : Parameter;  
θ : Parameter;  
ω : Parameter;  

( )Re : Real part;  
∂ : Partials derivate;  
 : expectation probability. 
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