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Abstract 
We introduce the spectral mapping factorization of tuples of circulant ma-
trices and its matrix version. We prove that every tuple of circulant contrac-
tions has a unitary N-dilation. We show that von Neumann’s inequality holds 
for tuples of circulant contractions. We construct completely contractive ho-
momorphisms over the algebra of complex polynomials defined on n . 
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1. Introduction 

In 1953, Sz-Nagy [1] [2] showed that every single contraction on a Hilbert space 
has a unitary dilation. This is an interesting tool which can be used to prove the 
von Neumann inequality [3] [4] [5] [6] which states that for any contraction li-
near operator T on a Hilbert space the following inequality:  

( ) ,p T p
∞

≤  

holds for all complex polynomials ( )p z  over the unit disk, where p
∞

 de-
notes the supremum norm of p over the unit disk. In 1963, Ando proved that 
every pair of commuting contractions has a simultaneous commuting dilation 
[7]. However, Varopoulos [8], Parrott [9] and Crabb-Davie [10] proved that this 
phenomenon fails for more than three commuting contractions. In 1978, Drury 
[11], in connection to his generalization of von Neumann’s inequality, and then 
Arveson [12], in 1998, proved the standard commuting dilation for tuples of 
commuting contractions. The problem of determining if a tuple of commuting 
(or non-commuting) contractions admits a unitary dilation has been pursued by 
many authors. Over the years, several conditions that guarantee the existence of 
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a unitary dilation for an n -tuple of commuting contractions have been studied 
[13]. For example: tuples of doubly commuting contractions have unitary N- 
dilations ( N ∈ ) acting on a finite dimensional space [14]. 

This result has many engineering applications [15]. 
In the present paper, we introduce the spectral mapping factorization of tuples 

of circulant matrices and its matrix version. Circulant matrices have many ap-
plications in graph theory, cryptography, physics, signal and image processing, 
probability, statistics, numerical analysis, algebraic coding theory and many 
other areas [16]. The well known results on unitary dilations of doubly com-
muting sets of contractions allow us to extend Sz-Nagy’s Dilation Theorem and 
von Neumann’s inequality to the setting of tuples of circulant contractions.  

Theorem 1.1. Let N ∈  be a positive integer. Every tuple of circulant con-
tractions has a unitary N-dilation.  

Theorem 1.2. von Neumann’s inequality holds for tuples of circulant con-
tractions.  

The matrix version of the spectral mapping factorization of tuples of circulant 
matrices allows us to introduce a new family of completely contractive homo-
morphisms over the algebra of complex polynomials defined on n .  

2. Preliminaries 

Throughout this paper H is a Hilbert space of finite dimension n. Let  

 ( ), , 1

n
i j ni j

D d M
=

 = ∈    

be a complex matrix. Denote by * *
, , 1

n

j i i j
D d

=
 =   .  

2.1. Operator Norm 

Definition 2.1. Let   be a unital Banach algebra. We say that a∈  is in-
vertible if there is an element b∈  such that 1ab ba= = . In this case b is 
unique and written 1a− . The set  

 ( ) { }: , 1Inv a b ab ba= ∈ ∃ ∈ = =    

is a group under multiplication.  
If a is an element of  , the spectrum of a is defined as  

 ( ) ( ){ }: .1 ,a a Invσ λ λ= ∈ − ∉   

and its spectral radius is defined to be  

 ( ) ( ){ }sup : .r a aλ λ σ= ∈  

Definition 2.2. Let H be a Hilbert space and let ( )T H∈  be a linear 
bounded operator on H. Then the operator norm of T denoted by T  is de-
fined by  

( )
( ){ } ( ){ }sup : 0 sup : 1 sup : 1 .

T x
T x T x x T x x

x

  = ≠ = ≤ = = 
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If 1T ≤ , then the linear bounded operator T is called a contraction. In the 
case, H is a finite dimensional Hilbert space, then  

 ( ) ( ){ }* *sup : .T r T T T Tλ λ σ= = ∈  

2.2. Complex Polynomials 

Let { }: 1n z z= ∈ ≤   be the unit poly disk and let  

 ( )
( )

( ) 1

1
1 1 1

, ,

ˆ, , , , ,n

n

kk
n n n

k k S
f z z f k k z z

∈

= ∑


    

be a complex polynomial over n . Then  

 ( ){ }1 1sup , , : 1 .n nf f z z z z
∞
= = = =   

Let n  be the algebra of complex polynomials over n . Given  

 ( )
( )

( ) 1

1
1 1 1

, ,

ˆ, , , , ,n

n

kk
n n n

k k S
f z z f k k z z

∈

= ∑


    

a complex polynomial over n , let us set  

 ( )1sup , , ,nuf f T T=   

where the supremum is taken over the family of all n-tuples of contractions on 
all Hilbert spaces. It is easy to see that 

uf  is finite, since it is bounded by the 
sum of the absolute values of the Fourier coefficients of f, and that this quantity 
defines a norm on the algebra n  of complex polynomials over n . For each 
polynomial p in n , there is always an n-tuple of contractions where this su-
premum is achieved. Therefore, ( ), .n ∞

  and ( ), .n u  are both two normed 
algebras. 

Let ( ), 1, , , , 1, ,i j nf z z i j m=  , be complex polynomials in n variables over 
n . Then  

( ) ( )( ){ }, , 1sup , , : 1 .
m

i j i j n iM
f f z z z

∞
= ≤  

2.3. Unitary Dilation 

Definition 2.3. Let N ∈  and let ( )1, , kT T  be a tuple of commuting 
contractions on H. A unitary N-dilation for ( )1, , kT T  is a k-tuple of com-
muting unitaries ( )1, , kU U  acting on a space K H⊇  such that  

 1 1
1 1 ,k kn nn n

k H k H
T T P U U=   

for all 1, , kn n  satisfying 1 kn n N+ + ≤ .  
Definition 2.4. A finite set { }1, , nB B  of matrices is said to be doubly 

commuting if i j j iB B B B=  and * *
i j j iB B B B= , for every i j≠ .  

The following results will enable us to prove our main results [13] [14].  
Theorem 2.5. (Sz-Nagy-Foias). Given k doubly commuting contractions  

( )1, , kT T B H∈ , there is a Hilbert space K containing H and doubly commut-
ing unitaries ( )1, , kU U B K∈  so that  
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 1 1
1 1 ,k kn nn n

k H k H
T T P U U=   

for all 1, , kn n ∈  .  
Theorem 2.6. Let ( )1, , kT T  be a k-tuple of doubly commuting contractions 

on H. Then for every N ∈ , the k-tuple ( )1, , kT T  has a unitary N-dilation 
that acts on a space of dimension ( )1 kN n+ .  

In finite dimensional, every tuple of commuting contractions which has a un-
itary N-dilation acting on a finite dimensional Hilbert space satisfies von Neu-
mann’s inequality [13].  

Theorem 2.7. Let N ∈ , and let ( )1, , kT T  be a k-tuple of commuting 
contractions on H that has a unitary N-dilation acting on a finite dimensional 
Hilbert space K. Put m = dim K. Then there exist m points ( ){ }1 1

, ,
mi i i

k i
w w w

=
=   

on the k-torus k  such that for every polynomial ( )1, , kf z z  of degree less 
than or equal to N,  

 ( ) ( ){ }1, , max : 1, , .i
kf T T f w i m≤ =   

In particular,  

 ( ) ( ){ }1 1, , sup , , : 1, 1, , .k k if T T f z z z i k f
∞

≤ = = =    

Now, let us turn our attention to a particular family of doubly commuting sets 
of matrices which have many applications in several areas such as graph theory, 
cryptography, physics, signal and image processing, probability, statistics, nu-
merical analysis, algebraic coding theory and many other areas [16] [17].  

2.4. Circulant Matrices 

Let { }0 1 1, , , ma a a − ⊂   be a finite set of complex numbers, denote by  
( )0 1 1, , , mC a a a −  the following Toeplitz matrix:  

 ( ) ( )

0 1 1

1 0
0 1 1

1 1 0

, , , .

m

m
m n

m

a a a
a a

C a a a M

a a a

−

−
−

−

 
 
 = ∈
 
 
 



 



   



  

This matrix is called a complex circulant matrix of order m. It is possible to 
write this matrix as a single variable matrix polynomial in P, where P is the cyc-
lic permutation matrix given by  

 

0 1 0 0 0
0 0 1 0 0

.

0 0 0 0 1
1 0 0 0 0

P

 
 
 
 

=  
 
 
  
 





     

     





 

Indeed,  

 ( )
1

0 1 1 0
1

, , , .
m

k
m m k

k
C a a a a I a P

−

−
=

= +∑  
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The matrix  

 

1 2 3 4 5 6 7 8 9

9 1 2 3 4 5 6 7 8

8 9 1 2 3 4 5 6 7

7 8 9 1 2 3 4 5 6

6 7 8 9 1 2 3 4 5

5 6 7 8 9 1 2 3 4

4 5 6 7 8 9 1 2 3

3 4 5 6 7 8 9 1 2

2 3 4 5 6 7 8 9 1

, ,i

a a a a a a a a a
a a a a a a a a a
a a a a a a a a a
a a a a a a a a a
a a a a a a a a a a
a a a a a a a a a
a a a a a a a a a
a a a a a a a a a
a a a a a a a a a

 
 
 
 
 
 
  ∈
 
 
 
 
 
 
 

  

is a 9 × 9-complex circulant matrix. It is well known that the set of m × 
m-circulant matrices  

 ( )
1

0
1

Circ :
m

k
m k k

k
m b I b P b

−

=

 = + ∈ 
 

∑   

is a commutative algebra. Let 
2

e
i

mε
π

=  be a primitive m-th root of unity. Let us 
denote by U the following matrix:  

 
( ) ( )( ) ( )( )

( )( ) ( ) ( )( )

( )( ) ( )( ) ( )

2

2

2

3 2 1

3 3 2 1 33

2 3 2 1 22

1 3 1 2 11

1 1 1 1 1 1
1

1 .
1

1

1

m m m

m m m m mm

m m m m mm

m m m m mm

U
m

ε ε ε ε

ε ε ε ε

ε ε ε ε

ε ε ε ε

− − −

− − − − −−

− − − − −−

− − − − −−

 
 
 
 
 
 =  
 
 
 
  
 



 

      

      

 

 

 

 

This matrix is called Vandermonde matrix. It is well known that this matrix 
has the following properties:  

 ( ) ( )
1

, 02

1det 0,
m

j i
m

i j
U

m
ε ε

−

=

= − ≠∏  

U is non-singular, unitary, 1 TU U− = , TU U=  and 1 *U U U− = = . It is well 
known that all elements of Cir(m) are simultaneously diagonalised by the same 
unitary matrix U [18] [19] [20], that is, for A in Cir(m),  

 *
AU AU D=  

with AD  is a diagonal matrix with diagonal entries given by the ordered eigen-
values of A: 1 2, , ,A A A

mλ λ λ . The factorization *
AU AU D=  is called the spectral 

factorization of A.  

3. Proof of the Main Results 

In this section, we introduce the spectral mapping factorization of tuples of cir-
culant matrices and its matrix version. We prove our main two results.  
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Theorem 3.1. Let A be a m × m-complex circulant matrix. Then  

 ( ){ } ( )sup : .A A r Aλ λ σ= ∈ =  

Proof. Let A be a m × m-complex circulant matrix. The spectral factorization 
of the matrix A allows us to claim that  

 ( )
1

1 2

0 0
0

, , .

0 0

A

A
A

A A l

A
m

A UD U D A

λ
λ

λ σ

λ

−

 
 
 = = ∈ 
  
 



 

   



 

It follows that  

 1 .AD U AU−=  

A simple calculation shows that  

 1
A AA U D U D−≤ ≤  

and  

 1 .AD U A U A−≤ ≤  

Therefore,  

 ( ){ } ( )sup : .AA D A r Aλ λ σ= = ∈ =                  

Theorem 3.2. Let A be a m × m-complex circulant matrix. Then  

 ( ) ( ) ( ){ } ( )( ) 1sup : , .f A f A r f A fλ λ σ= ∈ = ∀ ∈  

Proof. Let A be a m × m-complex circulant matrix. We know that  

 ( )
1

1 2

0 0
0

, , .

0 0

A

A
A

A A l

A
m

A UD U D A

λ
λ

λ σ

λ

−

 
 
 = = ∈ 
  
 



 

   



 

Then  

 ( )

( )
( )

( )

( )

1

2

0 0

0
, .

0 0

A

A
A

A i

A
m

f

f
f D A

f

λ

λ
λ σ

λ

 
 
 
 = ∈
 
 
 
 



 

   



 

Therefore,  

 ( ) ( ) ( ) ( ) ( ){ } ( )( )1 sup : .f A U f D U f D f A r f Aλ λ σ−= = = ∈ =      

The spectral factorization of circulant matrices [17] allows us to establish the 
spectral mapping factorization of tuples of circulant matrices.  

Theorem 3.3. Let { }1 2, , , nA A A=   be a set of m × m-complex circulant ma-
trices. Then  
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 ( )

( )
( )

( )

1

1

1

1 1

2 2 1
1

, , 0 0

0 , ,
, , ,

0 0 , ,

n

n

n

AA

AA

n

AA
m m

f

f
f A A U U

f

λ λ

λ λ

λ λ

−

 
 
 
 =
 
 
 
 

 

  



   

 

 

( ) ,iA
l i nA fλ σ∈ ∀ ∈ .  

Proof. Let { }1 2, , , nA A A=   be a set of m × m-complex circulant matrices. 
From the spectral factorization of every iA , we can say that there exist a com-
plex m × m-unitary matrix U and m × m-diagonal matrices , 1, ,

iAD i n=   such 
that  

( )
1

1 2

0 0
0

, , , 1, , .

0 0

i

i
i

i i

i

A

A
A

i A A l i

A
m

A UD U D A l m

λ
λ

λ σ

λ

−

 
 
 = = ∈ = 
  
 



 



   



 

A simple calculation shows that  

 ( ) ( )1

1
1, , , , , .

nn A A nf A A Uf D D U f−= ∀ ∈    

It is straightforward to see that  

 ( )

( )
( )

( )

1

1

1

1

1 1

2 2

, , 0 0

0 , ,
, , ,

0 0 , ,

n

n

n

n

AA

AA

A A

AA
m m

f

f
f D D

f

λ λ

λ λ

λ λ

 
 
 
 =
 
 
 
 

 

  



   

 

 

nf∀ ∈ . Therefore,  

 ( )

( )
( )

( )

1

1

1

1 1

2 2 1
1

, , 0 0

0 , ,
, , ,

0 0 , ,

n

n

n

AA

AA

n

AA
m m

f

f
f A A U U

f

λ λ

λ λ

λ λ

−

 
 
 
 =
 
 
 
 

 

  



   

 

 

 ( ) ,iA
l i nA fλ σ∈ ∀ ∈ .                          

Now, we are ready to establish the matrix version of the spectral mapping 
factorization of tuples of circulant matrices.  

Theorem 3.4. Let k∈  and let { }1 2, , , nA A A=   be a set of m × m-com- 

plex circulant matrices and let ( ), 1 , 1
, ,

k
i j n i j

f z z
=

    be a k × k-matrix with com-

plex polynomials as entries. Let us denote by  

 ( ), 1 , 1
, ,

k
i j n i j

B f A A
=

 =    

and  
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( )
( )

( )

1

1

1

, 1 1

, 2 2
,

,

, , 0 0

0 , ,
,

0 0 , ,

n

n

n

AA
i j

AA
i j

i j

AA
i j m m

f

f
a

f

λ λ

λ λ

λ λ

 
 
 
 =
 
 
 
 

 

  

   

 

 

( ) , , 1, ,rA
l rA i j kλ σ∈ =  . Then  

1
1,1 1,2 1,

2,1 2,2 2,

,1 ,

0 0 0 0
0 0

.

0 0 0 0

k

k

k k k

a a aU U
a a aU U

B

a aU U

−    
    
    =     
         


 


   

   
       

 
 

 

Proof. Let { }1 2, , , nA A A=   be a set of m × m-complex circulant matrices 

and let ( ), 1 , 1
, ,

k
i j n i j

f z z
=

    be a k × k-matrix with complex polynomials as en-

tries, k∈ . Suppose that  

 ( ), 1 ,, 1
, , , ,

k
i j n i j ni j

B f A A f
=

 = ∈    

and  

( )
( )

( )

1

1

1

, 1 1

, 2 2
,

,

, , 0 0

0 , ,
,

0 0 , ,

n

n

n

AA
i j

AA
i j

i j

AA
i j m m

f

f
a

f

λ λ

λ λ

λ λ

 
 
 
 =
 
 
 
 

 

  

   

 

 

( )rA
l rAλ σ∈ . Theorem 3.3 allows us to claim that  

 ( ) 1
, 1 ,, , ,i j n i jf A A Ua U −=  

( ), , rA
i j n l rf Aλ σ∈ ∈ . It follows that  

 1
, , 1

.
k

i j i j
B Ua U −

=
 =    

A simple calculation shows that  

 

1
1,1 1,2 1,

2,1 2,2 2,

,1 ,

0 0 0 0
0 0

.

0 0 0 0

k

k

k k k

a a aU U
a a aU U

B

a aU U

−    
    
    =     
         


 


   

   
       

 
 

      

Proof of Theorem 1.1  
We just need to show that every tuple of circulant contractions is a doubly 

commuting set of contractions. Let k∈  and let  

 ( ) ( )( )1 0,1 1,1 1,1 0, 1, 1,, , , , , , , ,m k k k m kC a a a C a a a− −    

be a k-tuple of circulant contractions. Assume that  
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 ( )

0 1 0 0 0
0 0 1 0 0

.

0 0 0 0 1
1 0 0 0 0

mP M

 
 
 
 

= ∈ 
 
 
  
 





     

     





  

It is clear that  

( )
0, 1, 1,

1, 0,
0, 1, 1,

1, 0,

, , , .

0

i i m i

m i i
i i i m i

i i

a a a
a a

C a a a

a a

−

−
−

 
 
 =  
  
 



 



   



 

Also,  

( )
1

0, 1, 1, 0, ,
1

, , , ,1 .
m

r
i i i m i i m r i

r
C a a a a I a P i k

−

−
=

= + ≤ ≤∑  

Let us show that the set  

 ( ) ( ){ }1 0,1 1,1 1,1 0, 1, 1,, , , , , , , ,m k k k m kC a a a C a a a− −    

is a doubly commuting set of contractions. We already know that this set is 
commutative. Let us observe that  

( )
1*

0, 1, 1, 0, ,
1

, , , .
m

r
j j j m j j m n r j

r
C a a a a I a P

−

− −
=

= +∑  

Therefore, the adjoint of a complex m × m-circulant matrix is another m × 
m-circulant matrix. The fact that the set of m × m-circulant matrices is a com-
mutative algebra implies that the matrices ( )0, 1, 1,, , ,i i i m iC a a a −  and  

( )*0, 1, 1,, , , ,j j j m jC a a a i j− ≠ , commute. Therefore, the set  

 ( ) ( ){ }1 0,1 1,1 1,1 0, 1, 1,, , , , , , , ,m k k k m kC a a a C a a a− −    

is a doubly commuting set of contractions. Theorem 2.5 and Theorem 2.6 allow 
us to claim that, for each N ∈ , the k-tuple of circulant contractions  

( ) ( ){ }1 0,1 1,1 1,1 0, 1, 1,, , , , , , , ,m k k k m kC a a a C a a a− −    

has a unitary N-dilation acting on a finite dimensional Hilbert space. Finally, for 
each N ∈ , every tuple of circulant contractions has a unitary N-dilation.     

The above proof allows us to observe the following: every finite set of circulant 
matrices is a doubly commuting set of matrices. This enables us to prove our 
second main result.  

First proof of Theorem 1.2  
Let ( )1, , nA A  be an n-tuple of circulant contractions of order m. The set 

{ }1, , nA A  is a doubly commuting set of contractions. Theorem 2.7 allows us 
to claim that von Neumann’s inequality holds for this set { }1, , nA A . There-
fore,  

 ( )1, , , .n nf A A f f
∞

≤ ∀ ∈                       
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Second proof of Theorem 1.2  
Let { }1 2, , , nA A A  be a set of m × m-complex circulant contractions. Theo-

rem 3.3 allows us to claim that  

 ( )

( )
( )

( )

1

1

1

1 1

2 2 1
1

, , 0 0

0 , ,
, , ,

0 0 , ,

n

n

n

AA

AA

n

AA
m m

f

f
f A A U U

f

λ λ

λ λ

λ λ

−

 
 
 
 =
 
 
 
 

 

  



   

 

 

( ) , 1,i iA A
l i l nA fλ σ λ∈ ≤ ∀ ∈ . It follows that  

( )

( )
( )

( )

1

1

1

1 1

2 2
1

, , 0 0

0 , ,
, , ,

0 0 , ,

n

n

n

AA

AA

n

AA
m m

f

f
f A A

f

λ λ

λ λ

λ λ

 
 
 
 =
 
 
 
 

 

  



   

 

 

( )iA
l iAλ σ∈ , for all nf ∈ . Therefore,  

 ( )1, , , .n nf A A f f
∞

≤ ∀ ∈                          

4. Application 

In this section, we construct completely contractive homomorphisms over the 
algebra of complex polynomials defined on n .  

Theorem 4.1. Let { }1 2, , , nA A A=   be a set of m × m-complex circulant 
contractions. Then the map : n mφ →   given by  

 ( ) ( )1, , nf f A Aφ = 

  

is a completely contractive homomorphism.  
Proof. Let { }1 2, , , nA A A=   be a set of m × m-complex circulant contrac-

tions. The spectral factorization of the matrix iA  allows us to claim that  

 ( )
1

1 2

0 0
0

, , .

0 0

i

i
i

i i

i

A

A
A

i A A l i

A
m

A UD U D A

λ
λ

λ σ

λ

−

 
 
 = = ∈ 
  
 



 

   



 

It follows that  

 1 .
iA iD U AU−=  

A simple calculation shows that  

 ( ){ }sup : .
ii A iA D Aλ λ σ= = ∈  

Finally, ( )1,i iA A
l l iAλ λ σ≤ ∈ , since 1iA ≤ . Suppose that : n mφ →   is the 

map given by  

 ( ) ( )1, , .nf f A Aφ = 

  

It is well known that the map φ  is a homomorphism [14]. Also,  
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( )
sup : 0, n

f
f f

f

φ
φ

∞

  = ≠ ∈ 
  


   

( )1, ,
sup : 0, .n

n

f A A
f f

f
φ

∞

  = ≠ ∈ 
  

   

First of all, let us show that the map φ  is a contractive map. Due to the fact 
that the elements of the set { }1 2, , , nA A A=   doubly commute implies that  

( )1, , , .n nf A A f f
∞

≤ ∀ ∈   

Therefore,  

( )1, ,
sup : 0, 1.n

n

f A A
f f

f
φ

∞

  = ≠ ∈ ≤ 
  

   

Let k∈  and define the map ( ) ( ):k k n k mφ →     by setting  

( ) ( ), , 1, 1 , 1
, ,

k k
k i j i j ni j i j

f f A Aφ
= =

   =   

  

Let us show that the map kφ
  is contractive. Theorem 3.4 allows us to claim that 

if  

( ), 1 ,, 1
, , , ,

k
i j n i j ni j

B f A A f
=

 = ∈    

we can say that  
1

1,1 1,2 1,

2,1 2,2 2,

,1 ,

0 0 0 0
0 0

0 0 0 0

k

k

k k k

a a aU U
a a aU U

B

a aU U

−    
    
    =     
         


 


   

   
       

 
 

 

with  

( )
( )

( )

1

1

1

, 1 1

, 2 2
,

,

, , 0 0

0 , ,
,

0 0 , ,

n

n

n

AA
i j

AA
i j

i j

AA
i j m m

f

f
a

f

λ λ

λ λ

λ λ

 
 
 
 =
 
 
 
 

 

  

   

 

 

( )rA
l rAλ σ∈ . Recall that 1rA

lλ ≤ , 1, ,l m=   and 1, ,r n=  . It follows that  

( )

1,1 1,2 1,

2,1 2,2 2,
, 1 ,, 1 , 1

,1 ,

, , .

k

k kk
i j n i ji j i j

k k k

a a a
a a a

f A A f

a a

= = ∞

 
 
    = ≤    
  
 







   

 

 

Finally,  

 
( )

( )
, 1 , 1

, , 1
, , 1

, ,
sup : 1, .

k
i j n ki j

k i j k nk i j
i j i j

f A A
f k

f
φ =

=

= ∞

     = ∈ ≤ ∈  
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