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Abstract 
In this paper, the authors give a different and more precise analysis of the 
stability of the classical Gauss-Laguerre quadrature rule for the Cauchy P.V. 
integrals on the half line. Moreover, in order to obtain this result they give 
some new estimates for the distance of the zeros of the Laguerre polynomials 
that can be useful also in other contests. 
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1. Introduction 

A careful analysis of Gauss-Laguerre formulas for ordinary integrals can be found 
in [1]. The present paper is instead aimed at the use of the Gauss-Laguerre for-
mulas for the approximation of the Cauchy principal value integrals. The main 
results on the topic can be found in [2] (see also the references therein). The aim 
of the present paper is to give the upper bound of the stability factor when this 
kind of quadrature rule is used.  

We consider the class of singular principal value integrals   
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where f satisfies the smoothness conditions   
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where ( ) ,;. wf
α

ω
∞

 is the weighted Ditzian-Lubinsky modulus of smoothness 
[3]. 

We propose a Gauss-Laguerre type quadrature formula to evaluate the singu-
lar principal value integral ( );fw tα  defined by (1) assuming that the func-
tion f has good integration property at the superior limit of integration interval; 
this assumption is the same that assures the boundedness of ( )fwα . In this 
first part we study the stability of the proposed procedure with respect to the 
distance of the singularity t from the quadrature knots. The proposed method to 
compute (1) is well known in the case of bounded intervals. Even though the 
fundamental idea is not new, a thorough investigation of this algorithm is of in-
terest since there are significant differences between the case of a bounded in-
terval and the case of an unbounded interval from the point of view of approxi-
mation theory. 

2. The Stability of Gauss-Laguerre Quadrature Rule  

The GL type formula to evaluate ( )fwα  is constructed by interpolating the 
function f on , , 1, ,n kx k nα =  , and on the singularity t assuming that  

, , 1, ,n kt x k nα≠ =  . Taking into account that such formula can be written   
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we have  
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Therefore, the formula (4) has degree of exactness 2n, i.e. ( ); ; 0GL
n f w tα =  

whenever f is a polynomial of degree ≤ 2n. 
Obviously, from a theoretical point of view, this formula turns out to be con-

vergent if the function f is sufficiently smooth. Furthermore, it has the advantage 
of simplicity in the computation of the coefficients, but unfortunately it may ex-
hibit numerical cancellation and generally it cannot converge when a knot ,n kxα  
is very close to t. In order to establish a bound of the amplification factor of (4) 
which depends on the position of t with respect to the points ,n kxα , we need 
some some notations and preliminary lemmas. 

If A and B are two expressions depending on some variables, then we write 
~A B  if and only if 

11 constAB
±− ≤  uniformly for the variables under con-

sideration. 
We bring here some properties of the knots , , 1,2, ,n kx k nα =   and of the 

Christoffel constants , , 1,2, ,n k k nαλ =   of the GL formula (4). These properties 
can be found in [4] and [5] where are proved for a more general class of weight 
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functions.  

Let , , 1,2, ,n kx k nα =   be the zeros of the n-th Laguerre orthogonal polynomial 
ordered in increasing order. We have   
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with some constants 1c  and 2c  independent of 1n ≥  and { }1,2, ,k n∈  . 
The Christoffel constants , , 1,2, ,n k k nαλ =   admit the following bounds  
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uniformly for 1n ≥  and where , , , 1n k n k n kx x xα α α
−∆ = − . 

Let n nr f t= −  and n nt ∈Π  be such that  
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For any 0t > , n N∈  we denote by ,n cxα  the knot closest to t, defined by  
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Hence performing the integrations we get the lemma.                    □ 
Lemma 2. For any 0t >  such that , , 1, ,n kt x k nα≠ =  , and with some con-

stant C independent of f, n and t,  
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where ,0 ,1 ,22n n nx x xα α α= − .   

https://doi.org/10.4236/ajcm.2023.134027


M. R. Capobianco, G. Criscuolo 
 

 

DOI: 10.4236/ajcm.2023.134027 508 American Journal of Computational Mathematics 
 

Proof. We write  
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First, we obtain from (6)   
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Here we have used Lemma 1. 
Now, if 1c =  then the last sum of (7) is equal to the first sum in (8). On the 

other hand, if 1c ≠ , we have ,1 ,2 2n nt x xα α− ≥ ∆ ; then  
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Finally, again by using (6),   
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taking into account the definition of ,0nxα . Combining (7), (9) and (10) the as-
sertion follows.                                                   □ 

Lemma 3. For any 0t >  such that , , 1, ,n kt x k nα≠ =  , and with some con-
stant C independent of f, n and t,  
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where ,0 ,1 ,22n n nx x xα α α= − .   
Proof. The lemma has been proved [2] with respect to the Hermite weight. 

Following the same steps of the proof of the Lemma 3.3 in [2], it is possible to 
derive the assertion. Here we omit the details.                           □ 

In order to estimate the stability of the GL formula (4), we define  

( ) ( ) , ,

1 1, ,

; ; , 0, .
n n

n k n kGL
n

k kn k n k

w t w t t n N
x t x t

α α

α α α α

λ λ

= =

= − + > ∈
− −

∑ ∑   

Theorem 4. For any 0t >  such that , , 1, ,n kt x k nα≠ =  , and with some con-
stant C independent of n and t,  
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where ,0 ,1 ,22n n nx x xα α α= − .   
Proof. Following the same steps of the proofs of the Lemmas 2 and 3, we have   
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respectively. Then, the assertion follows by (11) and (12) taking into account the 
definition of ( );GL

n w tα .                                           □ 
Corollary 1. Assume that 0

wf C
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 is defined in (2)  

and f satisfies the condition (3). If 0 ~t n<  and n are such that , , 12 n n n nt x xα
−≥ − , 

then  

( ); log ,GL
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with some constant C independent of n and t.   
Proof. Taking into account that the assumptions on t and n give , ,n c n nx xα α= , 

we have , ~ 1n ct xα  and , , 1n c n cx x tα α∆ − ≤ . Thus, the assertion follows from 
Theorem 4.                                                      □ 

Now assume that 0t >  is fixed. In order to specify the bound of the amplifi-
cation factor ( );GL

n w tα , we need to use a suitable subsequence of  
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where ~na n  is the Mhaskar-Rakhmanov-Saff number [6], and 1 2,C C  are pos-
itive constants.   
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the fundamental Lagrange polynomials with respect to the points , , 1, ,n jx j nα =  , 
zeros of the n-th Laguerre polynomial ( )nL wα .  
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(see Theorem 1.3(c) in [7]), we obtain from (15)   
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(see Theorem 1.3(a), (b) and Theorem 1.4 in [7]) and taking into account that 

, 1, 1~n k n kx xα α
+ +  and , 1 1, 1~n n k n n ka x a xα α

+ + +− − , we obtain (13) from (16). Similarly 
we can prove (14).                                                 □ 

Assuming that 0t >  is fixed, we define the set  
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where the parameter 0C >  is chosen a priori. Being t fixed we have that  

( ), , ~n c n n c nx a x aα α− . Thus, in view of Lemma 5, we deduce that tN  is an infinite 
set. Indeed, if tn N∉ , then 1 tn N+ ∈ . 

Finally, we remark that to construct the formula we have assumed  

, , 1, ,n kt x k nα≠ =  . To derive a rule and the related error bound for all t, it would 
be of interest to investigate the limit case ,n cx tα → . Of course, this would require 
additional assumptions on the function f. However, the restriction  

, , 1, ,n kt x k nα≠ =  , does not influence the effective approximation of ( );fw tα . 
Indeed, for any fixed 0t >  it is possible to construct the subsequence  

( ){ }; ;
t

GL
n n N

f w tα ∈
  and the related error can be derived. 

Corollary 2. If 0t >  is fixed, then  

( ); ,GL
n w t C nα ≤  

with some constant C independent of tn N∈ .   
Proof. The assertion follows from Theorem 4 taking into account the defini-

tion of the set tN .                                                □ 

3. Conclusion 

Theorem 4 provides the upper bound of the amplification factor of the Gauss- 
Laguerre quadrature formula in the case of Cauchy principal value integrals. 
Corollary 2 instead provides a useful definition of a subsequence of the Gauss- 
Laguerre formula with respect to which the amplification factor is particularly 
useful in applications. 
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