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Abstract 
This work presents a comprehensive fourth-order predictive modeling (PM) 
methodology that uses the MaxEnt principle to incorporate fourth-order 
moments (means, covariances, skewness, kurtosis) of model parameters, 
computed and measured model responses, as well as fourth (and higher) or-
der sensitivities of computed model responses to model parameters. This new 
methodology is designated by the acronym 4th-BERRU-PM, which stands for 
“fourth-order best-estimate results with reduced uncertainties.” The results 
predicted by the 4th-BERRU-PM incorporates, as particular cases, the results 
previously predicted by the second-order predictive modeling methodology 
2nd-BERRU-PM, and vastly generalizes the results produced by extant data 
assimilation and data adjustment procedures. 
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1. Introduction 

The newly developed “2nd-BERRU-PM” methodology [1] [2] can incorporate ar-
bitrarily high sensitivities, thereby vastly generalizing extant data adjustment [3] 
[4] and data assimilation [5] [6] [7] methodologies. The essential contributions 
of the second- and higher-order sensitivities for reducing predicted uncertainties 
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in the model response has been illustrated in [8] [9] [10] by applying the 2nd- 
BERRU-PM methodology [1] [2] to the neutron leakage response of the polye-
thylene-reflected plutonium (PERP) OECD/NEA reactor physics benchmark [11] 
which was computed [8] [9] [10] using the neutron transport Boltzmann equa-
tion, involving 21,976 imprecisely known parameters, the solution of which is 
representative of “large-scale computations.”  

Although the 2nd-BERRU-PM methodology can incorporate arbitrarily high- 
order sensitivities of the system response of interest to the imprecisely known 
parameters underlying the computational model, this methodology is limited to 
considering just second-order moments (hence the designation “2nd-”) of the 
experimentally measured responses. Also, the “output” produced by the 2nd- 
BERRU-PM methodology is limited to yielding optimal best-estimate values for 
the means and covariances (i.e., the first- and second-moments) of the best-est- 
imate predicted distribution of responses and parameters. Since skewness and 
kurtosis play an essential role in determining the asymmetries of distributions, it 
is important to generalize the 2nd-BERRU-PM methodology to enable the incor-
poration of third- and fourth-order moments of measured and computed res-
ponses, as well as to enable the computation of skewness and kurtosis of the 
best-estimate predicted posterior distribution of calibrated model parameters 
and responses. Such a generalization has now been enabled by the development 
of the closed-form expression of the fourth-order moment-constrained MaxEnt 
presented in the accompanying Part 1 [12], which underlies the development of 
the 4th-BERRU-PM (“4th-Order Best-Estimate Results with Reduced Uncertain-
ties Predictive Modeling”) methodology to be presented in this work. The 
4th-BERRU-PM methodology encompasses the following components:  

1) a mathematical model of a physical system, comprising linear and/or non-
linear equations that relate the system’s independent variables and parameters to 
the system’s state (i.e., dependent) variables;  

2) arbitrarily high-order sensitivities and moments of the distribution of model 
parameters, which will however be explicitly used only up to fourth-order in the 
derivation of the practically applicable end-results produced by the 4th-BERRU-PM 
methodology;  

3) one or several computational results, customarily referred to as system res-
ponses (or objective functions, or indices of performance), which are computed 
using the mathematical model;  

4) the first four moments (mean values, variances/covariances, skewness, and 
kurtosis) of the distribution of experimentally measured responses. 

This work is structured as follows: Section 2 presents the fourth-order mo-
ment-constrained MaxEnt probabilistic representation of the joint distribution 
of model parameters and computed responses. This joint distribution is con-
structed by incorporating the mean values, variances/covariances, skewness, and 
kurtosis, of model parameters and computed model responses by following the 
same procedure as in the accompanying Part 1 [12]. Section 3 presents the ma-
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thematical framework of the 4th-BERRU-PM methodology. Section 4 presents 
an inter-comparison of the 4th-BERRU-PM, 2nd-BERRU-PM, and data assimi-
lation methodologies. Concluding remarks are presented in Section 5. 

2. Construction of the Moments-Constrained Fourth-Order  
MaxEnt Probabilistic Distribution of Model Parameters  
and Computed Responses  

The mathematical/computational model of a physical system relates independent 
variables and model parameters to the computed “results of interest”, which are 
customarily referred to as “model/system responses.” The generic form of a ma-
thematical/model has been used in previous works ([13] [14], and references 
therein) when developing the arbitrarily-high order adjoint sensitivity analysis, 
and will therefore be summarily presented in Appendix A, for convenient ref-
erence. Consider that there are a total number of TR (“Total Responses”) res-
ponses of interest, which will be represented mathematically by the “vector or 
responses” denoted as ( )†

1, , TRr rr   , where ir  denotes the “ith-response”, 
1, ,i TR=  . Matrices will be denoted using capital bold letters while vectors will 

be denoted using either capital or lower-case bold letters. The symbol “  ” will 
be used to denote “is defined as” or “is by definition equal to.” Transposition will 
be indicated by a dagger ( † ) superscript. 

As shown in Appendix A, the unknown joint probability distribution of the 
model parameters and the computed model responses, denoted as ( ),cp α r , is 
formally, defined on a domain rD D Dα ∪ , where Dα  denotes the domain of 
definition of the parameters and rD  denotes the domain of definition of the 
model responses. Although ( ),cp α r  is unknown, its moments can be computed 
as shown in Appendix A. Consistent with the fourth-order moment-constrained 
MaxEnt distribution constructed in Part 1 [12] for the measured responses, the 
first four moments of the unknown joint probability distribution ( ),cp α r  will 
also be used for constructing the corresponding fourth-order moment-constrained 
MaxEnt joint distribution of model parameters and computed responses. The 
expressions of the first four moments of ( ),cp α r  are presented in Appendix A 
and are enumerated below, as follows:  

(i) The expected/nominal values of the model parameters, denoted as 0
iα ; 

(ii) The parameter covariance matrix, denoted as ij TP TP
cααα ×
  C  , where the  

quantity ijcα  denotes the covariance of two model parameters, iα  and jα , 
where , 1, ,i j TP=  ; 

(iii) The triple-correlations of three model parameters iα , jα , and kα , de-
noted as ijktα , where , , 1, ,i j k TP=  ;  

(iv) The quadruple-correlations of four model parameters iα , jα , kα , and 
α


, denoted as ijkqα


, where , , , 1, ,i j k TR=  ; 
(v) The vector of expected values of the computed responses, defined as 

( ) ( ) ( ) ( ) †
1 , , , ,c c c k c TRE r E r E r  E r    ,                (1) 
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where ( )c kE r  denotes the expectation value of a computed response ( )kr α , 
for 1, ,k TP=  , the expression of which is presented in Appendix A.  

(vi) The parameter-response computed correlation matrix, denoted as c
rαC  

and defined as follows: 

( ) ( )

( ) ( )

1 1 1

1

cor , cor ,

cor , cor ,

TR
c

r

TP TP TR

r r

r r
α

α α

α α

 
 
 
 
 

C


   



,                 (2) 

where ( )cor ,i krα  denotes the correlation between a parameter iα  and a com-
puted response kr , for 1, ,i TP=   and 1, ,k TR=  , the expression of which 
is presented in Appendix A.  

(vii) The covariance matrix of computed-responses, denoted as c
rrC  and de-

fined as follows:  

( ) ( )

( ) ( )

1 1 1

1

cor , cor ,

cor , cor ,

TR
c
rr

TP TP TR

r r r r

r r r r

 
 
 
 
 

C


   



                  (3) 

where ( )cov ,k kr r  denotes the covariance between two computed responses kr  
and r



, for , 1, ,k TR=  , the expression of which is presented in Appendix A. 
(viii) The triple correlations, denoted as ( )3 , ,k mr r rµ



, among three responses, 
denoted as kr , r



 and mr , for , , 1, ,k m TR=  , the expression of which is pre-
sented in Appendix A. 

(ix) The quadruple-correlations of the distribution of responses, denoted as 
( )4 , , ,k m nr r r rµ



, among four responses, among four responses, denoted as kr , 
r


, mr  and nr , for , , , 1, ,k m n TR=  , the expression of which is presented in 
Appendix A. 

The maximum entropy (MaxEnt) principle, originally formulated by Jaynes 
[15], will be applied to reconstruct from the above-mentioned known moments 
the “MaxEnt probability density of the joint model parameters and computed 
responses,” which will be denoted as ( ),ME

cp α r , where the subscript “c” indi-
cates “computational model”, while the superscript “ME” indicates “MaxEnt” 
approximation. To ensure optimal compatibility with the available information 
while simultaneously ensuring minimal spurious information content according 
to the MaxEnt principle, the probability density ( ),ME

cp α r  would need to sa-
tisfy the following conditions:  

1) ( ),ME
cp α r  maximizes the Shannon [16] information entropy, S, as de-

fined below: 

( ) ( ), ln , d dME ME
c c

D

S p p = −  ∫ α r α r α r ;                 (4) 

2) ( ),ME
cp α r  satisfies the “moments constraints” enumerated in items (i) 

through (ix) above and defined in Appendix A;  
3) ( ),ME

cp α r  satisfies the normalization condition:  

( ), d d 1ME
c

D

p =∫ α r α r .                        (5) 
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It was shown in Part 1 [12] that attempting to include the triple and quadruple 
cross-correlations among experimentally-measured responses leads to insur-
mountable computational difficulties for little, if any, gain in accuracy. For this 
reason, only the self-correlations of order three and four were included in con-
structing the fourth-order MaxEnt distribution of the measured responses [12]. 
The same approximation will be used in constructing the MaxEnt distribution 

( ),ME
cp α r  of the joint distribution of model parameters and computed res-

ponses, namely only the self-correlations of third- and fourth-order will be in-
cluded. Thus, the MaxEnt distribution ( ),ME

cp α r  will be obtained as the solu-
tion of the variational problem ( ) 0ME ME

c cH p p∂ ∂ = , where the entropy (La-
grangian functional) ( )ME

cH p  is defined as follows: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

( ) ( )( ) ( )

0

1 2

1 1

11

1 1

12

1

, ln , d d , d d 1

, d d , d d

1 , d d cov ,
2

,

ME ME ME ME
c c c c

D D

TR TP
ME ME

k k c i i c
k iD D

TR TR
ME

k k c k
k D

TP
ME

ki i k c
i

H p p p p

a r p a p

b r r p r r

b r p

λ

δ δα

δ δ

δα δ

= =

= =

=

 
 = − − −  

 
   

− −   
   

 
− − 

 

−

∫ ∫

∑ ∑∫ ∫

∑∑ ∫

∑

α r α r α r α r α r

α r α r α r α r

α r α r

α r

  



( )
1

d d cor ,
TR

i k
k D

rα
=

 
− 

 
∑ ∫ α r

 

( ) ( )( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

22

1 1

31
3

1

32

1

41
4

1

42

1

1 , d d
2

, d d

, d d

, d d

, d d .

TP TP
ME

ij i j c ij
i j D

TR
ME

k k c k
k D

TP
ME

i i c i
i D

TR
ME

k k c k
k D

TP
ME

i i c i
i D

b p c

r p r

p t

r p r

p q

α

α

α

δα δα

ψ δ µ

ψ δα

χ δ µ

χ δα

= =

=

=

=

=

 
− − 

 
 

− − 
 
 

− − 
 
 

− − 
 
 

− − 
 

∑∑ ∫

∑ ∫

∑ ∫

∑ ∫

∫

α r α r

α r α r

α r α r

α r α r

α r α r∑

             (6) 

In Equation (6), the quantities ( )1
ka , ( )2

ia , ( )11
kb


, ( )12
kib , ( )22

ijb , ( )1
kψ , ( )2

iψ , ( )1
kχ , 

and ( )2
iχ  denote the respective Lagrange multipliers, and the factors 1/2 have 

been introduced for subsequent computational convenience.  
Solving the equation ( ) 0ME ME

c cH p p∂ ∂ =  yields the following expression for 
the resulting MaxEnt distribution ( ),ME

cp α r :  

( ) ( ) ( )1, , ; , d d ;ME
c c c

D

p Z Zϕ ϕ−= ∫α r α r α r α r
             (7) 

where:  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )

1 2 11

1 1 1 1

312 22 1

1 1 1 1 1

1, exp
2

1
2

TR TP TR TR

k k i i k k
k i k

TR TP TP TP TR

ki i k ij i j k k
k i i j k

a r a b r r

b r b r

ϕ δ δα δ δ

δα δ δα δα ψ δ

= = = =

= = = = =

− − −


− − −

∑ ∑ ∑∑

∑∑ ∑∑ ∑

α r
 




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( ) ( ) ( ) ( ) ( ) ( )3 4 42 1 2

1 1 1
.

TP TR TP

i i k k i i
i k i

rψ δα χ δ χ δα
= = =

− − − 


∑ ∑ ∑             (8) 

The Lagrange multipliers which appear in Equation (8) will be determined by 
following the same conceptual procedure as was used to determine the Lagrange 
multipliers in Part 1 [12] by expanding the third- and fourth-order terms in pa-
rameter and response variations in a Taylor series, to obtain the following rela-
tion:  

( ) ( ) ( )2 1, exp ,ϕ ϕ ϕ ≅ − α r u u                       (9) 

where the following definitions have been used:  

( ) † †
1

1
2

ϕ +u a u u Bu ,                        (10) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 3 4 41 2 1 2
2

1 1 1 1
1 ,

TR TP TR TP

k k i i k k i i
i i k i

r rϕ ψ δ ψ δα χ δ χ δα
= = = =

− − − −∑ ∑ ∑ ∑u   (11) 

and where the various vectors and matrices are defined as follows: 

( ) ( )

( )
( )

( )

( )

( )

( )

( )

1 2
1 1 1

1 2
0 2

1 1

; ; ; ;c

TR TP

a a

a a

   
      −
 =       −      

   

ar E r
u a a a

α α a
              (12) 

( ) ( )

( ) ( )
( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

11 11
11 12 11 1,

11 11
†12 22

11 11
,1 ,

12 12 22 22
11 1, 11 1,

12 12 22 22

12 12 22 22
,1 , ,1 ,

; ;

; .

TR

k

TR TR TR

TP TP

k k

TR TR TP TP TP TP

b b

b

b b

b b b b

b b

b b b b

 
   
   
         

 
   
   
   
   
   
   

B B
B B

B B

B B



 



   



 

     

 

        (13) 

Using Equations (9)-(13) in Equation (7) yields the following approximate 
expression for the normalization integral ( )cZ a : 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 1

1 2(1) (2)

1 1

1 2(1) (2)

1 1

exp d

,

c
D

TR TP

k k i i
k i

TR TP

k k i i
k i

Z ϕ ϕ

ψ ψ

χ χ

= =

= =

 ≅ − 

= Φ − Ψ − Ψ

− Χ − Χ

∫

∑ ∑

∑ ∑

a u u u

a a a

a a

             (14) 

where: 

( ) † † † 11 1exp d exp ;
2 2c

D

K −   Φ − − =   
   ∫a a u u Bu u a B a           (15) 

( )( )

( )

22
;

TR TP

cK
Det

+π

B
                           (16) 

( ) ( ) ( )31 † †1exp d ; 1, , ;
2k k

D

r k TRδ  Ψ − − = 
 ∫a a u u Bu u             (17) 
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( ) ( ) ( )32 † †1exp d ; 1, , ;
2i i

D

i TPδα  Ψ − − = 
 ∫a a u u Bu u            (18) 

( ) ( ) ( )41 † †1exp d ; 1, , ;
2k k

D

r k TRδ  Χ − − = 
 ∫a a u u Bu u            (19) 

( ) ( ) ( )42 † †1exp d ; 1, , .
2i i

D

i TPδα  Χ − − = 
 ∫a a u u Bu u            (20) 

The Lagrange multipliers will be determined by differentiating the “free ener-
gy” ( )ln cZ − a  with respect to the components of the vector of Lagrange 
multipliers ( ) ( )( )†1 2,a a a . For the sake of consistency, the same approxima-
tions which have been made in Part 1 [12] will also be employed for determining 
the Lagrange multipliers which appear in Equation (8). Thus, using Equation (15) 
and neglecting, for the present case, the corresponding third-and fourth-order 
correlations in Equation (14) yields the following relations:  

( )
( ) ( ) ( )† † 1
1

ln 1 1exp d 0 ; 1, , ;
2

c
k k

c Dk

Z
r k TR

Za
δ −

 ∂ −    = − − = = = 
 ∂ ∫

a
a u u Bu u B a  (21) 

( )
( ) ( ) ( )† † 1
2

ln 1 1exp d 0 ; 1, , .
2

c
i i

c Di

Z
i TP

Za
δα −

 ∂ −    = − − = = = 
 ∂ ∫

a
a u u Bu u B a  (22) 

It follows from Equations (21) and (22) that the following result holds when 
the triple-correlations are neglected:  

=a 0 .                                (23) 

Differentiating the relations provided in Equations (21) and (22) yields the 
following relations: 

( )
( ) ( ) ( )

2

1 1

ln
cov , ; , 1, , ;c

j k
j k

Z
r r j k TR

a a

 ∂ −  = − =
∂ ∂

a
               (24) 

( )
( ) ( ) ( )

2

2 1

ln
cor , ; 1, , ; 1, , ;c

i k
i k

Z
r i TP k TR

a a
α

 ∂ −  = − = =
∂ ∂

a
           (25) 

( )
( ) ( ) ( )

2

2 2

ln
cov , ; , 1, , .c

i j
i j

Z
i j TP

a a
α α

 ∂ −  = − =
∂ ∂

a
               (26) 

The results obtained in Equations (24)-(26) can be collectively written in vec-
tor-matrix form as follows:  

( ) ( )

( ) ( ) ( )

2

†

ln
; ; cov , ;

cor , ; cov , .

c c
c crr r

c c rr j kc TR TR
r

c c
r k i r i jTR TP TP TP

Z
r r

r

α

α αα

α α ααα α α

×

× ×

 ∂ −     = −    ∂ ∂  

   =   

a C C
C C C

a a C C

C C C

 

 

    (27) 

On the other hand, it follows from Equation (14) that the following result holds 
when the quadruple-correlations are neglected:  

( )2
1ln
.cZ −

 ∂ −  = −
∂ ∂

a
B

a a
                      (28) 
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The relations obtained in Equations (27) and (28) imply the following rela-
tion:  

1 .c
− =B C                              (29) 

Using the result obtained in Equation (29) simplifies the derivations of the 
expressions of the functions ( ) ( )1

kΨ a , ( ) ( )1
kΧ a , ( ) ( )2

iΨ a  and ( ) ( )2
iΧ a , which 

are obtained in Appendix B, and are as follows:  
( ) ( ) ( ) ( )1 3

,1 exp ; 1, , ;k c kK k TRη Ψ = − Φ = a a                (30) 

( ) ( ) ( ) ( )1 4
,1 exp ; 1, , ;k c kK k TRη Χ = Φ = a a                 (31) 

( ) ( ) ( ) ( )2 3
,2 exp ; 1, , ;i c iK i TPη Ψ = − Φ = a a                 (32) 

( ) ( ) ( ) ( )2 4
,2 exp ; 1, , ;i c iK i TPη Χ = Φ = a a                 (33) 

where the following definitions were used: 

( ) † † 11 1
2 2cη −=a a C a a B a ;                     (34) 

( ) ( ) ( ) ( ) ( ) ( )
33 1 1

,1 ,1 ,13 var ,k k k k kr r  Φ Φ + Φ a a ;               (35) 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 424 1 1

,1 ,1 ,13 var , 6 var ,k k k k k k kr r r r    Φ + Φ + Φ     a a ;       (36) 

( ) ( ) ( ) ( ) ( ) ( )
33 1 1

,2 ,2 ,23 var ,i i i i iα α  Φ Φ + Φ a a ;               (37) 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 424 1 1

,2 ,2 ,23 var , 6 var ,i i i i i i iα α α α    Φ + Φ + Φ     a a ;      (38) 

( ) ( ) ( ) ( ) ( ) ( )1 1 2
,1

1 1
cov , cor ,

TR TP

k j k j j k j
j j

r r a r aα
= =

Φ +∑ ∑a  ;            (39) 

( ) ( ) ( ) ( ) ( )1 1 2
,2

1 1
cor , cov ,

TP TP

i j i j j i j
j j

a r aα α α
= =

Φ +∑ ∑ .              (40) 

Using the results obtained in Equations (30)-(33) into Equation (14) yields the 
following expression for the normalization integral ( )cZ a : 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 3 2 3
,1 ,2

1 1

1 4 2 4
,1 ,2

1 1

1

exp .

TR TP

c c k k i i
k i

TR TP

k k i i
k i

Z K ψ ψ

χ χ η

= =

= =

= + Φ + Φ


  − Φ − Φ   

∑ ∑

∑ ∑

a a a

a a a
         (41) 

It follows from the expression provided in Equation (41) that:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 3 2 3
,1 ,2

1 1

1 4 2 4
,1 ,2

1 1

ln ln ln 1

.

TR TP

c c k k i i
k i

TR TP

k k i i
k i

Z K η ψ ψ

χ χ

= =

= =

= + + + Φ + Φ


− Φ − Φ 


∑ ∑

∑ ∑

a a a a

a a
     (42) 

The Lagrange multipliers ( )1
kψ , ( )1

kχ , for ( 1, ,k TR=  ), are obtained by using 
Equation (42) to determine the third-order derivatives of ( )ln cZ − a  with 
respect to components of the vector of Lagrange multipliers ( ) ( )( )†1 2,a a a . The 
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procedure for determining these third-order derivatives is the same as was used 
to obtain the corresponding expression presented in Part 1 [12]. In particular, 
the third-order derivatives of ( )ln cZ − a  with respect to components of the 
vector of Lagrange multipliers ( )1a  are obtained [see also Appendix B] in the 
following form: 

( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( )
( ) ( )

( ) ( ) ( )
( ) ( )

3 3

31 1 1 1 1 1

33
3,11 1

1 1 1
1

ln 1

6 var , ; 1, , .

c c
k

ck k k k k k

TR
j

j k k k
j k k k

Z Z
r

Za a a a a a

r r k TR
a a a

µ

ψ ψ

= =

=

   ∂ ∂   − = − =   
∂ ∂ ∂ ∂ ∂ ∂      

∂ Φ
 ≅ − = − = ∂ ∂ ∂

∑

a a

a a
a

a


0 0       (43) 

It follows from Equation (43) that the Lagrange multipliers ( )1
kψ , 1, ,k TR=  , 

have the following expressions:  

( ) ( )
( )

1 3
3 ; 1, , .

6 var ,
k

k

k k

r
k TR

r r

µ
ψ = − =

  
                 (44) 

The third-order derivatives of ( )ln cZ − a  with respect to components of the 
vector of Lagrange multipliers ( )2a  are obtained by following the same proce-
dure as was used for obtaining the expression shown in Equation (44), which 
yields the following results: 

( )
( ) ( ) ( )

( ) ( )
3

32
2 2 2

ln
6 ; 1, , ;c

i i ii
i i i

Z
t c i TP

a a a
α αψ

=

 ∂ − = ≅ − = 
∂ ∂ ∂  a

a


0

        (45) 

which implies that: 

( )

( )
2

3 ; 1, ,
6

i
i

ii

t i TP
c

α

α
ψ = − =  .                  (46) 

As expected, the results obtained in Equations (44) and (46) correspond to 
those previously obtained in Part 1 [12], thus confirming that the approxima-
tions incurred in the course of determining the Lagrange multipliers for the 
third-order self-correlations among responses and/or parameters are consistent 
with each other.  

The Lagrange multipliers ( )2
iψ  and ( )2

iχ  ( )1, ,i TP=   are obtained by us-
ing Equation (41) to determine the fourth-order derivatives of ( )ln cZ − a  
with respect to components of the vector of Lagrange multipliers ( ) ( )( )†1 2,a a a . 
The procedure for determining these fourth-order derivatives is the same as was 
used in Part 1 [12]. In particular, the fourth-order derivatives of ( )ln cZ − a  
with respect to components of the vector of Lagrange multipliers ( )1a  are ob-
tained [see also Appendix B] in the following form: 

( )
( ) ( ) ( ) ( )

( )
( )

( ) ( ) ( ) ( ) ( )
( )

( ) ( )

4

1 1 1 1

24 2

21 1 1 1 1 1

ln

1 3

c

k k k k

c c

c k k k k k kc

Z
a a a a

Z Z
Z a a a a a aZ

=

= =

 ∂ − 
∂ ∂ ∂ ∂  

    ∂ ∂   = − +     
∂ ∂ ∂ ∂ ∂ ∂          

a

a β

a

a a
a a

0

0 0
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( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( )

44
2 ,11

4 1 1 1 1
1

41

3 var ,

24 var , ; 1, , .

TR
j

k k k j
j k k k k

k k k

r r r
a a a a

r r k TR

µ χ

χ

=

∂ Φ
 = − + ≅  ∂ ∂ ∂ ∂

 = = 

∑
a



        (47) 

It follows from Equation (47) that the Lagrange multipliers ( )1
kχ , 1, ,k TR=  , 

have the following expressions:  

( ) ( ) ( )
( )

2
41
4

3 var ,
; 1, , .

24 var ,
k k k

k

k k

r r r
k TR

r r

µ
χ

  − = =
  

              (48) 

The fourth-order derivatives of ( )ln cZ − a  with respect to components of 
the vector of Lagrange multipliers ( )2a  are obtained by following the same pro-
cedure as was used for obtaining the expression shown in Equation (48), which 
ultimately yields the following result: 

( ) ( )
( )

2

2
4

3
; 1, , .

24

ii i
i

ii

c q
i TP

c

α α

α
χ

−
= =                      (49) 

As expected, the results obtained in Equations (48) and (49) correspond to 
those previously obtained in Part 1 [12], thus confirming that the approxima-
tions incurred in the course of determining the Lagrange multipliers for the 
fourth-order self-correlations among responses and/or parameters are consistent 
with each other.  

Collecting the results obtained in Equations (7), (8), (12), (23), (29), (44) (46), 
(48) and (49) yields the following expression for the fourth-order MaxEnt joint 
distribution, ( ),ME

cp α r , of the computed model responses and parameters:  

( ) ( ) ( )1, , ; , d d ;ME
c c c

D

p Z Zϕ ϕ−= ∫α r α r α r α r
              (50) 

where:  

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1†

0 0

3 32 10

1 1

4 42 10

1 1

1, exp
2

.

c c
c crr r

c
r

TP TR

i i i k k c k
i k

TP TR

i i i k k c k
i k

r E r

r E r

α

α αα

ϕ

ψ α α ψ

χ α α χ

−

= =

= =

    − −= −      − −     

 − − − − 

 − − − −   

∑ ∑

∑ ∑

r E r r E rC C
α r

α α α αC C

α

α

       (51) 

Notably, if the triple- and the quadruple correlations are negligeable (or un-
available) then the MaxEnt distribution ( )ME

cp r , presented in Equation (51), of 
the computed model responses and parameters reduces to a multivariate Gaus-
sian with mean ( ) 0,c  E r α  and covariance matrix cC .  

3. Mathematical Framework of the 4th-BERRU-PM  
Methodology  

This Section presents the mathematical and physical considerations leading to 
the development of the “4th-BERRU-PM” methodology; this acronym stands for 
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the “Fourth-Order Best-Estimate Results with Reduced Uncertainties−Predictive 
Modeling.” This methodology probabilistically incorporates, using Bayes’ Theo-
rem, the fourth-order moments-constrained MaxEnt distribution representing 
the computational model, which was obtained in Section 2, above, with the 
fourth-order moments-constrained MaxEnt distribution of measured responses 
which was obtained in Part 1 [12].  

The known moments of the experimentally-measured responses were defined 
in Part 1 [12] and are provided below for convenient reference, as follows:  

(i) Known mean/expectation values, denoted as e
ir , for the system responses 

ir , where 1, ,i TR=  : 

( ) ( )†

1d ; , , , , ; 1, ,
e

e ME e e e e
i i e i TR

D

r r p r r r i TR=∫ z r r     .        (52) 

(ii) Known covariances, denoted as e
ijc , for two system responses ir  and jr , 

where , 1, ,i j TR=  : 

( ) ( )( ) ( )cov , d ; , 1, , ;
e

e e e ME
ij i j i i j j ee

D

c r r r r r r p i j TR− − =∫ z r        (53) 

The covariances ( )cov ,i j e
r r , , 1, ,i j TR=  , of the system responses are con-

sidered to be components of the TR TR× -dimensional covariance matrix of  

system responses, which will be denoted as ( )cov ,e e
rr i j ije TR TRTR TR

r r c
××

     C   . 

(iii) Known triple correlations, denoted as e
ijkt , for three system responses 

denoted as ir , jr  and kr , where , , 1, ,i j k TR=  :  

( )( )( ) ( )d ; ; , , 1, , ;
e

e e e e ME e e
ijk i i j j k k e k kkk

D

t r r r r r r p t t i j k TR− − − =∫ z r     (54) 

(iv) Known quadruple correlations, denoted as e
ijkq


, for four system res-
ponses denoted as ir , jr , kr , r



, where , , , 1, ,i j k TR=  : 

( )( )( )( ) ( )d ;

; , , , 1, , .
e

e e e e e ME
ijk i i j j k k e

D

e e
k kkkk

q r r r r r r r r p

q q i j k TR

− − − −

=

∫ z r
  



  

         (55) 

Recall that the following expression was obtained in Part 1 [12] for the 
fourth-order moments-constrained MaxEnt distribution, denoted as ( )ME

ep z , 
of experimentally-measured responses ( )†

1 , ,e e e
TRr rr   :  

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

† 3 4

1 1

† 3 4

1 1

1exp
2 ,
1exp d
2

r

TR TR
e e e e

i i i i i i
i iME

e TR TR
e e e e

i i i i i i
i iD

r r r r
p

r r r r

θ ω

θ ω

= =

= =

 − − − − − − − 
 =
 − − − − − − − 
 

∑ ∑

∑ ∑∫

r r r r
z

r r r r r

Λ

Λ
(56) 

where the Lagrange multipliers Λ , iθ  and iω , 1, ,i TR=  , have the follow-
ing expressions, respectively: 

(a) the matrix of Lagrange multipliers ( ); , 1, ,ij i j TRλ = Λ  is obtained in 
terms of the covariances of the measured responses as follows: 

( ) ( )1 1; ; ; , 1, , ;e e e e
mn mnmn TR TR

c c m n TR− −

×
= = =C C  Λ Λ        (57) 
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where ( )e e
mn TR TR

c
×

C   denotes the known TR TR× -dimensional covariance 
matrix of the system responses;  

(b) the vector ( )†
1, , TRθ θθ    is obtained in terms of the triple self-correla- 

tions ( )†

1 , ,e e e
TRt tt    and the covariances ( )e

mnc  of the measured responses as 
follows: 

( ) ( ) ( )3 31 6; ; ; , 1, , ;e e e
mn mn mn nmTR TR

c c m n TRτ τ−
×

= − = =θ T t T       (58) 

(c) the vector ( )†
1, , TRω ωω    is obtained in terms of the quadruple self- 

correlations e
mq , 1, ,m TR=  , and the covariances ( )e

mnc  of the measured res-
ponses as follows: 

( ) ( ) ( )
( ) ( )

4 41

2†
1

24; ; ; , 1, ,

, , ; 3 ; 1, , .

e e
mn mn mn mnTR TR

e e
TR m mm m

p p c c m n TR

s s s c q m TR

−
×

= = =

− =

ω P s P

s

  

   

  (59) 

In particular, if only the system response variances are available but the 
second-order correlations among the system responses are negligible or un-
available, then the result obtained in Equation (58) reduces to the following sim-
ple expression for determining the Lagrange multipliers kθ , 1, ,k TR=  : 

( )3 ; 1, , .
6

e
k

k e
kk

t k TR
c

θ = − =                       (60) 

Similarly, if the (second-order) correlations among the measured system res-
ponses are negligible or unavailable, then the result obtained in Equation (59) 
reduces to the following simple expression for determining the Lagrange multip-
liers kω , 1, ,k TR=  : 

( )
( )

2

4

3
; 1, , .

24

e e
kk k

k e
kk

c q
k TR

c
ω

−
= =                     (61) 

Using Bayes’ Theorem to combine the pdf’s obtained in Equations (56) and 
(50) yields the following expression for the “best-estimate” posterior distribution 
of all available computational and experimental information, which will be de-
noted as ( )4 ,bep r α , where the superscript “be” denotes “best-estimate” while the 
subscript “4” denotes “fourth-order”: 

( ) ( ) ( )
( )

( )4

exp ,
, , , exp , d d ,be ME ME

e c p
p D

Q
p p p Z Q

Z
 −   = − ∫

r α
r α r r α r α α r  (62) 

where:  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

† 1 3 4

1 1
1†

0 0

3 32 10

1 1

4 42 10

1 1

1,
2

1
2

.

TR TR
e e e e e

i i i i i i
i i

c c
c crr r

c
r

TP TR

i i i k k c k
i k
TP TR

i i i k k c k
i k

Q r r r r

r E r

r E r

α

α αα

θ ω

ψ α α ψ

χ α α χ

−

= =

−

= =

= =

− − + − + −

    − −
+     − −    

 + − + − 

 + − + − 

∑ ∑

∑ ∑

∑ ∑

r α r r C r r

r E r r E rC C
α α α αC C

α

α



    (63) 
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The moments of the best-estimate distribution ( )4 ,bep r α  will be expressed in 
terms of ratios of integrals of the following form: 

( ) ( ) ( )1 2exp , d d ; , exp , d d .
D D

I Q I A Q   − −   ∫ ∫r α α r r α r α α r 
     (64) 

Integrals such as those appearing in Equation (64), where ( ),A r α  is a speci-
fied function, can be evaluated accurately, within a user-defined degree of accu-
racy, by using the saddle-point (Laplace) method [17] [18]. The integrals 1I  
and 2I  have identical saddle points, which will be denoted as ( ),s sr α , and 
which are defined as the points where the gradient of the functional ( ),Q r α  
vanishes in the phase-space ( ),r α , i.e.:  

( ) ( ) ( ) ( )
, ,

, , at , , .s s

Q Q∂ ∂
= = =

∂ ∂
r α r α

r α r α
r α

0 0             (65) 

In order to solve the systems of equations represented by Equation (65), it is 
convenient to commence with the component-wise representation of the qua-
dratic form ( ),Q r α  defined in Equation (63), which is as follows: 

( ) ( )( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( )( ) ( ) ( )
( ) ( )

3 4

, 1 1 1

11

1 1

12 0

1 1

322 20 0 0

1 1 1

1

1,
2
1
2

1
2

TR TR TR
e e e e

ij i i i j i i i i i i
i j i i

TR TR

k k c k c
k

TR TP

ki i i k c k
k i

TP TP TP

ij i i j j i i i
i j i

k k c k

Q r r r r r r r r

b r E r r E r

b r E r

b

r E r

λ θ ω

α α

α α α α ψ α α

ψ

= = =

= =

= =

= = =

− − + − + −

   + − −  

 + − − 

+ − − + −

+ −

∑ ∑ ∑

∑∑

∑∑

∑∑ ∑

r α

  





( ) ( ) ( ) ( )
43 42 10

1 1 1
.

TR TP TR

i i i k k c k
k i k

r E rχ α α χ
= = =

  + − + −   ∑ ∑ ∑

(66) 

Using the component-form expression of ( ),Q r α  presented in Equation (67) 
in Equation (65) yields the following relations which hold at the saddle-point 
( ) ( ), ,s s=r α r α : 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 3

1

11 12 0

1 1
2 31 1

,
0 3 4

3 4 ; 1, , .

TR
e e e

j j j
j

TR TP

c i i i
i

c c

Q
r r r r r r

r

b r E r b

r E r r E r TR

µ µ µ µ µ µ µ
µ

µ µ

µ µ µ µ µ µ

λ θ ω

α α

ψ χ µ

=

= =

∂
= = − + − + −

∂

 + − + − 

   + − + − =   

∑

∑ ∑

r α

  





 (67) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

22 120

1 1

2 32 20 0

,
0

3 4 ; 1, , .

TP TR

j j j k k c k
j k

Q
b b r E r

TP

ν ν
ν

ν ν ν ν ν ν

α α
α

ψ α α χ α α ν

= =

∂
 = = − + − ∂

+ − + − =

∑ ∑
r α



    (68) 

Equations (67) and (68) can be arranged in the following matrix-vector form 
which holds at the saddle-point ( ) ( ), ,s s=r α r α : 

( ) ( )

( ) ( )
( ) ( ) ( )

( )

11 12

† 012 22
,

e
c

     − −     + + =          −         

B B v rr rr E r
w αα αB B

Λ 0
00

      (69) 
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where: 

( ) ( ) ( ) ( ) ( ) ( )† †
1 1, , ; , , ;TR TPv v w w      v r r r w α α α          (70) 

with 

( ) ( ) ( ) ( ) ( )
( ) ( )

2 31 1

2 3

3 4

3 4 ; 1, , ;

c c

e e

v r E r r E r

r r r r TR

µ µ µ µ µ µ µ

µ µ µ µ µ µ

ψ χ

θ ω µ

   − + −   

+ − + − =

r 



       (71) 

( ) ( ) ( ) ( ) ( )2 32 20 03 4 ; 1, ,w TPν ν ν ν ν ν νψ α α χ α α ν− + − =α   .      (72) 

Multiplying Equation (69) on the left by the matrix 1
c

− =B C . yields the fol-
lowing equation satisfied at the saddle-point ( ) ( ), ,s s=r α r α : 

( ) ( ) ( )
( )0 .

ec c c c
c rr r rr r

c c
r r

α α

α αα α αα

     −   −  
 + + =         −         

v rr rr E r C C C C
w αα α C C C C

Λ 0
00

   (73) 

Carrying out the matrix-vector multiplications in Equation (73) yields the fol-
lowing (vector-valued) equations: 

( ) ( ) ( ) ( )c e c c
c rr rr rα− + − + + =r E r C r r C v r C w αΛ 0 ,          (74) 

( ) ( ) ( )0 c e c
r rα α αα− + − + + =α α C r r C v r C w αΛ 0 .           (75) 

It is convenient to rearrange Equation (74) into the following form: 

( )( ) ( ) ( ) ( )c e e c c
r rr c rr rα+ − + − + + =I C r r r E r C v r C w αΛ 0 .       (76) 

where rI  denotes the TR-dimensional identity matrix. Multiplying Equation 
(76) on the left by the matrix ( ) 1c

r rr

−
+I C Λ  and recalling that 1 e− =CΛ  trans-

forms this equation into the following form at the saddle-point ( ) ( ), ,s s=r α r α : 

( ) ( )

( ) ( ) ( )

1

1
.

e e e c e
rr c

e e c c c
rr rr rα

−

−

 − − + − 

 + + + = 

r r C C C E r r

C C C C v r C w α 0
              (77) 

Using Equation (77) to replace the quantity ( )e−r r  in Equation (75) trans-
forms the latter equation into the following form, which holds at the saddle-point 
( ) ( ), ,s s=r α r α :  

( ) ( ) ( ) ( )

( ) ( )

1 10

1
.

c e c e c e c c
r rr c r r rr rr

c e c c
r rr r

α α

αα α α

− −

−

  − + + − + − +    
 + − + =  

α α C C C E r r C I C C C v r

C C C C C w α 0
 (78) 

It is important to note that if the triple- and quadruple computed model re-
sponse and parameter correlations are neglected in Equations (77) and (78), 
then ( ) =v r 0  and ( ) =w α 0 , so these equations can be solved exactly to ob-
tain the following results for the components of the saddle-point ( ),s sr α :  

( ) ( ) ( )
10 ,e e e c e

s rr c

−
 = + + − r r C C C E r r                 (79) 

( ) ( ) ( )
10 0 .c e c e

s r rr cα

−
 = − + − α α C C C E r r                 (80) 
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The superscript “(0)” has been used to indicate that the quantities ( )0
sr  and 

( )0
sα  do not account for the triple and quadruple correlations among computed 

model responses, but do take into account the triple and quadruple correlations 
among model parameters which may have been used to compute the vector of 
mean values of the computed responses, ( )cE r , and the matrices c

rrC  and 
c

rαC . The quantities ( )0
sr  and ( )0

sα  fully account for all first- and second-order 
correlations among computed and measured responses and model parameters. 

If the triple and quadruple correlations among computed model responses, 
and among model parameters are not neglected, then ( ) ≠v r 0  and ( ) ≠w α 0 , 
in which case the coupled system consisting of Equations (77) and (78) can be 
solved by using Newton’s iteration method to determine the saddle-point  
( ) ( ), ,s s=r α r α , as follows: 

( )

( )

( )

( )
( ) ( )( ) ( ) ( )( )

1 1

1
, , , 0,1,

n n
n n n ns s

s s s sn n
s s

D n
+ −

+

   
    = − =    

   

r r
ξ r α ξ r α

α α
         (81) 

where: 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
1 1 1

2 2 2

, , ,
, ; , ;

, , ,
D

   ∂ ∂ ∂ ∂
      ∂ ∂ ∂ ∂   

ξ r α ξ r α r ξ r α α
ξ r α ξ r α

ξ r α ξ r α r ξ r α α
        (82) 

with: 

( ) ( ) ( ) ( ) ( )
10

1 , ;e e c c c
s rr rr rα

−
 − + + + ξ r α r r C C C C v r C w α          (83) 

( ) ( ) ( ) ( )

( ) ( )

10
2

1

,

;

c e c c
s r r rr rr

c e c c
r rr r

α

αα α α

−

−

 − + − +  
 + − +  

ξ r α α α C I C C C v r

C C C C C w α



            (84) 

( ) ( ) ( )11 ,
;e e c c

r rr rr

−∂ ∂
= + +

∂ ∂
ξ r α v r

I C C C C
r r

               (85) 

( ) ( ) ( )11 ,
;e e c c

rr rα

−∂ ∂
= +

∂ ∂
ξ r α w α

C C C C
α α

                 (86) 

( ) ( ) ( )12 , c e c c
r r rr rrα

−∂ ∂ = − +  ∂ ∂
ξ r α v r

C I C C C
r r

               (87) 

( ) ( ) ( )12 , c e c c
r rr rα αα α α

−∂ ∂ = + − +  ∂ ∂
ξ r α w α

I C C C C C
α α

.           (88) 

In Equation (88), the quantity αI  denotes the TP-dimensional identity ma-
trix.  

Using the definitions provided in Equations (70) and (71) enables the compu-
tation of the TR TR× -dimensional diagonal matrix ( )V r , having zero-valued 
non-diagonal elements and non-zero diagonal elements as defined below: 

( ) ( ) ( ) ( ){ ( ) ( )

( ) ( ) }

21 1

2

6 12

6 12 ; 1, , .

c c

e e

Diag r E r r E r

r r r r TR

µ µ µ µ µ µ

µ µ µ µ µ µ

ψ χ

θ ω µ

∂
   = − + −   ∂

+ − + − =

v r
V r

r




    (89) 

Notably, the components of the matrix ( )V r  contain first-order terms in the 
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triple and quadruple self-correlations of the computed model responses. 
Similarly, using the definitions provided in Equations (70) and (72) enables 

the computation of the TP TP× -dimensional diagonal matrix ( )W α , having 
zero-valued non-diagonal elements and non-zero diagonal elements as defined 
below: 

( ) ( ) ( ) ( ) ( ) ( )22 20 06 12 ; 1, , .Diag TPν ν ν ν ν νψ α α χ α α ν
∂  = − + − =  ∂
w α

W α
α

   (90) 

Notably, the components of the matrix ( )W α  contain first-order terms in 
the triple and quadruple self-correlations of the model parameters. 

It follows from the expressions obtained in Equations (85)-(90) that: 

( ) ( ) ( )
1

1
, , , . . .,r rD H O T

α α

−
−     

  = + ≅ − +     
    

I I
ξ r α M r α M r α

I I
0 0

0 0
   (91) 

where the acronym “HOT” denotes “higher-order terms” that comprise second- 
(and higher-) order powers of the triple and quadruple computed model res-
ponses and parameters, and where the matrix ( ),M r α  is defined below:  

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

11 12

21 22

1

11

1

12

1

21

1

22

, ,
, ;

, ,

, ;

, ;

, ;

, .

e e c c
rr rr

e e c c
rr r

c e c c
r r rr rr

c e c c
r rr r

α

α

αα α α

−

−

−

−

 
  
 

+

+

 − +  
 − +  

M r α M r α
M r α

M r α M r α

M r α C C C C V r

M r α C C C C W α

M r α C I C C C V r

M r α C C C C C W α











           (92) 

Inserting the expression obtained in Equation (91) into Equation (81), and 
using the expressions provided in Equations (83), (84) and (92), yields the fol-
lowing form for the Newton iteration for determining the saddle-point  
( ) ( ), ,s s=r α r α : 

( )

( )

( )

( )

( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( )( )
( ) ( )( )

1
1 1

1
2 2

, ,
, , 0,1, .

, ,

n n n nn n
s s s sn ns s

s sn n n n n n
s s s s s s

n
+

+

             ≅ − + =                 

ξ r α ξ r αr r
M r α

α α ξ r α ξ r α
 (93) 

Inserting the expressions obtained in Equations (83), (84), and (92) into Equ-
ation (93) yields the following expression for the Newton iteration aimed at de-
termining the saddle-point ( ),s sr α , for 0,1,n =    

( )

( )

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )

( ) ( )

01 0
1 11 12

1 00
2 21 22

, , ,
,

, , ,

n n n n n nn n
s s s s s s ss s s

n nn n n n n n
s s ss s s s s s s

+

+

   +   −      ≅ +      −   +      

r p r α M r α M r αr r r

α α αα p r α M r α M r α
(94) 

where: 
( ) ( )( ) ( ) ( )( ) ( )( )1

1 , ;n n n ne e c c c
s s rr rr s r sα

−  + +
 

p r α C C C C v r C w α        (95) 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )1 1

2 , .n n n nc e c c c e c c
s s r r rr rr s r rr r sα αα α α

− −   − + + − +      
p r α C I C C C v r C C C C C w α (96) 
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The starting point, ( ) ( )( )0 0,s sr α , for the Newton iteration is provided by Equa-
tions (79) and (80), which are exact if the triple and quadruple response correla-
tions are neglected. Setting 0n =  in Equation (94) provides the following form 
for the first Newton iteration:  

( )

( )

( ) ( ) ( )( )
( ) ( ) ( )( )

0 0 01
1

1 0 0 0
2

,
.

,

s s ss

s s s s

 +     =     +   

r p r αr

α α p r α
                    (97) 

Notably, the contributions stemming from the matrix ( ) ( )( ),n n
s sM r α  are nul-

lified for the first-iterate ( ) ( )( )1 1,s sr α  of the saddle-point ( ),s sr α  but the third- 
and fourth-order response correlations do contribute through the terms  

( ) ( )( )0 0
1 ,s sp r α  and ( ) ( )( )0 0

2 ,s sp r α , respectively, which have the following specific 
expressions:  

( ) ( )( ) ( ) ( )( ) ( )( )10 0 0 0
1 , ;e e c c c

s s rr rr s r sα

−  = + +
 

p r α C C C C v r C w α           (98) 

( ) ( )( ) ( ) ( )( )
( ) ( )( )

10 0 0
2

1 0

,

.

c e c c
s s r r rr rr s

c e c c
r rr r s

α

αα α α

−

−

 = − +  
 + − +  

p r α C I C C C v r

C C C C C w α
           (99) 

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )† †
0 0 0 0 0 0

1 1, , ; , , ;s s TR s s s TP sv v w w   
   v r r r w α α α     (100) 

( )( ) ( )
( )

( ) ( )
( )

( )( )

( ) ( )
( )

( ) ( )
( )
( )

( )( )

220 0 03
3 3

22
334 0 0

4 4

2 var , 2

33 var ,
;

6 var , 6

e
k ek

k s k c k k ke
k k kk

e e
kk kk k k e

k c k k ke
k k kk

r tv r E r r r
r r c

c qr r r
r E r r r

r r c

µ

µ

 − − − −   

−  −   + − + −   

r 

(101) 

( )( )
( )

( )( ) ( )
( )

( )( )
2

2 30 0 00 0
3 4

3
; 1, , .

2 6

ii ii
i s i i i i

ii ii

c qtw i TP
c c

α αα

α α
α α α α

−
− − + − =α    (102) 

The moments of the best-estimate fourth-order distribution ( )4 ,bep r α  can 
now be determined by using the saddle-point expression obtained in Equation 
(97), if the first-order contributions from the triple- and quadruple-correlations 
of the measured and computed responses suffice, of from subsequent New-
ton-iterates of Equation (94), if higher-order contributions from these triple and 
quadruple response correlations are deemed to be important. Considering the 
generic representation of the integrals defined in Equation (64), it follows that 
the moments of the best-estimate fourth-order distribution ( )4 ,bep r α  have the 
following expressions:  

1) The best-estimate fourth-order expression of the predicted mean values of 
the responses is denoted as ( )†

1 , ,be be be
TRr rr    and is defined as follows: 

( ) ( )1
4 , d d .nbe be

s
D

p +≅∫r r r α α r r                   (103) 

The lowest-order expression for the best-estimate predicted mean values of 
the responses which contains the contributions from the triple and quadruple 
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response and parameter correlations, will be denoted as 1
ber  and is provided by 

Equation (97), namely: 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )10 0 0 0 0
1 1 1, ,be e e e c e

s s s rr c s s

−
 = + = + + − + r r p r α r C C C E r r p r α . (104) 

2) The best-estimate fourth-order expression of the mean values of the pre-
dicted calibrated model parameters, denoted as ( )†

1 , ,be be be
TPα αα   , is defined 

as follows: 

( ) ( )1
4 , d d .nbe be

s
D

p +≅∫α α r α α r α                    (105) 

The lowest-order expression for the best-estimate predicted calibrated model 
parameters, which contains the contributions from the triple and quadruple re-
sponse and parameter correlations, will be denoted as 1

beα  and is provided by 
Equation (97), namely: 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )10 0 0 0 00
1 2 2, ,be c e c e

s s s r rr c s sα

−
 = + = − + − + α α p r α α C C C E r r p r α . (106) 

3) The predicted best-estimate covariance matrix of the predicted best-estimate 
responses is denoted as be

rrC  and is defined as follows: 

( )( ) ( )
†

4 , d dbe be be be
rr

D

p− −∫C r r r r r α α r .              (107) 

The lowest-order expression for be
rrC  will be denoted as ( )

1

be
rrC  and is de-

termined as follows: 

( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )

†

1 1 41

†
0 0 0 0 0 0

1 1 4

2 22 2
3 40

, d d

, , , d d

,

be be be be
rr

D

be
s s s s s s

D

be e e
rr k k k k

p

p

O r O t O r O qµ µ

− −

   = − − − −
   

      = + + + +         

∫

∫

C r r r r r α α r

r r p r α r r p r α r α α r

C



 (108) 

where:  

( ) ( )( ) ( )( ) ( ) ( )
† 10 0

40
, d dbe be e e e c e

rr s s rr rr rr rr rr
D

p
−

− − = − +∫C r r r r r α α r C C C C C .  (109) 

The second-order terms involving the “squared triple-correlations” and “squared 
quadruple-correlations” shown in Equation (108) arise from terms involving the 
quantity ( ) ( )( )0 0

1 ,s sp r α  and are expected to be negligible by comparison to the 
leading term ( )

0

be
rrC . Not explicitly shown in Equation (108) are terms involving 

products of triple correlations among parameters and responses, which also stem 
from the quantity ( ) ( )( )0 0

1 ,s sp r α  and which are also negligible by comparison to 
the leading term ( )

0

be
rrC . 

The expression provided in Equation (109) has been obtained by using Equa-
tion (79) and the result below: 

( ) ( ) ( )

( ) ( ) ( )

†

4

†

4

, d d

, d d .

e e be
c c

D

e e be e c
c c rr rr

D

p

p

   − −   

   = − − + − − + = +   

∫

∫

E r r E r r r α α r

r r r E r r r r E r r α α r C C
 (110) 
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4) The predicted best-estimate covariance matrix of the predicted best-estimate 
calibrated model parameters is denoted as be

ααC  and is defined as follows: 

( )( ) ( )
†

4 , d d .be be be be

D

pαα − −∫C α α α α r α α r                (111) 

The lowest-order expression for be
ααC  will be denoted as ( )

1

be
ααC  and is de-

termined as follows: 

( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )

†

1 1 41

†
0 0 0 0 0 0

2 2 4

2 2

0

, d d

, , , d d

,

be be be be

D

be
s s s s s s

D

be
i i

p

p

O t O q

αα

α α
αα

− −

   = − − − −
   

   = + +      

∫

∫

C α α α α r α α r

α α p r α α α p r α r α α r

C



   (112) 

where:  

( ) ( )( ) ( )( ) ( ) ( )
† 10 0

40
, d dbe be c e c c

s s r rr rr r
D

pαα αα α α

−
− − = − +∫C α α α α r α α r C C C C C . (113) 

The second-order terms involving the “squared triple-correlations” and “squared 
quadruple-correlations” shown in Equation (112) arise from terms involving the 
quantity ( ) ( )( )0 0

2 ,s sp r α  and are expected to be negligible by comparison to the 
leading term ( )

0

be
ααC . Not explicitly shown in Equation (112) are terms involv-

ing products of triple correlations among parameters and responses, which also 
stem from the quantity ( ) ( )( )0 0

2 ,s sp r α  and which are also negligible by compar-
ison to the leading term ( )

0

be
ααC . The expression provided in Equation (113) has 

been obtained by using Equations (80) and (110). 
5) The predicted best-estimate correlation matrix of the predicted best-estimate 

responses and calibrated model parameters is denoted as be
rαC  and is defined as 

follows: 

( )( ) ( )
†

4 , d dbe be be be
r

D

pα − −∫C α α r r r α α r .              (114) 

The lowest-order expression for be
rαC  will be denoted as ( )

1

be
rαC  and is de-

termined as follows: 

( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( )

†

1 1 41

†
0 0 0 0 0 0

2 1 4

0

, d d

, , , d d

,

be be be be
r

D

be
s s s s s s

D

be
r

p

p

SOT

α

α

− −

   = − − − −   

= +

∫

∫

C α α r r r α α r

α α p r α r r p r α r α α r

C



   (115) 

where:  

( ) ( )( ) ( )( ) ( )

( )

†0 0
40

1

, d d

.

be be
r s s

D

c c e c e
r r rr rr rr

pα

α α

−

− −

= − +

∫C α α r r r α α r

C C C C C



             (116) 

and where “SOT” denotes “second-order terms” involving products of triple and 
quadruple correlations which arise from terms involving the quantities  
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( ) ( )( )0 0
1 ,s sp r α  and ( ) ( )( )0 0

2 ,s sp r α , and which are expected to be negligible by 
comparison to the leading term ( )

0

be
rrC . The expression provided in Equation 

(113) has been obtained by using Equations (80) and (110). 
The transposed matrix ( )†be be

r rα α=C C  is defined below: 

( )( ) ( )
†

4 , d d .be be be be
r

D

pα − −∫C r r α α r α α r              (117) 

Following the same steps as those leading to the result obtained in Equation 
(115) yields the following expression for the lowest-order approximation ( )

1

be
rαC : 

( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( )

†

1 1 41

†
0 0 0 0 0 0

1 2 4

0

, d d

, , , d d

,

be be be be
r

D

be
s s s s s s

D

be
r

p

p

SOT

α

α

− −

   = − − − −
   

= +

∫

∫

C r r α α r α α r

r r p r α α α p r α r α α r

C



  (118) 

where:  

( ) ( )( ) ( )( ) ( ) ( )
† 10 0

40
, d dbe be c e e c c

r s s r rr rr rr r
D

pα α α

−
− − = − +∫C r r α α r α α r C C C C C . (119) 

6) Best-estimate triple correlations among best-estimate predicted responses 
and best-estimate calibrated model parameters, as follows: 

a) the best-estimate predicted triple correlations among three best-estimate 
predicted responses, , ,be be be

k mr r r


, which will be denoted as ( )3 , ,be be be be
k mr r rµ



 for 
, , 1, ,k m TR=  , and is defined as follows:  

( ) ( )( )( ) ( )3 4, , , d d .be be be be be be be be
k m k k m m

D

r r r r r r r r r pµ − − −∫ r α α r
  

      (120) 

The lowest-order expression for ( )3 , ,be be be be
k mr r rµ



 will be denoted as  

( )3 1
, ,be be be be

k mr r rµ 
 

 and is determined by using the first-order expression of the 
best-estimate responses obtained in Equation (104) in Equation (120), which 
consequently takes on the following approximate form: 

( ) ( )( )( ) ( )3 41
, , , d dbe be be be be

k m k k m m
D

r r r r r r pµ δ ρ δ ρ δ ρ  = − − −  ∫ r α α r
  

, (121) 

where:  

( ) ( ) ( ) ( )( ){ }1 0 0
1; ,e e e c e

k k k k rr c s s
k

r r rδ ρ
−
 − + − + C C C E r r p r α  .   (122) 

Recalling the definition provided in Equation (62), recalling the definitions for 
the moments of the experimentally-measured responses provided in Equations 
(52)-(55), and performing the integration in Equation (121) yields the following 
result for the first-order approximation, ( )3 1

, ,be be be be
k mr r rµ 

 

, of the best-estimate 
triple correlations for the best-estimate responses:  

( )3 1
, , ; , , 1, , .be be be be e e e e

k m ijk km m k k m k mr r r t c c c k m TRµ ρ ρ ρ ρ ρ ρ  = − − − − =     

  (123) 

b) the best-estimate predicted triple correlations among a best-estimate cali-
brated model parameter, be

kα , and two best-estimate predicted responses, 
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,be be
mr r



, which will be denoted as ( )3 , ,be be be be
k mr rµ α



 for 1, ,k TP=   and  
, 1, ,m TR=  , is defined as follows:  

( ) ( )( )( ) ( )3 4, , , d dbe be be be be be be be
k m k k m m

D

r r r r r r pµ α α α− − −∫ r α α r
  

 .    (124) 

The lowest-order expression for ( )3 , ,be be be be
k mr rµ α



 will be denoted as  

( )3 1
, ,be be be be

k mr rµ α 
 

 and is determined by using the first-order expression of the 
best-estimate responses and parameters, which consequently takes on the fol-
lowing approximate form: 

( ) ( )( )( ) ( )3 4, , , d dbe be be be be
k m k k m m

D

r r r r pµ α δα β δ ρ δ ρ= + − −∫ r α α r
  

,   (125) 

where:  

( ) ( ) ( ) ( )( ){ }1 0 00
2; ,c e c e

k k k k r rr c s s
k

αδα α α β
−
 − + − + C C C E r r p r α  .   (126) 

Performing the integration in Equation (125) and noting that the model pa-
rameters are uncorrelated with the experimentally-measured responses yields 
the following result:  

( ) ( )3 , ,be be be be e
k m k m mr r cµ α β ρ ρ= +

  

.                 (127) 

c) the best-estimate predicted triple correlations among two best-estimate ca-
librated model parameters, be

kα , beα


, and a best-estimate predicted responses, 
be

mr , which will be denoted as ( )3 , ,be be be be
k mrµ α α



 for , 1, ,k TP=   and  
1, ,m TR=  , is defined as follows:  

( ) ( )( )( ) ( )3 4, , , d dbe be be be be be be be
k m k k m m

D

r r r pµ α α α α α α− − −∫ r α α r
  

 .    (128) 

The lowest-order expression for ( )3 , ,be be be be
k mrµ α α



 will be denoted as  

( )3 1
, ,be be be be

k mrµ α α 
 

 and is determined by using the first-order expression of 
the best-estimate responses and parameters, which consequently takes on the 
following approximate form: 

( ) ( )( )( ) ( )

( )
3 41

, , , d d

.

be be be be be
k m k k m m

D

m k k

r r p

cα

µ α α δα β δα β δ ρ

ρ β β

  = + + − 

= − +

∫ r α α r
  

 

 (129) 

d) the best-estimate predicted triple correlations among three best-estimate 
calibrated model parameters, be

kα , beα


, be
mα , which will be denoted as  

( )3 , ,be be be be
k mµ α α α



 for , , 1, ,k m TP=  , is defined as follows:  

( ) ( )( )( ) ( )3 4, , , d dbe be be be be be be be
k m k k m m

D

pµ α α α α α α α α α− − −∫ r α α r
  

 .  (130) 

The lowest-order expression for ( )3 , ,be be be be
k mµ α α α



 will be denoted as  

( )3 1
, ,be be be be

k mµ α α α 
 

 and is determined by using the first-order expression of 
the best-estimate calibrated parameters, which consequently takes on the follow-
ing approximate form: 

( ) ( )( )( ) ( )3 4, , , d d

.

be be be be be
k m k k m m

D

k m km m k k m k m

p

t c c cα α α α

µ α α α δα β δα β δα β

β β β β β β

= + + +

= + + + +

∫ r α α r
  

    

  (131) 

https://doi.org/10.4236/ajcm.2023.134025


D. G. Cacuci 
 

 

DOI: 10.4236/ajcm.2023.134025 460 American Journal of Computational Mathematics 
 

7) Best-estimate quadruple correlations among best-estimate predicted res-
ponses and best-estimate calibrated model parameters, as follows: 

a) the best-estimate predicted quadruple correlations among four best-estimate 
predicted responses, , , ,be be be be

k m nr r r r


, which will be denoted as  
( )4 , , ,be be be be be

k m nr r r rµ


 for , , , 1, ,k m n TR=  , and is defined as follows:  

( ) ( )( )( )( ) ( )4 4, , , , d dbe be be be be be be be be be
k m n k k m m n n

D

r r r r r r r r r r r r pµ − − − −∫ r α α r
  

 . 

(132) 

The lowest-order expression for ( )4 , , ,be be be be be
k m nr r r rµ



 will be denoted as  

( )4 1
, , ,be be be be be

k m nr r r rµ 
 

 and is determined by using the first-order expression of 
the best-estimate responses, which consequently takes on the following approx-
imate form: 

( )
( )( )( )( ) ( )

4 1

4

, , ,

, d d

.

be be be be be
k m n

be
k k m m n n

D
e e e e e e e
k mn kmn m k n n k m k mn m kn k mn

e e e e
k m n n km n m k k n m k m n

r r r r

r r r r p

q t t t t c c

c c c c

µ

δ ρ δ ρ δ ρ δ ρ

ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ

 
 

= − − − −

= − − − − + +

+ + + + +

∫ r α α r



 

      

    

     (133) 

b) the best-estimate predicted quadruple correlations among a best-estimate 
calibrated model parameter, be

kα , and three best-estimate predicted responses, 
, ,be be be

m nr r r


, which will be denoted as ( )4 , , ,be be be be be
k m nr r rµ α



 for 1, ,k TP=   
and , , 1, ,m n TR=  , is defined as follows:  

( ) ( )( )( )( ) ( )4 4, , , , d dbe be be be be be be be be be
k m n k k m m n n

D

r r r r r r r r r pµ α α α− − − −∫ r α α r
  

 . (134) 

The lowest-order expression for ( )4 , , ,be be be be be
k m nr r rµ α



 will be denoted as 

( )4 1
, , ,be be be be be

k m nr r rµ α 
 

 and is determined by using the first-order expression of 
the best-estimate responses and parameters, which consequently takes on the 
following approximate form: 

( )
( )( )( )( ) ( )

( )

4 1

4

, , ,

, d d

.

be be be be be
k m n

be
k k n n m m

D

e e e e e e e
kmn m k n k mn kn m k n m mn m n n m

r r r

r r r p

t t t c c c c

µ α

δα β δ ρ δ ρ δ ρ

ρ ρ β ρ ρ β ρ ρ ρ ρ ρ ρ

 
 

= + − − −

= − − + + + − − −

∫ r α α r



 

       

 (135) 

c) the best-estimate predicted quadruple correlations among two best-estimate 
calibrated model parameters, be

kα , beα


, and two best-estimate predicted res-
ponses, be

mr , be
nr , which will be denoted as ( )4 , , ,be be be be be

k n mr rµ α α


 for  
, 1, ,k TP=   and , 1, ,m n TR=  , is defined as follows:  

( )
( )( )( )( ) ( )

4

4

, , ,

, d d .

be be be be be
k n m

be be be be be
k k m m n n

D

r r

r r r r p

µ α α

α α α α− − − −∫ r α α r



 



       (136) 

The lowest-order expression for ( )4 , , ,be be be be be
k m nr rµ α α



 will be denoted as 

( )4 1
, , ,be be be be be

k m nr rµ α α 
 

 and is determined by using the first-order expression of 
the best-estimate responses and parameters, which consequently takes on the 
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following approximate form: 

( )
( )( )( )( ) ( )

( )

4 1

4

, , ,

, d d

.

be be be be be
k m n

be
k k n n m m

D

e e
kn m k n m m

r r

r r p

c c

µ α α

δα β δα β δ ρ δ ρ

ρ ρ β β ρ ρ

 
 

= + + − −

= + +

∫ r α α r



 

  

    (137) 

d) the best-estimate predicted quadruple correlations among three best-estimate 
calibrated model parameters, be

kα , beα


, be
mα , and one best-estimate predicted 

response, be
nr , which will be denoted as ( )4 , , ,be be be be be

k m nrµ α α α


 for  
, , 1, ,k m TP=   and 1, ,n TR=  , is defined as follows:  

( )
( )( )( )( ) ( )

4

4

, , ,

, d d .

be be be be be
k m n

be be be be be
k k m m n n

D

r

r r p

µ α α α

α α α α α α− − − −∫ r α α r



 



     (138) 

The lowest-order expression for ( )4 , , ,be be be be be
k m nrµ α α α



 will be denoted as 

( )4 1
, , ,be be be be be

k m nrµ α α α 
 

 and is determined by using the first-order expression 
of the best-estimate responses and parameters, which consequently takes on the 
following approximate form: 

( )
( )( )( )( ) ( )

( )

4

4

, , ,

, d d

.

be be be be be
k m n

be
k k m m n n

D

n km k m m k k m

r

r p

c c cα α α

µ α α α

δα β δα β δα β δ ρ

ρ β β β β β β

= + + + −

= − − +

∫ r α α r



 

   

     (139) 

e) the best-estimate predicted quadruple correlations among four best-estimate 
calibrated model parameters, be

kα , beα


, be
mα , be

nα , which will be denoted as  
( )4 , , ,be be be be be

k m nµ α α α α


 for , , , 1, ,k m n TP=  , is defined as follows:  

( )
( )( )( )( ) ( )

4

4

, , ,

, d d .

be be be be be
k m n

be be be be be
k k m m n n

D

p

µ α α α α

α α α α α α α α− − − −∫ r α α r



 



     (140) 

The lowest-order expression for ( )4 , , ,be be be be be
k m nµ α α α α



 will be denoted as 

( )4 1
, , ,be be be be be

k m nµ α α α α 
 

 and is determined by using the first-order expression 
of the best-estimate parameters, which consequently takes on the following ap-
proximate form: 

( )
( )( )( )( ) ( )

4 1

4

, , ,

, d d

.

be be be be be
k m n

be
k k m m n n

D

k mn kmn m k n k mn n k m k mn k m n

k n m m kn n km m n k k m n

p

q t t t t c c

c c c c

α α α α α α α

α α α α

µ α α α α

δα β δα β δα β δα β

β β β β β β β β

β β β β β β β β β β β β

 
 

= + + + +

= + + + + + +

+ + + + +

∫ r α α r



 

      

    

    (141) 

It is evident from the expressions obtained in this Section, cf. Equations 
(103)-(141), that the triple and quadruple correlations among the best estimate 
predicted responses and calibrated model parameters do not vanish in general. 
Therefore, the fourth-order posterior distribution ( )4 ,bep r α  of the predicted 
responses and calibrated model parameters is not a multivariate normal distri-
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bution (i.e., it is not a multivariate Gaussian). However, if all of the a priori triple 
and quadruple correlations among responses and model parameters are neg-
lected, then all of the posterior results obtained in this Section reduce to the re-
sults predicted by the 2nd-BERRU-PM (“second-order best estimate results with 
reduced uncertainties—predictive modeling) methodology [1] [2]. In this case, 
the quantity ( ),Q α r , which was defined in Equation (63), becomes a quadratic 
form, which was shown in [1] [2] to take on the following minimum value, de-
noted as ( )0

minQ , at the second-order saddle point ( ) ( )( )0 0,s sr α :  

( )
( ) ( )

( )

( ) ( )
( )

( )( ) ( ) ( )( )
( ) ( ) ( )

† 10 0
0

min 0 00 0

† 10 0

1†
.

c c
c crr r

c
r

e e e
rr

e e c e
c rr rr c

Q α

α αα

−

−

−

    − −
   =     − −    

+ − −

   = − + −   

r E r r E rC C
C Cα α α α

r r C r r

E r r C C E r r

           (142) 

As the expression obtained in Equation (142) indicates, the quantity ( )0
minQ  

represents the square of the length of the vector ( ) e
c − E r r , measuring (in 

the corresponding metric) the deviations between the experimental and nomi-
nally computed responses. The quantity ( )0

minQ  is independent of calibrating (or 
adjusting) the original data, so it can be evaluated directly from the given data 
(i.e., model parameters and computed and measured responses, together with 
their original uncertainties) after having computed the matrix ( ) 1e c

rr rr

−
+C C . As 

the dimension of the vector ( ) e
c − E r r  indicates, the number of degrees of 

freedom characteristic of the calibration under consideration is equal to the 
number TR of experimental responses. The quantity ( )0

minQ  plays the role of a 
“ 2χ -like consistency indicator,” which can be used in the course of quantitative 
model validation since it quantifies the degree of agreement between the com-
puted and the experimentally-measured responses, before actually combining 
the computational and experimental information. Agreement between experi-
mental and computational results is indicated when ( )0

min 1Q   (per degree of free-
dom); values of ( )0

minQ  that differ greatly from unity indicates “inconsistency” (i.e., 
lack of validation) or perhaps even gross errors. In such cases, the individual 
contributions to ( )0

minQ  must be examined, and the outliers (i.e., very large or 
very small individual contributions) need to be investigated as possible sources 
of inconsistencies that could invalidate either parts of the model or parts of the 
data (or both).  

The results provided in Equations (103)-(141) highlight the fact that they can 
be utilized both for “forward/direct predictive modeling” and for “inverse pre-
dictive modeling.” The “forward” or “direct problem” solves the “parameter-to- 
output” mapping that describes the “cause-to-effect” relationship in the physical 
process being modeled. The “inverse problem” attempts to solve the “output-to- 
parameters” mapping. Since the framework of 4th-BERRU-PM methodology com-
prises the combined phase-space of parameters and responses, it can be used for 
solving both forward/direct and inverse problems. The solution of the “for-
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ward/direct problem” is provided by the expression for the predicted best-estimate 
responses together with the corresponding reduced predicted uncertainties. Con-
versely, the solution of the “inverse problem” is provided by the expressions for 
the predicted best-estimate calibrated parameters and their reduced predicted 
uncertainties.  

4. Conclusions 

This work has presented the fourth-order predictive modeling methodology 
designated by the acronym 4th-BERRU-PM methodology, which uses the Max-
Ent principle to incorporate fourth-order moments (means, covariances, skew-
ness, kurtosis) of model parameters, computed and measured model responses, 
as well as fourth (and higher) order sensitivities of computed model responses to 
model parameters. The acronym 4th-BERRU-PM, which designates this new 
methodology, stands for “fourth-order best-estimate results with reduced un-
certainties.” The results predicted by the 4th-BERRU-PM incorporates, as partic-
ular cases, the results previously predicted by the first-order BERRU-PM metho-
dology [19], the second-order predictive modeling methodology 2nd-BERRU-PM 
[1] [2] and vastly generalizes the results produced by extant inverse methods 
[20], data adjustment [3] [4], and data assimilation [5] [6] [7] procedures, all of 
which rely on the minimization of user-defined least-squares-type functionals 
for estimating the perceived discrepancies between measured and computed re-
sults/responses. The key novel features of the 4th-BRERRU-PM methodology in-
clude the following:  

1) The mean values, the second-, third-, and fourth-order correlations among 
the computed responses, which are incorporated within the 4th-BERRU-PM 
methodology, include high-order (as high as needed) response sensitivities to 
model parameters, thus generalizing all of the previous formulas of this type 
found in data adjustment/assimilation procedures published to date. These arbi-
trarily high order sensitivities can be computed most efficiently by applying the 
high-order adjoint methods developed by Cacuci [13] [14]. 

2) The 4th-BERRU-PM methodology predicted posterior parameter-response 
correlations are not obtainable by any extant data assimilation methods.  

3) The 4th-BERRU-PM methodology enjoys unrivalled computational efficien-
cy, since most intensive computation, required to compute the inverse matrix 

( ) 1rr rr
e c

−
+C C , entails the inversion of a matrix of size TR TR× , where TR de-

notes the number of distinct computed (or measured) responses. This is com-
putationally very advantageous, since in most practical situations, the number of 
responses is much smaller than the number of model parameters.  

4) The 4th-BERRU-PM methodology is the first and thus far only predictive 
modeling methodology which incorporates triple and quadruple correlations for 
model parameters and experimentally-measured response and is also the only 
methodology thus far to yield closed-form expressions for computing the pre-
dicted best-estimates triple and quadruple correlations among the best-estimate 
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predicted responses and calibrated model parameters. 
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Appendix A. Generic Mathematical/Computational Model of  
a Physical System 

The generic mathematical/computational model used in this work is the same as 
has been used in previous works [13] [14] for computing high-order sensitivities, 
comprising equations that relate the system’s state variables to the system’s in-
dependent variables and parameters, which are considered to be afflicted by un-
certainties. The parameters will be denoted as 1, , TPα α , where the subscript 
TP indicates “total number of imprecisely known parameters.” Without loss of 
generality, the imprecisely known model parameters can be considered to be 
real-valued scalars which are considered to be the components of a “vector of 
parameters” denoted as ( )†

1, , TP
TPα α ∈α    , where TP

  denotes the TP- 
dimensional subset of the set of real scalars. The components of TP∈α   are 
considered to include imprecisely known geometrical parameters that charac-
terize the physical system’s boundaries in the phase-space of the model’s inde-
pendent variables. The nominal parameter values will be denoted as  

†0 0 0 0
1 , , , ,i TPα α α  α    ; the superscript “0” will be used to denote “nominal 

values.”  
The generic nonlinear model is considered to comprise TI independent va-

riables which will be denoted as , 1, ,ix i TI=  , where the sub/superscript “TI” 
denotes the “total number of independent variables.” The independent variables 
are considered to be components of a TI-dimensional column vector denoted as 

( )†
1, , TI

TIx x ∈x    . The vector TI∈x   is considered to be defined on a 
phase-space domain denoted as ( )Ω α  and defined as follows:  
( ) ( ) ( ){ }; 1, ,i i ix i TIλ ωΩ −∞ ≤ ≤ ≤ ≤ ∞ =α α α  . The lower boundary-point of 

an independent variable is denoted as ( )iλ α  and the corresponding upper 
boundary-point is denoted as ( )iω α , either or both of which could be un-
bounded. The boundary of ( )Ω α , which will be denoted as ( )∂Ω α , comprises 
the set of all of the endpoints ( ) ( ), , 1, ,i i i TIλ ω =α α   of the respective inter-
vals on which the components of x  are defined, i.e.,  

( ) ( ) ( ){ }, 1, ,i i i TIλ ω∂Ω ∪ =α α α  . The boundary ( )∂Ω α  is also considered 
to be imprecisely known since it may depend on both geometrical parameters 
and material properties. For example, the “extrapolated boundary” in models 
based on diffusion theory depends both on the imprecisely known physical di-
mensions of the problem’s domain and also on the medium’s properties (atomic 
number densities, microscopic transport cross sections, etc.).  

The model of a nonlinear physical system comprises coupled equations which 
can be represented in operator form as follows:  

( ) ( ) ( ), , .x  = ∈Ω N u x α Q x α , x α                (143) 

The quantities which appear in Equation (143) are defined as follows:  
(i) ( ) ( ) ( ) †

1 , , TDu u  u x x x   is a TD-dimensional column vector of de-
pendent variables (also called “state functions”), where “TD” denotes “total 
number of dependent variables;”  
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(ii) ( ) ( ) ( ) †
1; ; , , ;TDN N      N u x α u α u α   denotes a TD-dimensional col-

umn vector, having components ( ); , 1, ,iN i TD=u α  , which are operators that 
act on the dependent variables ( )u x , the independent variables x  and the 
model parameters α ;  

(iii) ( ) ( ) ( ) †
1, ; , , ;TDq q  Q x α x α x α   is a TD-dimensional column vector 

which represents inhomogeneous source terms, which usually depend nonli-
nearly on the uncertain parameters α ;  

Since the right-side of Equation (143) may contain “generalized functions/ 
functionals” (e.g., Dirac-distributions and derivatives thereof), the equalities in 
this work are considered to hold in the distributional (“weak”) sense. When dif-
ferential operators appear in Equation (143), their domains of definition must be 
specified by providing boundary and/or initial conditions. Mathematically, these 
boundaries and/or initial conditions can be represented in operator form as fol-
lows: 

( ) ( ) ( ); ; , , .x  − = ∈∂Ω B u x α x C x α x α0              (144) 

where the column vector 0  has TD components, all of which are zero. The 
components ( ); , 1, ,iB i TD=u α   of ( ) ( ) ( ) †

1; ; , , ;TDB B  B u α u α u α   are 
nonlinear operators in ( )u x  and α , which are defined on the boundary 

( )x∂Ω α  of the model’s domain ( )xΩ α . The components  
( ); , 1, ,iC i TD=x α   of ( ) ( ) ( ) †

1, ; , , ;TDC C  C x α x α x α   comprise inho-
mogeneous boundary sources which are nonlinear functions of α , in general. 

The model’s nominal solution, denoted as ( )0u x , is obtained by solving Eq-
uations (143) and (144) at the nominal parameter values, namely : 

( ) ( )0 0 0; , , x  = ∈Ω N u x α Q x α x ,                (145) 

( ) ( ) ( )0 0 0 0; ; , , .x  − = ∈∂Ω B u x α x C x α x α0            (146) 

The model response considered in this work is a nonlinear functional of the 
model’s state functions and parameters which can be generically represented as 
follows:  

( ) ( )
( )

( )

( )

( )1

1

1; ; ; d d
TI

TI

TIR S x x
ω ω

λ λ

      ∫ ∫
α α

α α

u x α u x α x   ,         (147) 

where ( );S   u x α  is suitably differentiable nonlinear function of ( )u x  and 
of α . Noteworthy, the components of α  also include parameters that may 
occur just in the definition of the response under consideration, in addition to 
the parameters that appear in Equations (143) and (144). Since the system do-
main’s boundary, ( )∂Ω α , is considered to be subject to uncertainties (e.g., 
stemming from manufacturing uncertainties), the model response ( );R   u x α  
will also be affected by the uncertainties that affect the endpoints  
( ) ( ), , 1, ,i i i TIλ ω =α α  , of ( )∂Ω α . Since the response ( );R   u x α  is a scalar 

quantity, it can be used, in particular, to represent mathematically any measured 
quantity that depends on the model’s state functions at a point in phase-space.  
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The model parameters usually stem from processes that are external to the 
physical system. Without loss of generality, the model parameters will be consi-
dered in this work to be real-valued scalars, and will be denoted as 1, , TPα α , 
where the quantity “TP” denotes the “total number of model parameters.” Ma-
thematically, these parameters are considered as components of a TP-dimen- 
sional vector denoted as ( )†

1, , TP
TP Dαα α ∈ ∈α    , defined over a domain 

Dα , which is included in a TP-dimensional subset of the TP
 . The components 

of the TP-dimensional column vector TP∈α   are considered to include im-
precisely known geometrical parameters that characterize the physical system’s 
boundaries in the phase-space of the model’s independent variables. The model 
parameters can be considered to be quasi-random scalar-valued quantities which 
follow an unknown multivariate distribution denoted as ( )pα α . The moments 
of ( )pα α  are defined as follows: 

(i) The nominal (or expected, or mean) values of the model parameters, as-
sumed to be known, are denoted as 0

iα  and are formally defined as follows: 

( )0 d , 1, , .i i
D

p i TP
α

αα α =∫ α α                     (148) 

(ii) The covariance, ( )cov ,i j ijcαα α  , of two model parameters, iα  and jα , 
is also assumed to be known and is defined as follows: 

( ) ( )( ) ( ) 0cov , d ; ; , 1, , .i j ij i j i i i
D

c p i j TP
α

α
αα α δα δα δα α α− =∫ α α     (149) 

The covariances ( )cov ,i j ijcαα α   are considered to be the components of 

the parameter covariance matrix, denoted as ( )cov ,i j ij TP TPTP TP
cααα α α

××
     C   . 

The standard deviation of a parameter iα  is defined as follows: i iicα ασ  , 
1, ,i TP=  . 

(iii) The triple correlations, assumed to be known, of three model parameters 

iα , jα , and kα , are denoted as ijktα , , , 1, ,i j k TP=  , and are defined as fol-
lows:  

( )( )( ) ( )d ; , , 1, , ;ijk i j k
D

t p i j k TP
α

α
αδα δα δα =∫ α α           (150) 

In particular, the triple self-correlation for a parameter, iα , is defined as fol-
lows: 

( ) ( )3 d ; 1, , ;i i
D

t p i TP
α

α
αδα =∫ α α                  (151) 

(iv) The quadruple correlations, assumed to be known, of four model para-
meters iα , jα , kα , and α



, are denoted as ijkqα


, and are defined as follows 
for , , , 1, ,i j k TR=  : 

( )( )( )( ) ( )d ; , , , 1, , .ijk i j k
D

q p i j k TP
α

α
αδα δα δα δα =∫ α α

 

        (152) 

In particular, the quadruple self-correlation for a parameter, iα , is defined as 
follows: 
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( ) ( )4 d ; 1, , ;i i
D

q p i TP
α

α
αδα =∫ α α                 (153) 

The results computed using a mathematical model are customarily called 
“model responses” (or “system responses” or “objective functions” or “indices of 
performance”). Each of these model responses is formally a function (implicit 
and/or explicit) of the model parameters α . Consider that there are a total 
number of TR such model responses, each response being denoted as ( )kr α , 

1, ,k TR=  . The uncertainties affecting the model parameters α  will “propa-
gate” both directly and indirectly, through the model’s dependent variables, to 
induce uncertainties in the computed responses. Each computed response, ( )kr α , 
can be formally expanded in a multivariate Taylor-series around the parameters’ 
mean values. In particular, the fourth-order Taylor-series of a model response 
around the expected (or nominal) parameter values 0α  has the following for-
mal expression: 

( ) ( ) ( ) ( )

( )

( )

0 0

0

04 4

2
0

1 1 2
1 1 11 1 21 1 2

3

1 2 3
1 1 11 2 3 1 2 3
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1 1 2 3

1
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1
3!

1
4!

TP TP TP
k k

j
j j jj j j

TP TP TP
k

j j j j j j

TP
k

j j j j j

k k j j

j j j

r r
rr

r

r

α
α α α

α α α

α α α α

δ δα δα

δα δα δα

= = =

= = =

=

∂ ∂
= + +

∂ ∂ ∂

∂
+

∂ ∂ ∂

∂

∂ ∂ ∂

      
   
      

  
 
  

  +  ∂  

∑ ∑∑

∑∑∑

∑

α α

α

α

α α
α

α

α

α

1 2 3 4
1 1 11 2 3

.
TP TP TP

k
j j j

j j j jδα δα δα δα ε
= = =

+∑∑ ∑

   (154) 

In Equation (154), the quantity ( )0
kr α  indicates the computed value of the 

response using the expected/nominal parameter values ( )†0 0 0
1 , , TPα αα   . The 

notation {} 0α
 indicates that the quantities within the braces are also computed 

using the expected/nominal parameter values. The quantity kε  in Equation (154) 
comprises all quantifiable errors in the representation of the computed response 
as a function of the model parameters, including the truncation errors ( )5

jO δα  
of the Taylor-series expansion, possible bias-errors due to incompletely modeled 
physical phenomena, and possible random errors due to numerical approxima-
tions. The radius/domain of convergence of the series in Equation (154) deter-
mines the largest values of the parameter variations jαδ  which are admissible 
before the respective series becomes divergent. In turn, these maximum admiss-
ible parameter variations limit, through Equation (154), the largest parameter 
covariances/standard deviations which can be considered for using the Tay-
lor-expansion for the subsequent purposes of computing moments of the distri-
bution of computed responses.  

As is well known, and as indicated by Equation (154), the Taylor-series of a 
function of TP-variables [e.g., ( )kr α ] comprises TP 1st-order derivatives,  

( )1 2TP TP +  distinct 2nd-order derivatives, and so on. The computation by 
conventional methods of the nth-order functional derivatives (called “sensitivities” 
in the field of sensitivity analysis) of a response with respect to the TP-parameters 
(on which it depends) would require at least ( )nO TP  large-scale computations. 
The exponential increase—with the order of response sensitivities—of the num-
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ber of large-scale computations needed to determine higher-order sensitivities is 
the manifestation of the “curse of dimensionality in sensitivity analysis,” by 
analogy to the expression coined by Bellman [21] to express the difficulty of us-
ing “brute-force” grid search when optimizing a function with many input va-
riables. The “nth-order Comprehensive Adjoint Sensitivity Analysis Methodology 
for Response-Coupled Forward/Adjoint Linear Systems” (nth-CASAM-L) con-
ceived by Cacuci [13] and the “nth-order Comprehensive Adjoint Sensitivity 
Analysis Methodology for Nonlinear Systems” (nth-CASAM-N) conceived by 
Cacuci [14] are currently the only methodologies that enable the exact and effi-
cient computation of arbitrarily high-order sensitivities of model responses to 
model parameters while overcoming the curse of dimensionality. 

Uncertainties in the model’s parameters will evidently give rise to uncertain-
ties in the computed model responses ( )kr α . The computed model responses 
are considered to be distributed according to an unknown distribution denoted 
as ( )cp r . The unknown joint probability distribution of model parameters and 
responses will be denoted as ( ) ( ) ( ),c cp p pαα r α r ; this joint probability dis-
tribution is formally, defined on a domain rD D Dα ∪ , where Dα  denotes 
the domain of definition of the parameters and rD  denotes the domain of defi-
nition of the model responses. The approximate moments of the unknown dis-
tribution of ( )kr α  are obtained by using the so-called “propagation of errors” 
methodology, which entails the formal integration over ( ) ( ) ( ),c cp p pαα r α r  
of various expressions involving the truncated Taylor-series expansion of the 
response provided in Equation (154). This procedure was first used by Tukey 
[22]; Tukey’s results were explicitly generalized to 6th-order by Cacuci [13] [14]. 

The expectation value, ( )c kE r , of a computed response ( )kr α  is obtained 
by integrating formally Equation (154) over ( ),cp α r , which yields the follow-
ing expression:  

( ) ( ) ( )

( ) ( ) ( )

( )

0 0

04 4

2 3

1 2 1 2 3
1 1 1 1 11 2 1 2 31 2 1 2 3

4

1 1 1 11 2 3 1 2 3

0

1
24

, d d

1 1
2 6

TP TP TP TP TP
k k

j j
j j j j jj j j j j

TP TP TP TP
k

j j j j j j j j

c k k c
D

k j j j

j

r
c

E r r p

r
r t

r
q

α α

α α α α α

α α α α

= = = = =

= = = =

∂ ∂

∂ ∂ ∂ ∂ ∂

∂

∂ ∂ ∂

     = + +   
      

  +  ∂  

∑∑ ∑∑∑

∑∑∑∑

∫

α α

α

α α

α

α α r α r

α



1 2 3 4j j j
α +

 (155) 

The expectation values ( )c kE r , 1, ,k TR=  , are considered to be the com-
ponents of a vector defined as follows: ( ) ( ) ( ) ( ) †

1 , , , ,c c c k c TRE r E r E r  E r    . 
Notably, the expected value, ( )c kE r , of the expected computed response, differs 
from the value, ( )0

kr α , of the model response computed at the nominal/mean 
value of the model parameters.  

The expression of the correlation between a computed responses and a para-
meter variance, which will be denoted as ( )cor ,i krα , is presented below: 

( ) ( )( ) ( )cor , , d di k i k c
D

r r pα δα δ∫ α r α r  
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r
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r
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r
q

αα

α

α α

α α α

α = =

= = =

=

∂

∂ ∂

∂

∂ ∂ ∂

   ∂   = +   
∂      

  + + 
  

∑ ∑

∑∑ ∑

∑
α

α

α

α

α

α



          (156) 

where 

( ) ( ) , 1, , .k k c kr r E r k TRδ  − = α                 (157) 

The parameter-response correlations, ( ) ( )cor , cor ,i k k ir rα α= , 1, ,i TP=  , 
1, ,k TR=  , are considered to be the components of a “parameter-response 

computed correlation matrix” denoted as c
rαC  and defined as follows: 

( ) ( )

( ) ( )
( )

1 1 1
†

1

cor , cor ,
.

cor , cor ,

TR
c c

r r

TP TP TR

r r

r r
α α

α α

α α

 
  = 
 
 

C C


   



          (158) 

The expression of the covariance between two responses kr  and r


, denoted 
as ( )cov ,kr r



, is presented below: 

( ) ( )( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1 2 3
0

1
01 2 2 3

0

1 1 11 2 3 1 2 3 1 2 3
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2 2
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1
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1
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j j j
j j j

k
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j j j j

k k c
D
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t

r r
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r r
c
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α

α α α α

δ δ

α α

α α α α α α= = =

= =

∂ ∂

∂ ∂ ∂ ∂

 ∂ ∂ =  ∂ ∂  

 ∂ ∂ ∂ ∂ + + ∂ ∂ ∂ ∂ ∂ ∂  

  +  
  

∑∑∑

∫

∑∑
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α

α

α α
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α α

α α α α



 



 



( )

( ) ( ) ( ) ( )

2 3 4 1 2 3 4
4

4
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1 2 3 4
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TP TP TP TP

j j j j
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r r r r
q

α α α

α

α α α α α α α α

= = = =

= = = =

−

 ∂ ∂ ∂ ∂ + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

∑∑∑∑

∑∑∑∑
α

α α α α
 



(159) 

The covariances ( )cov ,kr r


, , 1, ,k TR=  , are considered to be the compo-
nents of a “computed-responses covariance matrix” denoted as c

rrC  and de-
fined as follows:  

( ) ( )

( ) ( )

1 1 1

1

cov , cov ,

cov , cov ,

TR
c
rr

TP TP TR

r r r r

r r r r

 
 
 
 
 

C


   



.                (160) 

The triple correlations, denoted as ( )3 , ,k mr r rµ


, among three responses kr , 
r


 and mr , are defined as follows:  

( ) ( )( )( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )
1 2 3 4 1 2 3 4

1 2 3 4

1 2 3
01 2 3 1 2 3

1 1 1 1 1 2 3 4
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1 1 1
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t

r r r α α α

α

µ δ δ δ

α α α

α α α α= = = =

= = =

+ −

 ∂ ∂ ∂ =  
∂ ∂ ∂  

∂ ∂ ∂

∂ ∂ ∂ ∂
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( ) ( ) ( ) ( )1 2 3 4 1 4 2 3
01 2 3 4

2
k m

j j j j j j j j
j j j j

r r r
q c cα α α

α α α α

∂ ∂ ∂ + − +
∂ ∂ ∂ ∂ α

α α α


     (161) 

In particular, setting k m= =  in Equation (161) yields the expression of the 
(third-order) triple self-correlation, ( )3 krµ , for a response kr , which is defined 
as follows: 

( ) ( ) ( )3
3 , d d , 1, ,k k c

D

r r p k TRµ δ =∫ α r α r  .           (162) 

The expressions of the triple-correlations ( )3 , ,i kr rµ α


 and ( )3 , ,i j krµ α α  
among parameters and responses will not be considered in this work but are 
provided in [13] [14].  

The expression of the quadruple-correlations of the distribution of responses, 
denoted as ( )4 , , ,k m nr r r rµ



, among four responses, kr , r


, mr  and nr , is de-
fined as follows: 

( ) ( )( )( )( ) ( )

( ) ( ) ( ) ( )
1 2 3 4

01 2 3 4 1 2 3 4
1 1 1 1

4 , , , , d d
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k m n

j j j j
j j j j j j j j
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D

r r r r
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r r r r r r r r p
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α α α α

µ δ δ δ δ

= = = =

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂

  = + 
  

∑∑∑∑

∫

α

α α α α

α r α r



 





 (163) 

In particular, setting k m n= = =  in Equation (163) yields the fourth-order 
self-correlation, ( )4 krµ , for a response kr , which is defined as follows: 

( ) ( ) ( )4
4 , d d , 1, ,k k c

D

r r p k TRµ δ =∫ α r α r  .            (164) 

The expressions of the quadruple-correlations among parameters and res-
ponses will not be considered in this work but are provided in [13] [14].  

Appendix B. Auxiliary Computations for Constructing the  
Fourth-Order Maximum Entropy Distribution for Model  
Parameters and Responses 

It follows from Equations (15)-(29) that the functions ( ) ( )1
kΨ a , ( ) ( )1

kΧ a , for 
1, ,k TR=  , and ( ) ( )2

iΨ a , ( ) ( )2
iΧ a  for 1, ,i TP=  , can be obtained by dif-

ferentiating the function ( )Φ a  with respect to the components of the Lagrange 
multiplier ( ) ( )( )†1 2,a a a , the definition of which is reproduced below: 

( ) ( )† † † 11 1exp d exp exp
2 2c c

D

K K η−     Φ − − = =        ∫a a u u Bu u a B a a ,  (165) 

where: 

( )( )

( )
( )( ) ( )

2
1 222

2
TR TP

TR TP
c cK Det

Det

+
+π

π  =  C
B

 ;             (166) 

( ) †1 ;
2

c c
rr r

c c c
r

α

α αα

η
 
 
 

C C
a a C a C

C C
  .                  (167) 

The quantity ( )η a , which appears in the exponent of the quantity ( )Φ a  
on the rightmost side of Equation (165), has the following expression: 
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( ) ( ) ( )( )
( )

( )

( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1†1 2†
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† † † †1 1 1 2 2 1 2 2

1 1 1 2 2 2

1 1 1 1 1 1
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2 2 2 2
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c c
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i j i j i j i j i j i j
i j i j i j

a a r r a a r a a

α

α αα

α α αα

η

α α α
= = = = = =

  
 =     

= + + +

= + +∑∑ ∑∑ ∑∑

aC C
a a C a a a

C C a

a C a a C a a C a a C a



(168) 

Differentiating Equation (165) with respect to a Lagrange multiplier ( )1
ka  

yields the following relation, for 1, ,k TR=  : 

( )
( ) ( ) ( ) ( ) ( )1† †

,11

1exp d exp
2k c k

Dk

r K
a

δ η
∂Φ    = − − − = Φ    ∂ ∫

a
a u u Bu u a a ,    (169) 

where, for each 1, ,k TR=  , the quantity ( )1
,1kΦ  is defined as follows:  

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )1 1 2

,1 1
1 1
cov , cor , ; 1, , .

TR TP

k j k j j k j
j jk

r r a r a k TR
a
η

α
= =

∂
Φ = + =

∂
∑ ∑

a
a   .   (170) 

Differentiating the expression in Equation (169) with respect to the same La-
grange multiplier ( )1

ka  yields the following relation for the second-order un-
mixed derivatives of ( )Φ a  with respect to ( )1

ka , for 1, ,k TR=  : 

( )
( ) ( ) ( ) ( ) ( )

2
2 2† †

,11 1

1exp d exp ,
2k c k

Dk k

r K
a a

δ η
∂ Φ    = − − = Φ    ∂ ∂ ∫

a
a u u Bu u a      (171) 

where, for each 1, ,k TR=  , the quantity ( )2
,1kΦ  is defined as follows: 

( )
( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( ) ( )

1
22 1 1,1

,1 ,1 ,11 1
var , ; 1, ,k

k k k k k
k k

r r k TR
a a

η∂Φ ∂  Φ +Φ = + Φ = ∂ ∂

a a
a a  .  (172) 

Differentiating the expressions in Equation (171) with respect to the same La-
grange multiplier ( )1

ka  yields the following relation for the third-order unmixed 
derivatives of ( )Φ a  with respect to ( )1

ka , for 1, ,k TR=  : 

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

3
3 † †

1 1 1

3 1
,1

1exp d
2

exp ; 1, , ;

k
Dk k k
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K k TR
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η

∂ Φ  = − − − 
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 = Φ = −Ψ = 

∫
a

a u u Bu u

a a 

       (173) 

where: 

( )
( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )
( ) ( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 1
3 2 1 2 1,1 ,1
,1 ,1 ,1 ,1 ,11 1 1

31 1
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2
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k k k k

a a a
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η∂Φ ∂Φ∂
Φ +Φ = Φ +Φ Φ
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 = Φ + Φ = 

a aa
a a a a

a a





 (174) 

Differentiating the expressions in Equation (173) with respect to the same La-
grange multiplier ( )1

ka  yields the following relation for the fourth-order un-
mixed derivatives of ( )Φ a  with respect to ( )1

ka , for 1, ,k TR=  : 

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

4
4 † †

1 1 1 1

4 1
,1

1exp d
2

exp ; 1, , ;

k
Dk k k k
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a a a a

K k TR

δ

η

∂ Φ  = − − 
 ∂ ∂ ∂ ∂

 = Φ = Χ = 

∫
a

a u u Bu u

a a 

     (175) 
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where: 
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a a
a a a

a

a a a

a a



4
; 1, , .k TR= 

 (176) 

Differentiating Equation (165) with respect to a Lagrange multiplier ( )2
ia  

yields the following relation for the first-order derivatives of ( )Φ a  with re-
spect to ( )2

ia , for 1, ,i TP=  :  

( )
( ) ( ) ( ) ( )1† †

,22

1exp d exp
2i c i

Di

K
a

δα η
∂Φ    = − − − = Φ    ∂ ∫

a
a u u Bu u a ,     (177) 

where: 

( ) ( )
( )

( ) ( ) ( ) ( )1 1 2
,2 2

1 1
cor , cov , ; 1, , .

TP TP

i j i j j i j
j ji

a r a i TP
a
η

α α α
= =

∂
Φ = + =

∂
∑ ∑

a
      (178) 

Differentiating the expression in Equation (177) with respect to the same La-
grange multiplier ( )2

ia  yields the following relation for the second-order un-
mixed derivatives of ( )Φ a  with respect to ( )2

ia , for 1, ,i TP=  : 

( )
( ) ( ) ( ) ( ) ( )
2

2 2† †
,22 2

1exp d exp ,
2i c i

Di i

K
a a

δα η
∂ Φ    = − − = Φ    ∂ ∂ ∫

a
a u u Bu u a     (179) 

where, for each 1, ,i TP=  , the quantity ( )2
,2iΦ  is defined as follows: 

( )
( ) ( )
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( ) ( ) ( ) ( )

1
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i i i i i
i i
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a a

η
α α

∂Φ ∂  Φ +Φ = + Φ = ∂ ∂

a a
a a  . (180) 

Differentiating the expression in Equation (179) with respect to the same La-
grange multiplier ( )2

ia  yields the following relation for the third-order unmixed 
derivatives of ( )Φ a  with respect to ( )2

ia , for 1, ,i TP=  : 

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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3 † †

2 2 2

3 2
,2

1exp d
2

exp ; 1, , .

i
Di i i

i c i

a a a

K i TP

δα

η

∂ Φ  = − − − 
 ∂ ∂ ∂

 = Φ = −Ψ = 

∫
a
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      (181) 

where: 
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 (182) 

Differentiating the expressions in Equation (181) with respect to the same La-
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grange multiplier ( )2
ia  yields the following relation for the fourth-order un-

mixed derivatives of ( )Φ a  with respect to ( )2
ia , for 1, ,i TP=  : 

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

4
4 † †

2 2 2 2

4 2
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1exp d
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∫
a

a u u Bu u
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     (183) 

where: 
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2 42 1 1
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 (184) 
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