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Abstract 
This work (in two parts) will present a novel predictive modeling methodol-
ogy aimed at obtaining “best-estimate results with reduced uncertainties” for 
the first four moments (mean values, covariance, skewness and kurtosis) of 
the optimally predicted distribution of model results and calibrated model 
parameters, by combining fourth-order experimental and computational in-
formation, including fourth (and higher) order sensitivities of computed 
model responses to model parameters. Underlying the construction of this 
fourth-order predictive modeling methodology is the “maximum entropy 
principle” which is initially used to obtain a novel closed-form expression of 
the (moments-constrained) fourth-order Maximum Entropy (MaxEnt) proba-
bility distribution constructed from the first four moments (means, cova-
riances, skewness, kurtosis), which are assumed to be known, of an otherwise 
unknown distribution of a high-dimensional multivariate uncertain quantity 
of interest. This fourth-order MaxEnt distribution provides optimal compati-
bility of the available information while simultaneously ensuring minimal 
spurious information content, yielding an estimate of a probability density 
with the highest uncertainty among all densities satisfying the known mo-
ment constraints. Since this novel generic fourth-order MaxEnt distribution 
is of interest in its own right for applications in addition to predictive model-
ing, its construction is presented separately, in this first part of a two-part 
work. The fourth-order predictive modeling methodology that will be con-
structed by particularizing this generic fourth-order MaxEnt distribution will 
be presented in the accompanying work (Part-2). 
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Assimilation, Data Adjustment, Reduced Predicted Uncertainties, Model  
Parameter Calibration 

 

1. Introduction 

Scientific progress stems from the judicious combination of experimental in-
formation with results produced by computational models, neither of which are 
perfectly accurate. On the one hand, computations are afflicted by errors stem-
ming from numerical procedures, uncertain model parameters, boundary/initial 
conditions and/or imperfectly known physical processes. On the other hand, re-
sults of measurements are afflicted by experimental errors, which means that 
around any reported experimental value there always exists a range of values 
that may also be plausibly representative of the true but unknown value of the 
measured quantity. Extracting “best estimate” values for model parameters and 
predicted results, together with “best estimate” uncertainties for these parame-
ters and results requires the combination of experimental and computational 
data and their uncertainties.  

The earliest systematic activities aimed at extracting best-estimate values for 
model parameters were initiated in the mid-1960s [1] [2], in the course of eva-
luating neutron cross sections by using time-independent reactor physics models 
and experiments for evaluating, computationally and experimentally, so-called 
“integral quantities” (also called “system responses”) such as reaction rates and 
multiplication factors. A decade later, these activities had reached conceptual 
maturity under the name of “cross section adjustment” methodology [3] [4]. 
This methodology employs a user-defined least-square functional for combining 
uncertainties in the model parameters with uncertainties in the experimental 
data, subject to the hard constraint represented by the reactor physics model li-
nearized with respect to the model parameters. The resulting “adjusted” neutron 
cross sections (model parameters) and their “adjusted” uncertainties were sub-
sequently employed in the respective reactor physics model to predict improved 
“model responses,” such as improved reaction rates and reaction rate ratios, 
reactor multiplication factors, Doppler coefficients. By the late 1970s, adjoint 
neutron fluxes were introduced and used [5] [6] to compute efficiently the 
first-order response sensitivities, which were used as weighting functions in the 
least squares adjustment procedure. It is important to note that all of these 
works dealt with the time-independent linear neutron transport or diffusion eq-
uation, as encountered in reactor physics and shielding, for which the corres-
ponding adjoint equations were already known and readily available.  

In the late 1980s and during the 1990s, the fundamental concepts underlying 
the above-mentioned “data adjustment” methodology were “rediscovered” in the 
geophysical sciences while developing the so-called “data assimilation” proce-
dure, in that the concepts underlying “data assimilation” are the same as those 
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underlying the previously developed “data adjustment” procedure. Since then, 
numerous works have been published on “data assimilation;” the most repre-
sentative can be found cited in the books by Lewis et al. [7], Lahoz et al. [8], and 
Cacuci et al. [9]. The data assimilation procedures also minimize, in a least- 
squares procedure, a “user-defined quadratic functional” which is meant to 
represent the discrepancies between computed and measured responses. The 
main differences between the data adjustment and data assimilation methods are 
as follows: 1) the data adjustment method are aimed at time-dependent mod-
els/systems, whereas the data assimilation methods are aimed at time-dependent 
models/systems; 2) the data adjustment methods can adjust/calibrate simulta-
neously model parameters and model responses, whereas the data assimilation 
methods can adjust/calibrate only model responses and initial conditions. 

In the late 1990s, Cacuci and Ionescu-Bujor [10] [11] have developed a pre-
dictive modeling methodology which significantly generalizes and extends the 
“data adjustment and/or assimilation” methods by dispensing with the need to 
minimize the a priori user-defined “cost functional”, and by replacing the re-
spective least-squares minimization procedure with the “principle of maximum 
entropy” (MaxEnt), originally formulated by Jaynes [12], to attain optimal com-
patibility of the available information, while simultaneously ensuring minimal 
spurious information content. This methodology has been extended by Cacuci 
[13] to include the predictive modeling of coupled multi-physics systems, lead-
ing to the development of the “BERRU-PM” mathematical framework [14] for 
obtaining best-estimate optimal results with reduced predicted uncertainties. 
The “BERRU-PM” (Best-Estimate Results with Reduced Uncertainties Predictive 
Modeling) methodology provides a probabilistic description of possible future 
outcomes based on all recognized errors and uncertainties, along with a quantit-
ative indicator, constructed from sensitivity and covariance matrices, for deter-
mining the consistency (agreement or disagreement) among the a priori com-
putational and experimental data for parameters and responses. This consistency 
indicator measures, in the corresponding metric, the deviations between the ex-
perimental and nominally computed responses, and can be evaluated directly 
from the originally given data (i.e., originally available parameters and responses, 
together with their original uncertainties), once the response sensitivities have 
become available.  

The data adjustment and assimilation methodologies, as well as the BERRU- 
PM methodology, incorporate only 1st-order sensitivities of the model responses 
with respect to the model’s parameters. In generalizing the BERRU-PM metho-
dology, this limitation has been removed by Cacuci [15] [16] by having recently 
conceived the “2nd-BERRU-PM” methodology, which can incorporate arbitrari-
ly-high order sensitivities of model responses with respect to model parameters. 
The essential contributions of the second- and higher-order sensitivities for re-
ducing predicted uncertainties in the model response have been illustrated in [17] 
[18] [19] by applying the 2nd-BERRU-PM methodology [15] [16] to the polye-
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thylene-reflected plutonium (PERP) OECD/NEA reactor physics benchmark 
[20]. The response of interest for this benchmark was the leakage of neutrons 
through the benchmark’s outer surface, which was computed [21] using the 
neutron transport Boltzmann equation, involving 21,976 imprecisely known pa-
rameters, the solution of which is representative of “large-scale computations.” 
As detailed in [21], the first- through fourth-order sensitivities of this bench-
mark’s leakage response to the benchmark’s parameters were most efficiently 
computed using the adjoint sensitivity analysis methodology conceived by Cacu-
ci [22] [23] and subsequently generalized by Cacuci [24] [25] to enable the com-
putation of arbitrarily-high order sensitivities of model responses to model pa-
rameters. 

Although the 2nd-BERRU-PM methodology can incorporate arbitrarily high 
sensitivities, this methodology is limited to considering just second-order mo-
ments (hence the designation “2nd-”) of the experimentally measured and com-
puted model responses. The third-order moments (skewness) and fourth-order 
moments (kurtosis) of the distribution of measured and computed responses 
cannot be considered within the framework of the 2nd-BERRU-PM methodology. 
Furthermore, the “output” produced by the 2nd-BERRU-PM methodology is li-
mited to yielding optimal best-estimate values for the means and covariances 
(i.e., the first- and second- moments) of the best-estimate predicted distribution 
of responses and parameters.  

On the other hand, skewness and kurtosis play an essential role in determin-
ing the asymmetries of distributions. It is therefore paramount to generalize the 
2nd-BERRU-PM methodology to enable the incorporation of third- and fourth- 
order moments of measured and computed responses, as well as to enable the 
computation of skewness and kurtosis of the best-estimate predicted posterior 
distribution of calibrated model parameters and responses. However, such a ge-
neralization can be achieved only if the underlying moment-constrained MaxEnt 
distribution could be correspondingly generalized to include third- and fourth- 
order moments of the distributions of measured and computed model res-
ponses.  

Various variants of the “moment constrained maximum entropy problem” 
arise in areas as diverse as solid-state physics [26], econometrics [27], statistical 
description of gas flows [28], weather and climate prediction [29] [30] [31]. It 
appears that the most efficient computational algorithm currently available for 
solving the “multidimensional moment constrained maximum entropy problem” 
is the algorithm devised by Abramov [32], which is practically capable of solving 
two-dimensional problems with moments of order up to 8, three-dimensional 
problems with moments of order up to 6, and four-dimensional problems of or-
der up to 4. But being able to solve “four-dimensional problems of order up to 4” 
is woefully insufficient for realistic problems, which are characterized by multi-
variate quantities of interest having dimensions much larger than just “four-di- 
mensional”. On the other hand, the unparalleled efficiency of 2nd-BERRU-PM 
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methodology for handling large-scale systems was demonstrated by means of the 
OECD/NEA reactor physics benchmark [20] involving 21,976 imprecisely known 
parameters. This computational efficiency was enabled by the analytical expres-
sions for the first-and second-order moments produced by the underlying post-
erior second-order MaxEnt distribution within the 2nd-BERRU-PM methodolo-
gy. It is therefore logical to attempt to extend to fourth-order the mathematical 
concepts and algorithms underlying the moment-constrained MaxEnt distribu-
tion within the 2nd-BERRU-PM methodology. This extension has been accom-
plished as will be presented in this work.  

This work is structured as follows: Section 2 presents the novel, closed-form, 
fourth-order moment-constrained MaxEnt probabilistic representation of the 
distribution of an imprecisely measured or computed multivariate quantity, the 
components of which will be called “responses.” Such responses are produced by 
computations, measurements or both. The first four moments of the unknown 
multivariate distribution of these response, namely their mean values, variances/ 
covariances, skewness, and kurtosis, are assumed to be known. Section 3 con-
cludes this work by outlining the crucial role which the analytical expression of 
fourth-order moment-constrained MaxEnt distribution presented in this work will 
play in constructing the mathematical framework of the 4th-BERRU-PM me-
thodology, which will be presented in the accompanying Part 2 [33]. 

2. Construction of the Fourth-Order Moment-Constrained  
Maximum Entropy (MaxEnt) Representation of Uncertain  
Multivariate Quantities 

The components of the imprecisely known multivariate quantity of interest will 
be called “system responses.” Such system responses usually stem from mea-
surements. Also, a computed response is equivalent to a “measurement” when 
the details (equations, parameters, etc.) underlying the computational model are 
unavailable. The case when the details of the computational model are available 
will be analyzed in the accompanying Part 2 [33]. In order to introduce the ma-
thematical definitions of the known information (i.e., the moments of the un-
known distribution of system responses), the unknown distribution of measured 
model system responses will be denoted as ( )ep r , ( )†

1, , TRr rr   , where ir  
denotes the “ith-system response”, 1, ,i TR=  , and where TR denotes the total 
number of system responses of interest. The unknown distribution ( )ep r  is 
formally defined on a TR-dimensional real-valued domain TR

eD ⊂  . The letter 
“e” will be used either as a superscript or a superscript to indicate “experimen-
tally obtained” (e.g., measured or computed with an inaccessible model) quanti-
ties. Matrices will be denoted using capital bold letters while vectors will be de-
noted using either capital or lower-case bold letters. The symbol “  ” will be 
used to denote “is defined as” or “is by definition equal to.” Transposition will be 
indicated by a dagger ( † ) superscript. 

In this work, it is considered that the first four moments, namely: mean values, 
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variances/covariances, triple correlations (skewness) and quadruple correlations 
(kurtosis), of the unknown distribution of system responses are available. The 
formal mathematical definitions of the first four moments, considered to be 
known, of the unknown distribution ( )ep r , are as follows: 

(i) Known mean/expectation values, denoted as e
ir , for the system responses 

ir , where 1, ,i TR=  : 

( ) ( )†

1d ; , , , , ; 1, ,
e

e e e e e
i i e i TR

D

r r p r r r i TR=∫ r r r     .         (1) 

(ii) Known covariances, denoted as e
ijc , for two system responses ir  and jr , 

where , 1, ,i j TR=  : 

( ) ( )( ) ( )cov , d ; , 1, , ;
e

e e e
ij i j i i j j ee

D

c r r r r r r p i j TR− − =∫ r r         (2) 

The covariances ( )cov ,i j e
r r , , 1, ,i j TR=  , of the system responses are con-

sidered to be components of the TR TR× -dimensional covariance matrix of  

system responses, which will be denoted as ( )cov ,e e
rr i j ije TR TRTR TR

r r c
××

     C   . 

(iii) Known triple correlations, denoted as e
ijkt , for three system responses ir , 

jr , kr , where , , 1, ,i j k TR=  :  

( )( )( ) ( )d ; , , 1, , ;
e

e e e e
ijk i i j j k k e

D

t r r r r r r p i j k TR− − − =∫ r r         (3) 

(iv) Known quadruple correlations, denoted as e
ijkq


, for four system res-
ponses ir , jr , kr , r



, where , , , 1, ,i j k TR=  : 

( )( )( )( ) ( )d ; , , , 1, , .
e

e e e e e
ijk i i j j k k e

D

q r r r r r r r r p i j k TR− − − − =∫ r r
  

     (4) 

When an unknown distribution, such as ( )ep r , needs to be reconstructed 
from a finite number of its known moments, the principle of maximum entropy 
(MaxEnt) originally formulated by Jaynes [12] provides the optimal compatibil-
ity with the available information, while simultaneously ensuring minimal spu-
rious information content, yielding an estimate of a probability density with the 
highest uncertainty among all densities satisfying the known moment con-
straints. According to the MaxEnt principle, such a MaxEnt probability density 
would satisfy the “available information” provided in Equations (1)-(4), without 
implying any spurious information or hidden assumptions, if the following con-
ditions are satisfied:  

(a) ( )ep r  maximizes the Shannon [34] information entropy, S, which is de-
fined below: 

( ) ( )ln d
e

e e
D

S p p = −  ∫ r r r ,                     (5) 

(b) ( )ep r  satisfies the four “moments constraints” defined by Equations (1) 
through (4);  

(c) ( )ep r  satisfies the following normalization condition:  
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( )d 1.
e

e
D

p =∫ r r                            (6) 

The MaxEnt distribution ( )ep r  is obtained as the solution of the variational 
problem ( ) 0e eH p p∂ ∂ = , where the entropy (Lagrangian functional) ( )eH p  
is defined as follows: 

( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

( )( )( ) ( )

( )( )

0

1 , 1

, , 1

, , , 1

ln d d 1

1d d
2

d

e r

e e

e

e e e e
D D

TR TR
e e e e

i i i e ij i i j j e ij
i i jD D

TR
e e e e

ijk i i j j k k e ijk
i j k D

TR
e e

ijk i i j j k
i j k

H p p p c p

r r p r r r r p c

r r r r r r p t

r r r r r

β λ

θ

ω

= =

=

=

 
 = − − −  

  
 

− − − − − − 
  

 
− − − − − 

  

− − −

∫ ∫

∑ ∑∫ ∫

∑ ∫

∑

r r r r r

r r r r

r r





( )( ) ( )d .
e

e e e
k e ijk

D

r r r p q
 

− − − 
  
∫ r r

  

    (7) 

In Equation (7), the quantities 0c , iβ , ijλ , ijkθ , and ijkω


 denote the re-
spective Lagrange multipliers, and the factor 1/2 has been introduced for subse-
quent computational convenience. Introducing the variable: 

( ) ( )††
1 1, , ; , , ; ;e e e e e

TR TR i i iz z r r z r r− −z r r r               (8) 

and solving the equation ( ) 0e eH p p∂ ∂ =  yields the following expression for 
the resulting MaxEnt distribution ( )ep z :  

( ) ( )
( )

;
d

r

e

D

h
p

h
=
∫

z
z

z z
                         (9) 

where:  

( )
1 , 1 , , 1 , , , 1

1exp ;
2

TR TR TR TR

i i ij i j ijk i j k ijk i j k
i i j i j k i j k

h z z z z z z z z z zβ λ θ ω
= = = =

 
− − − − 
 
∑ ∑ ∑ ∑z

 



  (10) 

Re-writing Equations (1)-(4) in terms of the variable e−z r r  yields the 
following formal expressions for the known first four moments of the MaxEnt 
distribution ( )ep z :  

( )0 d , 1, , ;
e

i e
D

z p i TR= =∫ r r                    (11) 

( )d ; , 1, , ;
e

e
ij i j e

D

c z z p i j TR=∫ r r                  (12) 

( )d ; , , 1, , ;
e

e
ijk i j k e

D

t z z z p i j k TR=∫ r r                (13) 

( )d ; , , , 1, , .
e

e
ijk i j k e

D

q z z z z p i j k TR=∫ r r
 

               (14) 

The expression of ( )ep z  can be evaluated in closed-form up to fifth-order in 
the variables iz  by expanding in Taylor-series the third- and fourth-order 
terms in the expression of ( )h z , to obtain the following approximate expres-
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sion: 

( )
( ) ( )

( )
exp

e

f g
p

Z
 − ≅

z z
z

β
,                     (15) 

where the following definitions have been used:  

( )

( )

† †

1 , 1

11 1,
†

1

,1 ,

1 1 ;
2 2

, , ; ;

TR TR

i i ij i j
i i j

TR

TR

TR TR TR

g z z zβ λ

λ λ
β β

λ λ

= =

− − = − −

 
 
 
  

∑ ∑z β z z z

β





     



Λ

Λ
            (16) 

( )
, , 1 , , , 1

1 ;
TR TR

ijk i j k ijk i j k
i j k i j k

f z z z z z z zθ ω
= =

− −∑ ∑z
 



              (17) 

( ) ( ) ( ) ( ) ( ) ( )0 3 4
, , 1 , , , 1

exp d ;
r

TR TR
ijk ijk

ijk ijk
i j k i j kD

Z f g F F Fθ ω
= =

 − = − −  ∑ ∑∫β z z z β β β





 (18) 

where:  

( ) † †
0

1exp d ;
2

rD

F  − − 
 ∫β β z z z z Λ                   (19) 

( )3
1 , 1

1exp d ;
2

r

TR TR
ijk

i j k i i ij i j
i i jD

F z z z z z zβ λ
= =

 
− − 
 
∑ ∑∫β z             (20) 

( )4
1 , 1

1exp d .
2

r

TR TR
ijk

i j k i i ij i j
i i jD

F z z z z z z zβ λ
= =

 
− − 
 
∑ ∑∫β z



            (21) 

The closed form expression of the integral shown in Equation (19) is well 
known:  

 

( ) † † † 1
0

1 1exp d exp
2 2

rD

F K −   − − =   
   ∫β β z z z z β β Λ Λ ,         (22) 

where:  

( )
( )

22
;

TR

K
Det

π


Λ
                          (23) 

It follows from the definitions provided in Equations (19)-(21) that:  

( ) ( ) ( ) ( )3 4
0 0

3 4; .ijk ijk

i j k i j k

F F
F F

β β β β β β β
∂ ∂

= − =
∂ ∂ ∂ ∂ ∂ ∂ ∂

β β
β β



           (24) 

Inserting the results obtained in Equations (19)-(24) into Equation (18) yields 
the following expression: 

( ) ( ) ( ) ( )3 4
0 0

0
, , 1 , , , 1

.
TR TR

ijk ijk
i j k i j ki j k i j k

F F
Z F θ ω

β β β β β β β= =

∂ ∂
= + −

∂ ∂ ∂ ∂ ∂ ∂ ∂∑ ∑
β β

β β






     (25) 

The explicit expressions for the quantities ( )3
0 i j kF β β β∂ ∂ ∂ ∂β  and  
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( )4
0 i j kF β β β β∂ ∂ ∂ ∂ ∂β



 are derived in Appendix A. Inserting into Equation 
(25) the expression obtained in Equation (19) for ( )0F β  together with the ex-
pressions obtained in Equations (64) and (66), in Appendix A, for the quantities 

( )3
0 i j kF β β β∂ ∂ ∂ ∂β  and ( )4

0 i j kF β β β β∂ ∂ ∂ ∂ ∂β


, respectively, yields the fol-
lowing expression for the normalization integral ( )Z β : 

( ) ( ) ( ) † 1
3 4

, , 1 , , , 1

11 exp ,
2

TR TR
ijk ijk

ijk ijk
i j k i j k

Z K G Gθ ω −

= =

   = + −   
  

∑ ∑β β β β β





Λ     (26) 

where the quantities ( )3
ijkG β  and ( )4

ijkG β  are defined in Appendix A. 
In terms of the approximate expression shown in Equation (15) for the dis-

tribution ( )ep z , the moments defined by Equations (11)-(14) take on the fol-
lowing expressions: 

( ) ( ) ( ) ( )
( )1 10 exp d , 1, , ;

e

i
iD

Z
z f g i TR

Z Z β
∂

 = − = − =  ∂∫
β

z z z
β β

      (27) 

( ) ( ) ( ) ( )
( )21 1exp d ; , 1, , ;

e

e
ij i j

i jD

Z
c z z f g i j TR

Z Z β β
∂

 = − = =  ∂ ∂∫
β

z z z
β β

     (28) 

( ) ( ) ( )

( )
( )3

1 exp d

1 ; , , 1, , ;

e

e
ijk i j k

D

i j k

t z z z f g
Z

Z
i j k TR

Z β β β

 = − 

∂
= − =

∂ ∂ ∂

∫ z z z
β

β
β



              (29) 

( ) ( ) ( )

( )
( )4

1 exp d

1 ; , , , 1, , .

e

e
ijk i j k

D

i j k

q z z z z f g
Z

Z
i j k TR

Z β β β β

 = − 

∂
= =

∂ ∂ ∂ ∂

∫ z z z
β

β
β

 



 

            (30) 

The relation shown in Equation (27) can be expressed in terms of the norma-
lization integral ( )Z β  as follows:  

( )
( ) ( )10 ln

i i

Z
Z

Z β β
∂ ∂

 = − = −  ∂ ∂
β

β
β

.               (31) 

It follows from Equation (26) that:  

( ) ( ) ( )† 1
3 4

, , 1 , , , 1

1ln ln ln 1 ,
2

TR TR
ijk ijk

ijk ijk
i j k i j k

Z K G Gθ ω−

= =

 
  = + + + −  

 
∑ ∑β β β β β





Λ (32) 

It follows from Equations (31) and (32) that: 

( )

( )
( ) ( )

( ) ( )

( ) ( )

3 4

, , 1 , , , 11

1
3 4

, , 1 , , , 1

31

1 , , 1

ln
0

1

m

ijk ijkTR TR

ijk ijkTR i j k i j km m
b TR TRmb ijk ijkb

ijk ijk
i j k i j k

ijkTR TR

b ijk ijkmbb i j k m

Z

G G

G G

G

β

θ ω
β β

β
θ ω

β θ ω
β

= =−

=

= =

−

= =

 ∂  = −
∂

   ∂ ∂
−   ∂ ∂      = − −

+ −

 ∂
≅ − − + 

∂  

∑ ∑
∑

∑ ∑

∑ ∑

β

β β

β β

β













Λ

Λ
( ) ( )4 2

, , , 1
.

ijkTR

ijk
i j k m

G
O θ

β=

 ∂
+ 

∂  
∑

β





(33) 
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The last approximate equality on the right-side of Equation (33) was obtained 
by expanding the respective denominator in a power series and neglecting the 
sixth- and higher-order terms.  

It follows from the expressions obtained in Equations (68) and (71) of Ap-
pendix A that:  

( ) ( ) ( ) ( )3 42 3; .
ijk ijk

m m

G G
O O

β β
− −∂ ∂

= =
∂ ∂

β β
β



Λ Λ               (34) 

It follows from Equations (33) and (34) that if the third-order correlations 
among the measured system responses are neglected by setting 0ijkθ = ,  
, , 1, ,i j k TR=  , then the solution of these equations becomes: 

, if 0, for , , 1, , .ijk i j k TRθ= = =β 0                  (35) 

The solution of Equation (33) cannot be obtained analytically in closed form if 
the third-order correlations among the measured system responses are not neg-
lected. 

Taking the second derivative of ( )ln
i

Z
β
∂

 −  ∂
β  with respect to  

Differentiating the relation obtained in Equation (31) with respect to another 
Lagrange multiplier, nβ , 1, ,n TR=  , yields the following relation:  

( )
( )

( )

( )
( ) ( )

( )
( )

( ) ( ) ( )

2

2

2

ln 1

1 1

1 exp d ; , 1, , .
e

n m n m

n m n m

e
n m mn

D

Z Z
Z

Z Z Z
ZZ

z z f g c m n TR
Z

β β β β

β β β β

 ∂  ∂∂ − = − 
∂ ∂ ∂ ∂  

∂ ∂ ∂
= −

∂ ∂ ∂ ∂

 = − − = − = ∫

β β
β

β β β
ββ

z z z
β



(36) 

The last equality on the right-side of Equation (36) has been obtained by using 
Equations (31) and (35). 

On the other hand, differentiating the relation shown in Equation (33) with 
respect to nβ , 1, ,n TR=  , yields the following result: 

( ) ( ) ( ) ( )

( )

2 2 2
3 41

, , 1 , , , 1

1

ln

.

ijk ijkTR TR

ijk ijkmn i j k i j kn m n m n m

mn

Z G G
θ ω

β β β β β β
−

= =

−

 ∂ ∂ ∂ − ≅ − − +
∂ ∂ ∂ ∂ ∂ ∂

≅ −

∑ ∑
β β β





Λ

Λ
  (37) 

The result obtained on the rightmost-side of Equation (37) follows by eva-
luating all terms at =β 0  (which implies that third-order correlations were neg-
lected) and by also neglecting the fourth-order correlations by setting 0ijkω =



. 
The results obtained in Equations (37) and (36) indicate that  

( ) ( )1 1; ; ; , 1, , ,e e e e
mn mnmn TR TR

c c m n TR− −

×
= = =C C  Λ Λ         (38) 

where ( )e e
mn TR TR

c
×

C   denotes the known TR TR× -dimensional covariance 
matrix of the system responses. It follows from Equation (38) that: 
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( ) ( )22 TR eK Det= π C .                      (39) 

In view of Equations (34) and (38), neglecting the third- and fourth-order 
system response correlations while obtaining the expressions shown in Equa-
tions (35) and (38) for the Lagrange multipliers (i.e., =β 0  and 1 e− =CΛ , re-
spectively) is equivalent to neglecting double- and triple products of measured- 
system response correlations. 

Differentiating the relation shown in Equation (37) with respect to another 
Lagrange multiplier, µβ , 1, ,TRµ =  , yields the following result: 

( ) ( ) ( )3 3 3
3 4

, , 1 , , , 1

ln ijk ijkTR TR

ijk ijk
i j k i j kn m n m n m

Z G G

µ µ µ

θ ω
β β β β β β β β β= =

 ∂ ∂ ∂ − = − +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∑ ∑

β β β





.     (40) 

On the other hand, differentiating the relation shown in Equation (36) with 
respect to µβ  and evaluating the resulting expression by using the results obtained 
in Equations (35) and (38) for the Lagrange multipliers =β 0  and 1 e− =CΛ  
yields the following result: 

( )
( )

( ) ( )
( )

( )

( )
( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( )
( ) ( )

( )

3 2

2

2 2

3 2

2 3

2

ln 1 1

2 1

1 1

n m n m n m

n m n m n m

n m

Z Z Z Z
ZZ

Z Z Z Z Z Z Z
Z Z

Z Z Z
ZZ

µ µ

µ µ µ

µ

β β β β β β β β

β β β β β β β β β

β β β

==

=

    ∂  ∂ ∂ ∂∂    − = −    
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂       

  ∂ ∂ ∂ ∂ ∂ ∂ ∂ = − + +  
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    

∂ ∂ ∂
+ −

∂ ∂ ∂

ββ

β

β β β β
ββ

β β β β β β β
β β

β β
ββ

00

0

( )
( )

( )

( ) ( ) ( )

31

1 exp d ; , , 1, , .
e

n m n m

e
n m nm

D

Z
Z

z z z f g t n m TR
Z

µ µ

µ µ

β β β β β β

µ

= =

=

   ∂   = −   
∂ ∂ ∂ ∂ ∂ ∂      

   = − = =  
  

∫

β β

β

β β
β

z z z
β



0 0

0

(41) 

The last equality shown on the right-side of Equation (41) follows from the 
relation provided in Equation (29). 

Evaluating the expression obtained in Equation (40) by using Equations (70) 
and (79) from Appendix B, in conjunction with the results obtained in Equa-
tions (35) and (38) for the Lagrange multipliers =β 0  and 1 e− =CΛ  yields 
the following relation for determining the Lagrange multipliers ijkθ :  

{ }
, , 1

; , , 1, , .

TR
e e e e e e e e e e e e e e e

ijk im jn k j kn jm in k i kn km in j i jn
i j k

e
nm

c c c c c c c c c c c c c c c

t n m TR

µ µ µ µ µ µ

µ

θ

µ
=

     + + + + +     

= − =

∑



   (42) 

Evidently, Equation (42) could be solved numerically, but cannot be solved 
analytically to obtain a closed-form solution in the general case. Furthermore, 
the triple cross-correlations e

nmtµ , , , 1, ,n m TRµ =  , are seldom available in 
practice. Usually, only the third-order self-correlations e e

a aaat t , for each system 
response e

ar , 1, ,a TR=  , are available in practice for the measured system 
responses. In this case, Equation (42) will reduce to the following form: 

( ) ( )3 3

1
6; ; ; , 1, , .

TR
e e e

ab b a ab ab ba b bbb
b

t c c a b TRτ θ τ θ θ
=

= − = =∑         (43) 
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Equation (43) can be solved explicitly by inverting the matrix ( )abτT   to 
obtain: 

( ) ( ) ( )
††1

1 16; , , ; , , ; .e e e e
TR TR ab TR TR

t tθ θ τ−
×

= −θ T t θ t T          (44) 

In particular, if only the system response variances are available but the second- 
order correlations among the system responses are negligible or unavailable, 
then the result obtained in Equation (44) reduces to the following simple expres-
sion for determining the Lagrange multipliers kθ , 1, ,k TR=  : 

( )3 ; 1, , .
6

e
k

k e
kk

t k TR
c

θ = − =                      (45) 

Differentiating the relation shown in Equation (40) with respect to another 
Lagrange multiplier, νβ , 1, ,TRν =  , yields the following result: 

( ) ( )4 4
4

, , , 1

ln
; , , , 1, ,

ijkTR

ijk
i j kn m n m

Z G
n m TR

ν µ ν µ

ω ν µ
β β β β β β β β=

 ∂ ∂ − = =
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∑

β β





 .   (46) 

The expression of ( )4
4
ijk

n mG ν µβ β β β∂ ∂ ∂ ∂ ∂β  is known, as provided in Equ-
ation (84) in Appendix A. 

On the other hand, differentiating the relation shown in Equation (41) with 
respect to νβ  and evaluating the resulting expression by using the results obtained 
in Equations (35) and (38) for the Lagrange multipliers =β 0  and 1 e− =CΛ  
yields the following expression: 

( )
( )

( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( )
( ) ( )

( )
( )
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2 2

2
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2
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Z
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Z
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ν µ µ

ν µ µ

β β β β β β β β

β β β β β β β

β β β β β β β

   ∂ ∂ ∂ ∂∂   − = − 
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

  ∂ ∂ ∂ ∂∂  + +  
∂ ∂ ∂ ∂ ∂ ∂ ∂    

 ∂ ∂ ∂∂  + − 
∂ ∂ ∂ ∂ ∂ ∂ ∂  

β β β β
β

β β β β
β

β β β
ββ

 (47) 

Performing the above differentiations and evaluating the resulting expression 
by using the results obtained in Equations (35) and (38) for the Lagrange mul-
tipliers =β 0  and 1 e− =CΛ  yields the following relation: 

( )
( )

( )

( )
( ) ( ) ( ) ( ) ( ) ( )

4 4

2 2 2 2 2 2

2

ln 1

1 .

n m n m

n m n m n m

Z Z
Z

Z Z Z Z Z Z
Z

ν µ ν µ

µ ν ν µ ν µ

β β β β β β β β

β β β β β β β β β β β β

==

=

    ∂ ∂    − = −   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

  ∂ ∂ ∂ ∂ ∂ ∂ + + +  
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    

ββ

β

β β
β

β β β β β β
β

00

0

 (48) 

Using the expressions provided in Equations (28) and (30) to replace the ex-
pressions on the right-side of Equation (48) yields the following result: 

( )4 ln
.e e e e e e e

nm n m n m nm
n m

Z
q c c c c c cνµ µ ν ν µ νµ

ν µβ β β β
=

  ∂  − = − + + + 
∂ ∂ ∂ ∂  β

β

0

       (49) 
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It follows from the results obtained in Equations (49) and (46) that the fol-
lowing relation holds for , , , 1, ,n m TRν µ =  :  

( )
1

4
4

, , , 1 ,

.
e

ijkTR
e e e e e e e

nm n m n m nm ijk
i j k n m

G
q c c c c c cνµ µ ν ν µ νµ

ν µ

ω
β β β β −= = =

 ∂ − + + + =  ∂ ∂ ∂ ∂  
∑

β C

β



 0 Λ

  (50) 

The Lagrange multipliers ijkω


 for the fourth-order correlations of the meas-
ured system responses are to be obtained as the solution of Equation (50). This 
equation could be solved numerically but cannot be solved analytically to obtain 
closed-form solutions for these Lagrange multipliers. In addition, the general 
fourth-order correlations e

nmqνµ  are not expected to be available in practice; at 
most, the fourth-order self-correlations e e

a aaaq q , for each system response e
ar , 

1, ,a TR=  , might be available in practice for the measured system responses. 
In this case, Equation (50) will reduce to the following form for the quantities 

b bbbbω ω  and 4 4
b bbbbG G : 

( ) ( )
( ) 1

4
2 4

4
1

,

3 .
e

bTR
e e
a aa b

b a

G
q c ω

β −=
= =

 ∂ − + =  
∂  

∑
β C

β

0 Λ

              (51) 

Using the result presented in Equation (84) in Appendix B yields the follow-
ing expression for the quantity ( ) ( )44

4
b

aG β∂ ∂β , for =β 0  and 1 e− =CΛ : 

( )
( )

( ) ( ){

( ) ( ) ( )
( )
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4
4

4

, e
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e e e e e e e e e e e e
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e e e e e e e e e e e e e e e e e e
m kn i j j i im n j k k j im jn k k

e e e e e e e e e
im kn j j jm n i
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c c c c c c c c c c c c
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c c c c c c c c c c

µ ν µ ν µ ν µ ν

µ ν µ ν µ ν µ ν µ ν µ ν

µ ν µ ν µ

β −= =

 ∂  = + + + 
∂  

+ + + + + +

+ + +

β C

β
 

   

  

0 Λ

( ) ( )
( ) ( )
( ) ( )} ( )4

24 .

e e e e e e e e e
k k i jm in k k

e e e e e e e e e e e e
jm kn i i km n i j j i

i j k be e e e e e e e e e e e e
km in j j km jn i i bam n a

c c c c c c c c

c c c c c c c c c c c c

c c c c c c c c c c c c c

ν µ ν µ ν µ ν

µ ν µ ν µ ν µ ν

µ ν µ ν µ ν µ ν µ ν

= = = =

= = = =

+ + +

+ + + +

+ + + + =

 

  



   

  (52) 

Inserting the result obtained in Equation (52) into the right-side of Equation 
(51) yields the following vector-matrix equation for determining the Lagrange 
multipliers b bbbbω ω , 1, ,b TR=  : 

( ) ( ) ( )2 4 4

1
3 24; ; 1, , .

TR
e e e e

ab b a aa ab ba ab
b

p q c p c c a TRω
=

 = − + = =  ∑       (53) 

The solution ( )†
1, , TRω ωω    of Equation (53) is obtained in the following 

form: 

( ) ( )

( )

†1
1

2

24; ; , , ;

3 ; 1, , .

ab TRTR TR

e e
a aa a

p s s

s c q a TR

−
×

=

− =

ω P s P s  

 

             (54) 

In particular, if the (second-order) correlations among the measured system 
responses are negligible or unavailable, then the result obtained in Equation (54) 
reduces to the following simple expression for determining the Lagrange multip-
liers kω , 1, ,k TR=  : 
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( )
( )

2

4

3
; 1, , .

24

e e
kk k

k e
kk

c q
k TR

c
ω

−
= =                   (55) 

The expressions of the Lagrange multipliers obtained in Equations (35), (38), 
(44) and (54) are not exact, but have been obtained in closed forms, so they can 
be used in Equations (9) and (10) to obtain the correspondingly approximate 
MaxEnt distribution, which will be denoted as ( )ME

ep r  and which has the fol-
lowing expression:  

( ) ( )
( )

( ) † 3 4

1 1

1; exp .
2d

r

ME TR TR
eME ME

e e i i i iME
i ie

D

h
p h z z

h
θ ω

= =

 = − − − 
 

∑ ∑
∫

z
z z z z

z z
 Λ    (56) 

where the Lagrange multipliers Λ , iθ  and iω , 1, ,i TR=  , have the expres-
sions obtained in Equations (38), (44) and (54), respectively. The approxima-
tions incurred during the course of obtaining the expression shown in Equation 
(56) for the fourth-order MaxEnt distribution ( )ME

ep r  of experimentally meas-
ured system responses are summarized below:  

1) When obtaining the result =β 0  in Equation (35) for the Lagrange mul-
tipliers for the expected/mean values of the system responses, the third-order cor-
relations among the system responses were neglected. This approximation is con-
firmed, as shown in Appendix B, namely: 

( )d , if 0; , , 1, , .
e

ME ME e e
k e k ijk

D

r p r t i j k TR= = =∫ r r            (57) 

2) When obtaining the result 1 e− =CΛ  in Equation (38) for the Lagrange 
multipliers for the covariances of the system responses, the third- and fourth- 
order correlations among the system responses were neglected. This approxima-
tion is confirmed by using the expression of the fourth-order MaxEnt distribu-
tion ( )ME

ep r  given in Equation (56), the result shown in Equation (57) and the 
definition of the system responses’ covariances, as shown in Appendix C, to ob-
tain the following expression: 

( )( ) ( )d ; , 1, , ;

if 0; 0; , , , 1, , .
e

ME e e e e
ij i i j j e ij

D

e e
ijk ijk

c r r r r p c i j TR

t q i j k TR

− − = =

= = =

∫ r r 

 

       (58) 

3) When obtaining the result ( )1 6e K−= −θ T t  in Equation (44) for the La-
grange multipliers for the triple-correlations of the system responses, only the 
self-triple-correlations among the system responses were considered. This ap-
proximation is confirmed, as shown in Appendix B, by using:  

i) the expression of the approximate fourth-order MaxEnt distribution ( )ME
ep r  

given in Equation (56);  
ii) the result shown in Equation (57); and  
iii) the definition of the self-correlations of third-order for the system res-

ponses.  
Thus, as shown in Appendix B, the following expression is obtained for the 
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triple-correlations e
ijkt ; , , 1, ,i j k TR=  : 

( )( )( ) ( )d ; , , 1, , .
e

ME e e e ME e
ijk i i j j k k e ijk

D

t r r r r r r p t i j k TR− − − = =∫ r r      (59) 

4) When obtaining the result ( )1 24K−=ω P s  in Equation (54) for the La-
grange multipliers for the quadruple-correlations of the measured system res-
ponses, only the self-correlations of fourth order among the measured system 
responses were considered. This approximation is confirmed by using the ex-
pression of the approximate fourth-order MaxEnt distribution ( )ME

ep r  given 
in Equation (56), the result shown in Equation (57), and the definition of the 
self-correlations of third-order for the measured system responses to obtain, as 
shown in Appendix B, the following expression for the quadruple-correlations 

e
ijkq


, , , , 1, ,i j k TR=  : 

( )( )( )( ) ( )d .
e

ME e e e e ME e
ijk i i j j k k e ijk

D

q r r r r r r r r p q− − − − =∫ r r
   

       (60) 

In summary, the results obtained in Equations (57)-(60) indicate that the 
known/given means, covariances, triple and quadruple correlations for the sys-
tem responses can all be used as values for the corresponding moments of the 
approximate fourth-order MaxEnt distribution ( )ME

ep r  given in Equation (56), 
since the approximations incurred when using this correspondence are at least 
of 2-orders higher than for the moment in question, namely:  

1) The first-order moments of ( )ME
ep r  have third-order errors by compari-

son to the measured mean values.  
2) The second-order moments of ( )ME

ep r  have fourth-order errors by com-
parison to the measured mean values.  

3) The third-order moments of ( )ME
ep r  have fifth-order errors by compari-

son to the measured mean values.  
4) The fourth-order moments of ( )ME

ep r  have sixth-order errors by com-
parison to the measured mean values. 

5) Notably, if the triple- and the quadruple correlations are negligeable (or 
unavailable) then the MaxEnt distribution ( )ME

ep r  reduces to a multivariate 
Gaussian with mean er  and covariance matrix eC .  

3. Discussion and Conclusions 

This work has presented a novel closed-form expression for the fourth-order 
moments-constrained Maximum Entropy (MaxEnt) probability distribution, 
which was constructed from the known first four moments (means, covariances, 
skewness, kurtosis) of an otherwise unknown distribution of a high-dimensional 
multivariate uncertain quantity of interest, which was called a “system response”. 
This fourth-order MaxEnt distribution provides optimal compatibility of the 
available information while simultaneously ensuring minimal spurious informa-
tion content, yielding an estimate of a probability density with the highest un-
certainty among all densities satisfying the known moment constraints. This 
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novel generic fourth-order MaxEnt distribution is of interest in its own right for 
applications in many areas, including solid-state physics, econometrics, statistic-
al description of gas flows, weather and climate prediction. In the accompanying 
work [33], this novel generic fourth-order MaxEnt distribution will be used to 
construct a novel fourth-order predictive modeling methodology aimed at ob-
taining “best-estimate results with reduced uncertainties” for the first four mo-
ments (mean values, covariance, skewness and kurtosis) of the optimally pre-
dicted distribution of model results and calibrated model parameters, by com-
bining fourth-order experimental and computational information, including 
fourth (and higher) order sensitivities of computed model system responses to 
model parameters. 
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Appendix A: Auxiliary Computations for Constructing the  
Moment-Constrained Fourth-Order MaxEnt Distribution 

Recall that the following closed-form expression of ( )0F β  was provided in 
Equation (19): ( ) ( )† 1

0 exp 2F K −=β β βΛ . Differentiating this expression with 
respect to a Lagrange multiplier iβ  yields the following relation: 

( ) ( )0 1 1

1

1exp
2

TR

aiaai

F
K β

β
− −

=

∂    =   ∂   
∑

β
β βΛ Λ† .            (61) 

Differentiating the expressions in Equation (61) with respect to a Lagrange 
multiplier jβ  yields the following relations: 

( ) ( )

( )

2
0 1 1

1

1
2

1exp
2

1exp ;
2

TR

aiaai j j

ij

F
K

KG

β
β β β

− −

=

−

∂  ∂     =     ∂ ∂ ∂      

 =  
 

∑
β

β β

β β β

Λ Λ

Λ

†

†

       (62) 

where: 

( ) ( ) ( ) ( )1 1 1
2

1 1
;

TR TR
ij

a bij ia jba b
G β β− − −

= =

   +       
∑ ∑β  Λ Λ Λ          (63) 

Differentiating the expressions in Equation (62) with respect to a Lagrange 
multiplier kβ  yields the following relations: 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

3
0 1 1 1 1

1 1

1 1 1 1

1 1

1 1 1

1

1exp
2

1exp
2

TR TR

a bij ia jba bi j k k

TR TR

a bij ia jba b k

TR

bik jb jkb

F
K

K

K

β β
β β β β

β β
β

β

− − − −

= =

− − − −

= =

− − − −

=

∂  ∂     = +      ∂ ∂ ∂ ∂      

  ∂       + +        ∂        

 = +  

∑ ∑

∑ ∑

∑

β
β β

β β

Λ Λ Λ Λ

Λ Λ Λ Λ

Λ Λ Λ Λ

†

†

( )

( ) ( ) ( )

( ) ( )

1 1

1

1 1 1

1 1

1 1 1
3

1

1exp
2

1 1exp exp ;
2 2

TR

aiaa

TR TR

a bij ia jba b

TR
ijk

ckcc

K

KG

β

β β

β

−

=

− − −

= =

− − −

=

    
        
    + +        

     × =         

∑

∑ ∑

∑

β β

β β β β β

Λ

Λ Λ Λ
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†

† †

(64) 

where: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 1 1
3

1 1

1 1 1 1 1

1 1 1 1
;

TR TR
ijk

b aik jb jk iab a

TR TR TR TR

c a b cij kc ia jb kcc a b c

G β β

β β β β

− − − −

= =

− − − − −

= = = =

   +      
       + +              

∑ ∑

∑ ∑ ∑ ∑

β  Λ Λ Λ Λ

Λ Λ Λ Λ Λ
 (65) 

Differentiating the expressions in Equation (64) with respect to a Lagrange 
multiplier β



 yields the following relations: 

( ) ( ) ( ) ( ) ( )
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β β β β
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= = =
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 1

1

1 1 1 1
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where: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

1 1 1
4

1 1

1 1 1 1

1 1

1 1 1 1

1 1 1 1

1 1 1

TR TR
ijk

d cd ij kcd c

TR TR

b aik jb jk iab a

TR TR TR TR

d a b cd ia jb kcd a b c

ij k i

G β β

β β

β β β β

− − −

= =

− − − −

= =

− − − −

= = = =

− − −

   
      

   + +       
       +               

+ +

∑ ∑

∑ ∑

∑ ∑ ∑ ∑

β







 Λ Λ Λ

Λ Λ Λ Λ

Λ Λ Λ Λ

Λ Λ Λ ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1

1 1 1 1 1

1 1 1

1 1 1 1

1 1 1
.

k j i jk

TR TR TR

b c ai jb kc j iab c a

TR TR TR

c a bkc k ia jbc a b

β β β

β β β

− − −

− − − − −

= = =

− − − −

= = =

+

     + +          
     × +          

∑ ∑ ∑

∑ ∑ ∑

 

 



Λ Λ Λ

Λ Λ Λ Λ Λ

Λ Λ Λ Λ

 (67) 

The various derivatives of the functions ( )3
ijkG β  and ( )4

ijkG β  with respect 
to the Lagrange multipliers mβ∂ , 1, ,m TR=  , will also be used when evaluat-
ing the various derivatives of the normalization integral ( )Z β  with respect to 
these Lagrange multipliers. The derivatives of the function ( )3

ijkG β  with re-
spect to the Lagrange multipliers mβ , 1, ,m TR=  , are obtained by using Equ-
ation (65), which yields the following expressions:  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

3 1 1 1 1 1 1

1 1 1

1 1

1 1 1

1 1

1 1 1

1 1
.

ijk

ik jm jk im ij km
m

TR TR

b cim jb kcb c

TR TR

a cia jm kca c

TR TR

a bia jb kma b

G
β

β β

β β

β β

− − − − − −

− − −

= =

− − −

= =

− − −

= =

∂
= + +

∂

   +       
   +       
   +       

∑ ∑

∑ ∑

∑ ∑

β
Λ Λ Λ Λ Λ Λ

Λ Λ Λ

Λ Λ Λ

Λ Λ Λ

      (68) 
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Differentiating the expression in Equation (68) with respect to a Lagrange 
multiplier nβ  yields the following relation: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2
3 1 1 1 1 1

1 1

1 1 1 1 1

1 1

1 1 1 1 1

1 1
.

ijk TR TR

c bim jn kc jb knc bn m

TR TR

c ajm in kc ia knc a

TR TR

b akm in jb ia jnb a

G
β β

β β

β β

β β

− − − − −

= =

− − − − −

= =

− − − − −

= =

∂     = +    ∂ ∂     
    + +        
    + +        

∑ ∑

∑ ∑

∑ ∑

β
Λ Λ Λ Λ Λ

Λ Λ Λ Λ Λ

Λ Λ Λ Λ Λ

 (69) 

Differentiating the expression in Equation (69) with respect to a Lagrange 
multiplier µβ  yields the following relation: 

( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ }

3
3 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1 .

ijk

im jn k j kn
n m

jm in k i kn

km in j i jn

G
µ µ

µ

µ µ

µ µ

β β β
− − − − −

− − − − −

− − − − −

∂
= +

∂ ∂ ∂

+ +

+ +

β
Λ Λ Λ Λ Λ

Λ Λ Λ Λ Λ

Λ Λ Λ Λ Λ

       (70) 

The derivatives of the function ( )4
ijkG β  with respect to a Lagrange multip-

liers mβ , 1, ,m TR=  , are obtained by using Equation (67). Thus, the first de-
rivative of the function ( )4

ijkG β  with respect to a Lagrange multipliers mβ , 
1, ,m TR=  , has the following expression:  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ){
( ) ( ) ( ) ( ) }
( ) ( ) ( ) ( )

4 1 1 1 1 1

1 1

1 1 1 1 1

1 1

1 1 1 1

1 1 1 1

1 1

ijk TR TR

c bm ij kc ik jbc bm

TR TR

a djk ia d ij kma d

ik jm jk im

TR TR

a b cm ia jb kca b

G
β β

β

β β

β β β

− − − − −

= =

− − − − −

= =

− − − −

− − − −

= =

∂     = +    ∂    
   + +      

+ +

   +       

∑ ∑

∑ ∑

∑ ∑

β







Λ Λ Λ Λ Λ

Λ Λ Λ Λ Λ

Λ Λ Λ Λ

Λ Λ Λ Λ

( ) ( ) ( ) ( )
1

1 1 1 1

1 1 1

TR

c

TR TR TR

d b cd im jb kcd b c
β β β

=

− − − −

= = =

 
  

     +           

∑

∑ ∑ ∑


Λ Λ Λ Λ

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

1 1 1 1

1 1 1

1 1 1 1

1 1 1

1 1 1 1 1

1 1

1 1

TR TR TR

d a cd ia jm kcd a c

TR TR TR

d a bd ia jb kmd a b

TR TR

c bi jm kc jb kmc b

j im

β β β

β β β

β β

− − − −

= = =

− − − −

= = =

− − − − −

= =

− − −

     +           
     +           

    + +        

+

∑ ∑ ∑

∑ ∑ ∑

∑ ∑









Λ Λ Λ Λ

Λ Λ Λ Λ

Λ Λ Λ Λ Λ

Λ Λ Λ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 1

1 1

1 1 1 1 1

1 1
.

TR TR

c akc ia kmc a

TR TR

b ak im jb ia jmb a

β β

β β

− −

= =

− − − − −

= =

    +        
    + +        

∑ ∑

∑ ∑


Λ Λ

Λ Λ Λ Λ Λ

  (71) 

Differentiating Equation (71) with respect to a Lagrange multiplier nβ   
1, ,n TR=  , yields the following relation: 
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( )2
4

1 2 3 4 5 6

ijk

n m

G
X X X X X X

β β
∂

= + + + + +
∂ ∂

β

,              (72) 

where: 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ) ( ){ }

1 1 1 1 1 1 1
1

1 1 1 1 1 1 1 ,

m ij kn ik jn jk in

n ij km ik jm jk im

X − − − − − − −

− − − − − − −

+ +

+ + +





 Λ Λ Λ Λ Λ Λ Λ

Λ Λ Λ Λ Λ Λ Λ
   (73) 

( ) ( ){ ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1 1
2

1 1

1 1 1

1 1

1 1 1

1 1
,

TR TR

b cm in jb kcb c

TR TR

a cia jn kca c

TR TR

a bia jb kna b

X β β

β β

β β

− − − −

= =

− − −

= =

− − −

= =

   
      

   +       
   +        

∑ ∑

∑ ∑

∑ ∑



 Λ Λ Λ Λ

Λ Λ Λ

Λ Λ Λ

         (74) 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1 1
3

1 1

1 1 1

1 1

1 1 1

1 1
,

TR TR

b cim n jb kcb c

TR TR

d cd jn kcd c

TR TR

d bd jb knd b

X β β

β β

β β

− − − −

= =

− − −

= =

− − −

= =

    
       

   +       
   +        

∑ ∑

∑ ∑

∑ ∑







 Λ Λ Λ Λ

Λ Λ Λ

Λ Λ Λ

         (75) 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1 1
4

1 1

1 1 1

1 1

1 1 1

1 1
,

TR TR

a cjm n ia kca c

TR TR

d cd in kcd c

TR TR

d ad ia knd a

X β β

β β

β β

− − − −

= =

− − −

= =

− − −

= =

    
       

   +       
   +        

∑ ∑

∑ ∑

∑ ∑







 Λ Λ Λ Λ

Λ Λ Λ

Λ Λ Λ

         (76) 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1 1
5

1 1

1 1 1

1 1

1 1 1

1 1
,

TR TR

a bkm n ia jba b

TR TR

d bd in jbd b

TR TR

d ad ia jnd a

X β β

β β

β β

− − − −

= =

− − −

= =

− − −

= =

    
       

   +       
   +        

∑ ∑

∑ ∑

∑ ∑







 Λ Λ Λ Λ

Λ Λ Λ

Λ Λ Λ

         (77) 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1 1 1 1
6

1 1 1 1 1

1 1 1 1 1 .

i jm kn jn km

j im kn im km

k im jn in jm

X − − − − −

− − − − −

− − − − −

 +  
 + + 

 + +  







 Λ Λ Λ Λ Λ

Λ Λ Λ Λ Λ

Λ Λ Λ Λ Λ

          (78) 

Differentiating Equation (72) with respect to a Lagrange multiplier µβ   
1, ,TRµ =  , yields the following relation: 

( )3
4

1 2 3 4 ,
ijk

n m

G
Y Y Y Y

µβ β β
∂

= + + +
∂ ∂ ∂

β

                  (79) 
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where:  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 1 1
1

1 1

1 1 1 1 1 1

1 1

1 1 1 1 1 1

1 1
,

TR TR

c bm in j kc k jbc b

TR TR

c am jn i kc k iac a

TR TR

b am kn i jb j iab a

Y
µ µ

µ µ

µ µ

β β

β β

β β

− − − − − −

= =

− − − − − −

= =

− − − − − −

= =

 +  
 + +  
 + +  

∑ ∑

∑ ∑

∑ ∑







 Λ Λ Λ Λ Λ Λ

Λ Λ Λ Λ Λ Λ

Λ Λ Λ Λ Λ Λ

   (80) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 1 1
2

1 1

1 1 1 1 1 1

1 1

1 1 1 1 1 1

1 1
,

TR TR

c bim n j kc k jbc b

TR TR

c dim jn kc k dc d

TR TR

b dim kn jb j db d

Y
µ µ

µ µ

µ µ

β β

β β

β β

− − − − − −

= =

− − − − − −

= =

− − − − − −

= =

 +  
 + +  
 + +  

∑ ∑

∑ ∑

∑ ∑



 

 

 Λ Λ Λ Λ Λ Λ

Λ Λ Λ Λ Λ Λ

Λ Λ Λ Λ Λ Λ

   (81) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 1 1
3

1 1

1 1 1 1 1 1

1 1

1 1 1 1 1 1

1 1
,

TR TR

c ajm n i kc k iac a

TR TR

c djm in kc k dc d

TR TR

a djm kn ia i da d

Y
µ µ

µ µ

µ µ

β β

β β

β β

− − − − − −

= =

− − − − − −

= =

− − − − − −

= =

 +  
 + +  
 + +  

∑ ∑

∑ ∑

∑ ∑



 

 

 Λ Λ Λ Λ Λ Λ

Λ Λ Λ Λ Λ Λ

Λ Λ Λ Λ Λ Λ

   (82) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 1 1
4

1 1

1 1 1 1 1 1

1 1

1 1 1 1 1 1

1 1
.

TR TR

b akm n i jb j iab a

TR TR

b dkm in jb j db d

TR TR

a dkm jn ia i da d

Y
µ µ

µ µ

µ µ

β β

β β

β β

− − − − − −

= =

− − − − − −

= =

− − − − − −

= =

 +  
 + +  
 + +  

∑ ∑

∑ ∑

∑ ∑



 

 

 Λ Λ Λ Λ Λ Λ

Λ Λ Λ Λ Λ Λ

Λ Λ Λ Λ Λ Λ

   (83) 

Differentiating Equation (79) with respect to a Lagrange multiplier νβ ,  
1, ,TRν =  , yields the following relation: 

( )4
4

1 2 3 4 ,
ijk

n m

G
W W W W

ν µβ β β β
∂

= + + +
∂ ∂ ∂ ∂

β

                (84) 

where:  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 1 1
1

1 1 1 1 1 1

1 1 1 1 1 1 ,

m in j k k j

m jn i k k i

m kn i j j i

W
µ ν µ ν

µ ν µ ν

µ ν µ ν

− − − − − −

− − − − − −

− − − − − −

 +  
 + +  
 + +  







 Λ Λ Λ Λ Λ Λ

Λ Λ Λ Λ Λ Λ

Λ Λ Λ Λ Λ Λ

         (85) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 1 1
2

1 1 1 1 1 1

1 1 1 1 1 1 ,

im n j k k j

im jn k k

im kn j j

W
µ ν µ ν

µ ν µ ν

µ ν µ ν

− − − − − −

− − − − − −

− − − − − −

 +  
 + +  
 + +  



 

 

 Λ Λ Λ Λ Λ Λ

Λ Λ Λ Λ Λ Λ

Λ Λ Λ Λ Λ Λ

         (86) 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 1 1
3

1 1 1 1 1 1

1 1 1 1 1 1 ,

jm n i k k i

jm in k k

jm kn i i

W
µ ν µ ν

µ ν µ ν

µ ν µ ν

− − − − − −

− − − − − −

− − − − − −

 +  
 + +  
 + +  



 

 

 Λ Λ Λ Λ Λ Λ

Λ Λ Λ Λ Λ Λ

Λ Λ Λ Λ Λ Λ

      (87) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 1 1
4

1 1 1 1 1 1
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Appendix B: Approximations Inherent to the Fourth-Order  
Maximum Entropy Distribution  

Recalling Equation (56), the expression of the approximate fourth-order MaxEnt 
probability distribution function ( )ME

ep r  for the responses has the following 
form:  
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where: 
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The MaxEnt probability distribution function ( )ME
ep r  is properly norma-

lized, as shown below: 
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The first-order moments ME
ir , 1, ,i TR=  , of ( )ME

ep r  are given by the fol-
lowing expression:  
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As indicated by the result obtained in Equation (94), if the third-order correla-
tions e

ijkt  among the measured responses are all neglected, then the MaxEnt mo-
ments ME

kr  coincide with the measured moments, e
kr  (i.e., ME e

k kr r=  if 0e
ijkt = ). 

Within the approximation ME e
k kr r= , the second-order moments ME

ijc ,  
, 1, ,i j TR=  , of ( )ME

ep r  are given by the following expression:  
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Within the approximation ME e
k kr r= , the third-order moments ME

ijkt ,  
, , 1, ,i j k TR=  , of ( )ME

ep r  are given by the following expression:  
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where the acronym “HOT” denotes “higher order terms.” 
Within the approximation ME e

k kr r= , the fourth-order moments e
ijkq ,  

, , , 1, ,i j k TR=  , of ( )ME
ep r  are given by the following expression:  
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where the acronym “HOT” denotes “higher order terms”. 
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