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Abstract 
In order to control traffic congestion, many mathematical models have been 
used for several decades. In this paper, we study diffusion-type traffic flow 
model based on exponential velocity density relation, which provides a non- 
linear second-order parabolic partial differential equation. The analytical so-
lution of the diffusion-type traffic flow model is very complicated to approx-
imate the initial density ( )0u x  of the Cauchy problem as a function of x from 
given data and it may cause a huge error. For the complexity of the analytical 
solution, the numerical solution is performed by implementing an explicit 
upwind, explicitly centered, and second-order Lax-Wendroff scheme for the 
numerical solution. From the comparison of relative error among these three 
schemes, it is observed that Lax-Wendroff scheme gives less error than the 
explicit upwind and explicit centered difference scheme. The numerical, ana-
lytical analysis and comparative result discussion bring out the fact that the 
Lax-Wendroff scheme with exponential velocity-density relation of diffusion 
type traffic flow model is suitable for the congested area and shows a better fit 
in traffic-congested regions. 
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1. Introduction 
At present, we cannot think of our life even in a single day without vehicles like 
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buses, trucks, cars, auto-rickshaws, CNG, etc. to go from one place to another 
place. With the increasing population, the demand for vehicles is also increasing 
day by day. This increase in vehicles creates a traffic congestion problem. Traffic 
congestion is one of the greatest problems in Bangladesh like some other coun-
tries of the world. In all the major cities of our country, especially Dhaka, traffic 
congestion is a must. Due to the unavailability of adequate space for the exten-
sion of the transport system, we face the traffic congestion problem. Besides this, 
a lot of reasons are responsible for traffic congestion in Bangladesh such as ply-
ing useless and unsuitable transports, inexperienced drivers, bad and limited roads, 
improper traffic system and lack of proper training on traffic system, lack of 
awareness, etc. Traffic congestion wastes our valuable time, creates time delays, 
decreases fuel economy and causes the risk of a vehicle collision. Around 5 mil-
lion working hours are eaten up due to the traffic congestion in Dhaka city every 
day, costing the country USD 11.4 billion annually. Heavy traffic congestion can 
cause serious physical and mental problems, including stress and aggression re-
sulting in road rage. Traffic management needs to be developed at the core of 
traffic congestion. Therefore, to eliminate such huge traffic congestion, efficient 
traffic control systems and management are essential. 

For proper management of highway traffic, an efficient modeling approach 
and planning under statistical observations of highway traffic are highly required. 
To an observer, the traffic stream is viewed as a property of the spacing of the 
vehicles such that the closer they are together, the slower they move. Mathemat-
ically, it indicates an inverse relationship between speed and density. To solve 
the traffic congestion problem mathematicians and create a traffic flow model 
on the assumption that there are some relations between traffic density and ve-
locity. Greenshields introduced the relation between traffic density and veloci-
ty (1934) [1] and called the fundamental relation or fundamental diagram. For 
this reason, Greenshields is regarded as the founder of traffic flow theory. 

The mathematical modeling of traffic flow often rests on a fluid flow analogy, 
treating the traffic stream as a one-dimensional movement of fluid, considered 
as a continuum model of traffic flow [2] [3], which leads to a basic assumption 
that traffic flow is conserved where traffic is a conserved quantity that means in a 
certain region, the number of vehicles entering equals the number of leaving the 
same region. Representing this phenomenon mathematically will make it possi-
ble to predict the density and velocity patterns in the future time considering the 
number of cars in a segment of a highway as our physical quantities and the process 
is to keep them fixed, which means that the number of cars coming in equals the 
number of cars going out of the segment. 

To solve traffic congestion mathematically, Lighthill and Whitham (1955) 
and Richards (1956) [2] [4] first proposed a well-known macroscopic model, 
namely the LWR model, based on the basic assumption of the vehicle in traffic 
flow as particles in the fluid. The LWR model does not explain the traffic diffusivi-
ty. For this reason, Payne first introduced the diffusion-type traffic flow model 
in 1971 [5] and Khune added a diffusion term in the LWR model in 1984 [6] to 
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show the traffic diffusivity. The analytical solution of the LWR traffic flow model 
is performed by the method of characteristics and the analytical solution of 
diffusion-type traffic flow is performed by Cole-Hopf transformation. In our 
research paper, we would like to give attention to the macroscopic fluid dy-
namic model as it is more efficient and easier to implement compared to other 
modeling approaches with the main focus on the analysis of numerical solu-
tions [7]. 

We discretize the diffusion-type traffic flow model equation by finite differ-
ence method to get different numerical schemes [8]. We also perform stability 
analysis for each of the numerical schemes. In this work, we develop computer 
programming code to implement each numerical scheme to present traffic cha-
racteristics’ qualitative behavior. 

2. Governing Equation for Traffic Flow 

A well-known first-order LWR traffic flow model is used to study traffic flow 
characteristics such as traffic velocity ( ),v t x , flux (traffic flow rate) ( ),q t x  and 
traffic density ( ),u t x . All these parameters are functions of space, x∈  and 
time, t +∈ . This model is based on the conservation of mass and reads as, 

0; 0,u q t x
t x

∂ ∂
+ = > −∞ < < ∞

∂ ∂
                 (2.1) 

This first order model does not explain the traffic diffusivity. For this reason, 
Khune added a diffusion term in 1984 and initiated using the methods of nonli-
near dynamics for analyzing the equation [6]. This yields, 

( ) 0u q D u
t x

∂ ∂
+ − ∇ =

∂ ∂
                     (2.2) 

The term D u− ∇  known as the Fickian term is used to account for external 
noise, i.e. the term represents road conditions, engine power, braking variability, 
changes in wind, drivers’ response to the stimuli [5]. So, (2.1) can be developed 
using Equation (2.2) and can be written as, 

2

2 ; 0,u q uD t x
x x x
∂ ∂ ∂

+ = > −∞ < < ∞
∂ ∂ ∂

                (2.3) 

This is known as second-order parabolic diffusion type traffic flow model. 

3. Analytical Solution of Diffusion Type Traffic Flow Model 

We consider the diffusion-type traffic flow model as a Cauchy problem, 
2

2 ; 0,u q uD t x
t x x

∂ ∂ ∂
+ = > −∞ < < ∞

∂ ∂ ∂
                 (3) 

Initial condition, 

( ) ( )0,0 ;u x u x a x b= ≤ ≤  

By Cole-Hopf transformation, the analytical solution of diffusion type traffic 
flow model [9] is, 
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( ) ( ) ( )
2

maxmax
00

max

1, ln exp d
44

m

m

zv t x zu vu t x D u x x d
v D D

∞

−∞

   − −∂   ′ ′ = − −
  ∂  π    

∫ ∫  

where ( ) ( )0 0,u x u x=  is the initial condition. 
This analytical solution may cause huge errors because it depends on the ini-

tial value function over an integrodifferential equation and it is very difficult to 
evaluate the analytical solution because of the above integrodifferential equation. 

To avoid this complexity and estimate the relative error of each scheme, we 
use the diffusion rate 0D = . In this case the analytical solution of diffusion type 
traffic flow model with linear velocity density relation is, 

( ) ( )0 max
max

2, 1 uu t x u x t v t
u

  
= − −     

 

And with exponential velocity density relation the analytical solution in im-
plicit form is, 

( ) ( )0 max
max max

, exp 1u uu t x u x t v t
u u

   
= − − −       

 

where ( ) ( )0 0,u x u x=  is the initial condition. 

4. Numerical Solution of Diffusion Type Traffic Flow Model 

For the complexity of analytical solution, we need to solve the diffusion type 
traffic flow model by another method. Here, we use finite difference method to 
solve the PDE (2.3) as a numerical solution [10] [11]. We consider our diffusion 
type traffic flow model with left and right boundary condition as an initial boun-
dary value problem, 

2

2
u q uD
t x x

∂ ∂ ∂
+ =

∂ ∂ ∂
                      (4.1) 

With initial condition ( ) ( )0,0u x u x= ; a x b≤ ≤ . 

Boundary condition, 
( ) ( )
( ) ( )

0

0

, ;

, ;
a

b

u t a u t t t T

u t b u t t t T

= ≤ ≤

= ≤ ≤
. 

Where, ( ) max
max

exp uq u uv
u

 
= − 

 
. 

To solve the partial differential equation of the model numerically, we divide 
the domain in space using a mesh 0 1 2,, , , Mx x x x  and in time using a mesh 

0 1 2, , , , Nt t t t . Here, we consider a uniform partition both in space and time, so 
that the difference between two consecutive spatial (mesh) points will be ∆x and 
between two consecutive temporal (mesh) points will be ∆t, i.e. 

0 , 0,1,2, ,jx x j x j M= + ∆ =   

And 0 , 0,1,2, ,nt t n t n N= + ∆ =  . 

For spatial non-uniform mesh: 
Let, 1 , 0,1,2, ,j j jx x x j M+∆ = − =   are the spatial step size. 
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For spatial non-uniform mesh: 
Let, 1 , 0,1,2, ,n n nt t t n N+∆ = − =   are the temporal step size. 
Therefore, 

0 , 0,1,2, ,jx x j x j M= + ∆ =   

0 , 0,1,2, ,nt t n t n N= + ∆ =   

4.1. Explicit Upwind Difference Scheme (FTBSCS) 

To obtain this scheme, we discretize the time derivative 
u
t

∂
∂

 by forward differ-

ence formula, first order space derivative 
q
x
∂
∂

 by backward difference formula 

and 
2

2
u

x
∂
∂

 by the second-order central difference formula at any point ( ),n
jt x , 

0,1,2, , 1j M= −
; 0,1,2, , 1n N= − . 

And considering ( ),n
ju t x , we have, 

( ) 1,n n n
j j ju t x u u

t t

+∂ −
≈

∂ ∆
                    (4.2) 

( ) 1,n n n
j j jq t x q q

x x
−

∂ −
≈

∆ ∆
                    (4.3) 

( )
( )

2
1 1

2 2

, 2n n n n
j j j ju t x u u u

x x
+ −

∂ − +
≈

∂ ∆
                  (4.4) 

Now, using (4.2), (4.3) and (4.4) in Equation (4.1), we obtain, 

( )
( )

( )1
1 1 12 2n n n n n n n

j j j j j j j
t D tu u q q u u u
x x

+
− + −

∆ ∆
= − − + − +

∆ ∆
          (4.5) 

where, max
max

exp
n
jn n

j j

u
q u v

u
 

= ∗ −  
 

. 

And 1
1 1 max

max

exp
n
jn n

j j

u
q u v

u
−

− −

 
= ∗ −  

 
. 

Equation (4.5) is known as the explicit upwind difference scheme or FTBSCS 
scheme of diffusion type traffic flow model. 

4.2. Explicit Centered Difference Scheme (FTCSCS) 

To obtain this scheme, we discretize the time derivative 
u
t

∂
∂

 by forward differ-

ence formula, first order space derivative 
q
x
∂
∂

 by central difference formula and 

2

2
u

x
∂
∂

 by the second-order central difference formula at any point ( ),n
jt x ,  

0,1,2, , 1j M= −
; 0,1,2, , 1n N= − . 

And considering ( ),n
ju t x , we have, 
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( ) 1,n n n
j j ju t x u u

t t

+∂ −
≈

∂ ∆
                     (4.6) 

( ) 1 1,

2

n n n
j j jq t x q q

x x
+ −

∂ −
≈

∂ ∆
                    (4.7) 

( )
( )

2
1 1

2 2

, 2n n n n
j j j ju t x u u u

x x
+ −

∂ − +
≈

∂ ∆
                  (4.8) 

Using (4.6), (4.7) and (4.8) in (4.1), we obtain, 

( )
( )

( )1
1 1 1 12 2

2
n n n n n n n
j j j j j j j

t D tu u q q u u u
x x

+
+ − + −

∆ ∆
= − − + − +

∆ ∆
          (4.9) 

where, 1
1 1 max

max

exp
n
jn n

j j

u
q u v

u
−

− −

 
= ∗ −  

 
. 

And 1
1 1 max

max

exp
n
jn n

j j

u
q u v

u
+

+ +

 
= ∗ −  

 
. 

Equation (4.9) is known as the explicit centered difference scheme or FTCSCS 
scheme of diffusion type traffic flow model. 

4.3. Explicit Second-Order Lax-Wendroff Scheme with Exponen-
tial Velocity Density Relation 

For explicit Lax-Wendroff scheme of diffusion type traffic flow model, we  

discretize the part 0u q
t x

∂ ∂
+ =

∂ ∂
 in half time step Lax-Friedrich scheme [12],  

then we put that value in the half-step Leapfrog scheme and finally combining 
with the centered diffusion part, we get explicit second-order Lax-Wendroff 
scheme of diffusion type traffic flow model [13]. 

To get Lax-Friedrich scheme, we discretize the time derivative 
u
t

∂
∂

 by for-

ward difference formula, first order space derivative 
q
x
∂
∂

 by central difference 

formula and 
2

2
u

x
∂
∂

 by the second-order central difference formula at any point 

( ),n
jt x , 0,1,2, , 1j M= −

; 0,1,2, , 1n N= −  and considering ( ),n n
j ju t x u= , 

we have, 

( ) ( )1
1` 1 1 1

1
2 2

n n n n n
j j j j j

tu u u q q
x

+
+ − + −

∆
= + − −

∆
              (4.10) 

Equation (4.10) is known as Lax-Friedrich scheme. 
Now, take half time step in Lax-Friedrich scheme, we have, 

( ) ( )
1
2

1 11
2

1
2 2

n n n n n
j j j jj

tu u u q q
x

+

+ +
+

∆
= + − −

∆
              (4.11) 

( ) ( )
1
2

1 11
2

1
2 2

n n n n n
j j j jj

tu u u q q
x

+

− −
−

∆
= + − −

∆
              (4.12) 

To get leapfrog scheme, we discretize both time derivative 
u
t

∂
∂

 and space de-
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rivative 
q
x
∂
∂

 by central difference formula, 

( )1 1
1 1

n n n n
j j j j

tu u q q
x

+ −
+ −

∆
∴ = − −

∆
                 (4.13) 

Now, we take half time step Leapfrog scheme in (4.13), we get, 
1 1

1 2 2
1 1
2 2

.
n nn n

j j j j

tu u q q
x

+ ++

+ −

 ∆
= − −  ∆  

                  (4.14) 

Using exponential velocity density relationship ( )
max

exp uq q u u v
u

 
= = ∗  

 
 in 

(4.14), we have, 
1 1
2 2
1 11 1

1 max 2 22 2
1 1

max max2 2

exp exp

n n

j jn nn n
j j j j

u u
v tu u u u

x u u

+ +

+ −+ ++

+ −

    
    

∆     = − − − −    ∆
            

        (4.15) 

This is known as the Leapfrogs scheme for half time step. 

We use central difference formula for second-order space derivative 
2

2
u

x
∂
∂

, we 

have, 

( )
( )

2
1 1

2 2

, 2n n n n
j j j ju t x u u u

x x
+ −

∂ − +
≈

∂ ∆
                  (4.16) 

Now, combining (4.15) and (4.16) and using (4.11) and (4.12), we will get the 
required Lax-Wendroff scheme for diffusion type traffic flow model, 

( )

1 1
2 2
1 11 1

1 11 max 2 22 2
1 1 2

max max2 2

2
exp exp

n n

n n nj jn n j j jn n
j j j j

u u
u u uv tu u u u

x u u x

+ +

+ −+ + + −+

+ −

∆
∆

    
     − +    = − − − − +     ∆            

(4.17) 

where, 

( ) ( )
1
2

1 11
2

1
2 2

n n n n n
j j j jj

tu u u q q
x

+

+ +
+

∆
= + − −

∆
 

( ) ( )
1
2

1 11
2

1
2 2

n n n n n
j j j jj

tu u u q q
x

+

− −
−

∆
= + − −

∆
 

max
max

exp
n
jn n

j j

u
q u v

u
 

= ∗ −  
 

 

1
1 1 max

max

exp
n
jn n

j j

u
q u v

u
+

+ +

 
= ∗ −  

 
 

1
1 1 max

max

exp
n
jn n

j j

u
q u v

u
−

− −

 
= ∗ −  

 
 

Scheme (4.17) is known as the Lax-Wendroff scheme diffusion-type traffic flow 
model with exponential velocity density relation. 
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5. Stability Condition of Numerical Schemes 

By Von Neumann Stability analysis, we obtain the stability condition of explicit 
upwind, explicit centered and explicit second-order Lax-Wendroff scheme [14] [15]. 

The Stability Condition of Explicit Upwind Difference Scheme is, 
0 1γ≤ ≤  and 1 2γ α γ− ≤ ≤ −  

The Stability condition of explicit centered difference scheme, 

0 1α≤ ≤  and 
10
2

γ≤ ≤  

And the stability condition of Lax-Wendroff scheme is, 
0 1γ≤ ≤  and 0 1α≤ ≤  

where, 
( )( )( )max max n

jq u t

x
α

′ ∆
=

∆
 and 

( )2
D t

x
γ ∆
=

∆
. 

6. Numerical Simulation and Result Discussion 
For the simulation of a diffusion-type traffic flow model using different schemes, 
we use the periodic initial and left boundary conditions [16]. For the right 
boundary condition, we use the Neumann boundary condition. For the spatial 
domain, we use [0, 10] in kilometers, we choose the maximum velocity of cars is 

max 60 km hoursv = . We perform the numerical experiment for 3 minutes by 
taking temporal grid size 0.3 seconds spatial grid size 0.05 km and diffusion con-
stant 20.1 Km MinD = . 
 

 
(a) 

 
(b) 

Figure 1. (a) Density profile and (b) Velocity profile using explicit upwind scheme. 
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(a) 

 
(b) 

Figure 2. (a) Flux profile and (b) Relative error using explicit upwind difference scheme. 

 

 
(a) 

 
(b) 

Figure 3. (a) Density profile and (b) Velocity profile using explicit centered scheme. 
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(a) 

 
(b) 

Figure 4. (a) Flux profile and (b) Relative error using explicit centered difference scheme. 

 

 
(a) 

 
(b) 

Figure 5. (a) Density profile and (b) Velocity profile using Lax-Wendroff scheme. 
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(a) 

 
(b) 

Figure 6. (a) Flux profile and (b) Relative error using Lax-Wendroff scheme. 

 

In Figures 1-6, we present numerical experiments of density, velocity and flux 
profile for 3 minutes or 180 seconds of diffusion type traffic flow model to vi-
sualize the behavior of density, velocity and flux with respect to space and time 
using explicit upwind, explicit centered and Lax-Wendroff schemes. We also 
computed the relative error of diffusion type traffic flow model by using each of 
the explicit upwind, explicit centered and Lax-Wendroff schemes. Here, we ob-
serve that each of the three schemes gives better flow with the progress of time. 
The relative error of diffusion type traffic flow model using these three schemes 
is pretty good. 

7. Comparison among Explicit Upwind, Explicit Centered, 
and Lax-Wendroff Schemes 
Under the assumption mentioned in 6, we present a comparison density pro-

file using explicit upwind, explicit centered, and Lax-Wendroff schemes. We 
also present a comparison of relative error using these three schemes. 

In Figure 7(a), we present a comparison of the density profile using explicit 
upwind, explicit centered, and Lax-Wendroff schemes. In this figure, the curve 
marked by “solid blue line” represent the density profile of Lax-Wendroff scheme, 
the curve marked by “green dashed line” represents the density profile of explicit 
centered difference scheme and the curve marked by “red solid line” represents 
the density profile of explicit upwind difference scheme. Here, we observe that  
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(a) 

 
(b) 

Figure 7. Comparison of (a) Density profile and (b) Relative error using explicit upwind, 
explicit centered, and Lax-Wendroff scheme. 

 
Lax-Wendroff scheme gives better solution than explicit upwind and explicit 
centered difference schemes. 

In Figure 7(b), we present a comparison of relative error using explicit upwind, 
explicit centered, and Lax-Wendroff schemes. In this figure, the curve marked by 
“solid red line” represents the relative error using Lax-Wendroff scheme, the 
curve marked by “green dashed line” represents the relative error using expli-
cit centered difference scheme and the curve marked by “magenta solid line” 
represents the relative error using explicit upwind difference scheme. Here, we 
observe that Lax-Wendroff scheme gives less error than explicit upwind and ex-
plicit centered difference schemes. 

8. Conclusion 

The numerical solution using explicit upwind, explicit centered, and Lax-Wendroff 
schemes is presented in our paper. From the comparison of density profiles using 
explicit upwind, explicit centered, and Lax-Wendroff schemes, it is seen that 
Lax-Wendroff gives better flow than explicit upwind and explicit centered dif-
ference schemes. From the comparison of relative error, we have seen that the 
Lax-Wendorff scheme gives less error than the explicit upwind and explicit cen-
tered difference schemes. So, from the numerical as well as analytical analysis 
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and comparative result discussion, it can be concluded that the Lax-Wendroff 
scheme with exponential velocity-density relation of diffusion type traffic flow 
model is suitable for the congested area and shows a better fit in traffic-congested 
regions. 
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