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Abstract 
Continuously differentiable radial basis functions (C∞-RBFs), while being 
theoretically exponentially convergent are considered impractical computa-
tionally because the coefficient matrices are full and can become very ill- 
conditioned. Similarly, the Hilbert and Vandermonde have full matrices and 
become ill-conditioned. The difference between a coefficient matrix generat-
ed by C∞-RBFs for partial differential or integral equations and Hilbert and 
Vandermonde systems is that C∞-RBFs are very sensitive to small changes in 
the adjustable parameters. These parameters affect the condition number and 
solution accuracy. The error terrain has many local and global maxima and 
minima. To find stable and accurate numerical solutions for full linear equa-
tion systems, this study proposes a hybrid combination of block Gaussian 
elimination (BGE) combined with arbitrary precision arithmetic (APA) to 
minimize the accumulation of rounding errors. In the future, this algorithm 
can execute faster using preconditioners and implemented on massively pa-
rallel computers. 
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1. Introduction 

Hardy invented an interpolation function for scattered data arrangements based 
upon geodesics between pairs of points, see [1]. Theoretically, the continuously 
differentiable radial basis functions (C∞-RBFs) have very impressive properties. 
They converge exponentially with refined discretization, and also converge faster 
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as the spatial dimensionality increases, see [2]. Two very commonly considered 
C∞-RBF are: 

( ) ( )( ) ( )2 2exp Gaussianj j j
j

x cφ = − −x y                (1) 

( ) ( ) ( )2 21 Multiquadricj j jcφ = + −x x y                 (2) 

where x and y are the evaluation centers and data centers, respectively, in 
d-dimensional space, ℜd. The set of variables, { }2

jc , is a set of shape parameters 
that either narrows or broadens the resulting distribution. For the multiquadric 
(MQ) RBF, m is the exponent, µ ≥ −1/2 and excludes all integers. The exponent, 
µ, either steepens or flattens the distribution near the data center, yj. Many ap-
plications of C∞-RBFs such as: interpolation, approximation, integral, integ-
to-differential, and partial differential equations use the concept of interpolation 
as the starting point for various applications, see [3] [4].  

Assume there are ni data and ni evaluation centers defined over the interior, 
and nb data and nb evaluation centers such that the sum equals the total number 
of centers, N. That is:  

i bN n n= + .                          (3) 

Assume that the set of ni interior points are denoted by the subscript, i, and 
the set of nb boundary points are denoted by the subscript, b. These points may 
be either the interior data centers or evaluation centers and, similarly, the boun-
dary data or evaluation centers. 

The interpolation problem can be expressed in matrix form as: 

, ,

, ,

i i i b i i

b i b b b b

U
U

α
α

Φ Φ    
=    Φ Φ     

                    (4) 

Denote the general boundary operators that can be either Dirichlet, Neumann 
or Robin operators as  , over the nb boundary points, and let   be an integral, 
integto-differential operator, or an elliptic, hyperbolic, parabolic operator over ni 
interior points. Define the appropriate forcing functions, g(x, t) on the boun-
dary, and f(x, t) over the interior. The resulting set of N equations over N un-
known expansion coefficients for PDEs, IEs, or I-PDEs are written as: 

, ,

, ,

i i i b i

i b b b b

f
g

α
α

Φ Φ    
=    Φ Φ    

 
 

                  (5) 

To achieve a compact notation that illustrates the solution method, it is con-
venient to define the following matrices:  

, ,

, ,

i i i b

b i b b

Φ Φ 
=  Φ Φ 

Φ ,                      (6) 
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=  
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U ,                          (8) 
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f
g

 
=  

 
h ,                           (9) 

and 

, ,

, ,

i i i b

i b b b

Φ Φ 
=  Φ Φ 

 
 

Ψ .                    (10) 

In compact notation, the trial solution is given by: 

{ }1trial α−Φ= = ΦU hΨ .                   (11) 

Assume that the exact and the trial calculated solutions are given. In compar-
ing the trial solution, Utrial, to the exact solution, Uexact, the error, ζ, is denoted by 
norm of the difference between the exact solution and the exact solution, where 
the exact solution is defined by the user. Thus,  

If 
trial exactUζ η−= >U , reject,              (12.a) 

else  
trial exactU Uζ η− ≤= , accept.            (12.b) 

In this study, the error denoted by, ζ will be reported as the well-known root 
mean square error, (RMSE), if Uexact(x) ≤ 1, and if Uexact(x) > 1, the normalized 
root mean square error is used. The error, ζ, depends upon set or linear or linea-
rized expansion coefficients, {αj}, but also upon the nonlinear n parameter set, 
Q, where: 

{ }, , , µ=Q x y c .                     (13) 

On a finite precision computer, rounding errors can severely degrade the ac-
curacy of the numerical results. The machine epsilon is proportional to the in-
verse of the absolute condition number, κ, that indicates the number of digits of 
reliability of the numerical solution, see [4]. The condition numbers of both the 
interpolation matrix, Φ and the PDE matrix, Ψ, are implicit functions of the pa-
rameter set, Q.  

The procedure used is to vary the N data centers, the N evaluation centers, the 
N shape parameters, and the MQ exponent to find the optimal set, Q, that mi-
nimizes the errors. These 3N + 1 free parameters are then used to construct a full 
N × N PDE, IE, or IPDE coefficient matrix, Ψ. 

The matrix from the set of equations used to solve for the unknown expansion 
coefficients is asymmetric, full, and potentially ill-conditioned. As the shape pa-
rameters become larger, and the separation distances become smaller, and the eq-
uation system size increases, so does the potential for severe ill-conditioning occur. 

2. A Very Brief Survey Method to Solve Full Ill-Conditioned  
Linear Equations 

Consider an asymmetric, full, and very ill-conditioned matrix, A, such that: 
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=Ax b .                            (14) 

The condition number of a matrix is the ratio of the largest singular value of 
that matrix to the smallest singular value, denoted by κ(A). Computer arithmetic 
and mathematics are not identical to idealized Platonic arithmetic and mathe-
matics due to the finite precision approximations of numbers and functions on 
electronic computers. The larger number of computer bits representing a num-
ber or a function, the closer is the computer representations to the ideal Platonic 
world, even though the goal is unattainable. In addition, in the computer un-
iverse, the creation of computer beings and their interactions requires a finite 
amount of time (cost) unlike that of the beings in the Platonic universe. Num-
bers, functions, and operations require a finite time (cost) to perform.  

In some engineering applications, very fast iterative based approximations are 
needed. Where human life is at stake, extremely accurate direct methods are re-
quired, and computational speed is a secondary concern. In either case, compu-
tational speed can be addressed by utilizing highly optimized massively parallel 
computers for both scenarios. 

Some examples of direct methods are: Gaussian elimination, LU decomposi-
tion, SVD, or QR decomposition. If there were no rounding errors, then direct 
methods are theoretically exact. There are multitudes of iterative schemes such 
as overlapping or non-overlapping domain decomposition and blending, itera-
tive refinement, and reconditioning. 

Truncated singular value decomposition (SVD) is a direct method to treat 
very ill-conditioned systems by discarding singular values smaller than cut-off 
values near the magnitude of the machine epsilon. For problems requiring 
high accuracy, information is discarded. Tikhonov regularization modifies ill- 
conditioned matrices by multiplying the identity matrix by a small parameter 
and adding it to the matrix, A,  

( ) x bδ+ =A I ,                       (15) 

where δ is a small positive constant. The disadvantage of this approach is that 
the exact original problem is not solved. 

Pinpointing, see [4], modifies SVD decomposition by splitting the singular 
values that are greater than the double precision epsilon and those less than or 
equal to the double precision epsilon and treated these singular values with 
quadruple precision. This method was successful for treating ill-conditioned 
solid mechanics problems using MQ discretization, see [5]. However, in some 
applications, the SVD singular values can be even smaller than the quadruple 
precision epsilon. Iterative refinement is another popular method to improve 
accuracy. This approach is successful if the approximate solution, x', and the ap-
proximate inverse, (A−1) are close to correct values.  

Preconditioning is very popular for direct or iterative methods to solve 
ill-conditioned linear problems by reducing the condition number of the origi-
nal matrix, A. Assume the preconditioner is represented by a matrix, P. 

Then new linear problem becomes: 
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( ) x =PA Pb ,                         (16) 

As a result, 

( ) ( )κ κPA A .                       (17) 

The construction of a successful preconditioner is not always easy and de-
pends upon the structure of the matrix, A. Preconditioners for sparse, symmetric 
matrices are relatively easy. A more difficult task that was successfully achieved 
for asymmetric matrices, see [6]. 

The difficult task of constructing preconditioners for the full, asymmetric ma-
trices arising from C∞RBF applications was performed in the following papers, 
see [7]. These preconditioners were only able to lower the condition number by 
only 6 orders of magnitude; in most cases with large shape parameters and larger 
system sizes, the condition numbers could easily become enormous.  

The focus of this manuscript is not on engineering problems for which crude 
approximations are acceptable, but on problems that required direct methods 
with the highest possible accuracy. The next sections will focus on highly accu-
rate results. 

3. The Hybrid Block Gaussian Elimination-Arbitrary  
Precision Arithmetic Algorithm 

Computer mathematics is not synonymous with ideal Platonic mathematics be-
cause firstly, all numbers only possess finite precision and secondly, all library 
functions are only finitely precise. The Institute of Electrical and Electronic En-
gineers (IEEE) defines a single precision word to consist of 32 bits and a double 
precision word to consist of 64 bits.  

The condition number, κ, of a matrix is the ratio of the maximum to mini-
mum matrix singular values and is a measure of the confidence of linear equa-
tion solutions in single or double precision. The cutoff κ for double precision is 
O (1e+16). If κ exceeds the inverse of the machine epsilon, there are zero digits 
of precision and numerical results can be unreliable. 

Arbitrary Precision Arithmetic (APA) is a very powerful tool to avoid the 
consequences of accumulating rounding errors. Assuming a computer has suffi-
cient storage, any number can be stored as a string of smaller base numbers. 
There is no fixed limit on number of the number of base types used, only the 
available amount of computer memory. APA are software codes that rearrange 
memory to store the arbitrary precision variables and perform operations on 
these numbers with the desired Note that there are two valid notations for the 
number zero: an empty vector and a vector with a single zero digit. Some pro-
gramming languages such as Lisp, Python, Perl, Haskell, etc. allow an arbitrary 
number of digits of precision. Numbers are stored as a vector in which each 
element is a single digit of that number, and digits are stored from least to most 
significant. There is no fixed limit on the number of base types used to represent 
numbers, just whatever the computer memory can hold. All operations are im-
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plemented so the result does not have any leading zeros. All operations that 
might result in a number with leading zeros should be followed by a code that 
removes them. Lastly, APA can be used to avoid overflow that is not possible 
with fixed precision arithmetic. Since obtaining more precision via computer 
chips is unlikely, software methods such as the MPLAPACK package, see [8], 
that is based upon BLAS, and the Advanpix package, [9], are required. Advanpix 
is very fast compared to other APA packages because of proprietary implemen-
tations. The objective of solving the linearized set of equations is to find the ex-
pansion coefficients, {α}, so that a trial solution can be constructed to determine 
whether the solution error, ζ. 

In linear algebra applications, a matrix is a rectangular or square table ar-
ranged in columns and rows consisting of numbers, symbols, or expressions. In 
addition, a matrix may be composed of a table of elements that are matrices that 
are arranged in columns and rows. The analog of dividing an element is to mul-
tiply that matrix element by the inverse of another matrix element. The equiva-
lent of a matrix element being unity is the identity matrix of size p; the equiva-
lent of a matrix being zero is the null matrix of size p. 

As the size of a matrix and its bandwidth increases, so does its condition 
number, κ. The full matrices, such as those associated with C∞-RBF applications 
can rapidly become so ill-conditioned on single and precision computers that 
the numerical results can become unreliable. Rather than solving the entire full 
system of equations at one time, the approach taken here is to consider solving 
many smaller, but better conditioned systems.  

The numerical solution of large matrices with large bandwidths has used the 
Block Gaussian Elimination (BGE) scheme used for many years, see [10] [11] 
[12]. The concept for the Block Gaussian Elimination method is simple. The 
large N × N matrix with N rows and N columns is partitioned into K × K blocks 
along the K rows and K columns. In turn, within each block, there are p × p 
elements. Assume the N × N matrix is subdivided into K × K uniformly sized 
blocks, each of which consists of p´p elements, such that: 

N K p= ⋅ .                        (18) 

To illustrate the process, assume that the matrix A is subdivided into K × K 
blocks and each block contains p × p elements: (Figure 1) 

He procedure used is block Gaussian elimination (BGE), see [6] [7] [8], with-
out pivoting since pivoting induces stalling, see [2] [3]. The superscript, m, on 
the block matrices, including the column vector or augmented matrix, indicates 
the m-th diagonal operation. Having calculated the math diagonal inverse, the 
remaining block matrices are multiplied by that inverse. This procedure can be 
performed in parallel. The remaining blocks of the j-th row are sent to separate 
processors to form the Schur product matrices and subtract the Schur matrices 
to construct new block matrices. Since the inverse of the p × p diagonal block 
matrix is considerably smaller, the inverse is mildly contaminated by rounding 
errors (Figure 2). 
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Figure 1. The full matrix A is partitioned to K × K blocks where each block contains p × 
p elements. 
 

 

Figure 2. The partial decomposition of the matrix, A, at the third diagonal. 
 

Continuing in a similar manner, the last diagonal is reached, and the last ma-
trix block is inverted. The last column matrices are eliminated. The augment ed 
matrix contains the expansion coefficients, see Figure 3. 

Since N = K ∙ p, it is a simple matter to transform the β column into the α ex-
pansion coefficient column of size N. 

 

 

Figure 3. The final decomposition of the matrix A at the last diagonal. 

 
In the next section, it will be shown that the size and condition number of the 

block diagonal matrices are considerably smaller than that of the initial matrix, 
A. To further assist in obtaining high accuracy, arbitrary precision arithmetic 
(APA) will be used to minimize the accumulation of rounding errors in the for-
mation of Schur matrix components and their subtraction in the block elimina-
tion procedure. 

4. Elimination-Arbitrary Precision Arithmetic Algorithm 

Computer mathematics is not synonymous with ideal Platonic mathematics be-
cause firstly, all numbers only possess finite precision and secondly, all library 
functions are only finitely precise. The Institute of Electrical and Electronic En-
gineers (IEEE) defines a single precision word to consist of 32 bits and a double 
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precision word to consist of 64 bits.  
The condition number, κ, of a matrix is the ratio of the maximum to mini-

mum matrix singular values and is a measure of the confidence of linear equa-
tion solutions in single or double precision. The cutoff κ for double precision is 
O (1e+16). If κ exceeds the inverse of the machine epsilon, there are zero digits 
of precision and numerical results can be unreliable. 

Arbitrary Precision Arithmetic (APA) is a very powerful tool to avoid the 
consequences of accumulating rounding errors. Assuming a computer has suffi-
cient storage, any number can be stored as a string of smaller base numbers. 
There is no fixed limit on number of the number of base types used, only the 
available amount of computer memory. APA are software codes that rearrange 
memory to store the arbitrary precision variables and perform operations on 
these numbers with the desired Note that there are two valid notations for the 
number zero: an empty vector and a vector with a single zero digit. Some pro-
gramming languages such as Lisp, Python, Perl, Haskell, etc. allow an arbitrary 
number of digits of precision. Numbers are stored as a vector in which each 
element is a single digit of that number, and digits are stored from least to most 
significant. There is no fixed limit on the number of base types used to represent 
numbers, just whatever the computer memory can hold. All operations are im-
plemented so the result does not have any leading zeros. All operations that 
might result in a number with leading zeros should be followed by a code that 
removes them. Lastly, APA can be used to avoid overflow that is not possible 
with fixed precision arithmetic. Since obtaining more precision via computer 
chips is unlikely, software methods such as the MPLAPACK package, see [8], 
that is based upon BLAS, and the Advanpix package, [9], are required. Advanpix 
is very fast compared to other APA packages because of proprietary implemen-
tations. The objective of solving the linearized set of equations is to find the ex-
pansion coefficients, {α}, so that a trial solution can be constructed to determine 
whether the solution error, ζ. 

5. Calculations with Ill-Conditioned Systems 

The first set of numerical experiments examines the root mean squared errors 
(RMSEs) is the square of the difference between the exact solution at Uexact(xj) 
and the numerical solution at xj divided by the number of samples, N:  

( )2exact trialRMSE j jj U U N= −∑                 (19) 

If the magnitude of Uexact is greater than one, the normalized root mean 
squared. 

Error (NRMSE) is:  

( ) ( )
1 22 2exact trial exactNRMSE j jj U U N = −  ∑ U            (20) 

Double precision has about 16 digits of precision. The upper limit for the ab-
solute c condition number is O (1e+16) in double precision; while it is possible 
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to obtain accurate numerical results in double precision if the matrix condition 
number exceeds O (1e+16), this not the universal case. In the first study, a set of 
equations arising from a (16 × 16) Hilbert matrix, see [13], is studied in double 
and quadruple precision. This study also investigates the effect upon the RMSEs, 
the maximum block condition number, and the execution time, the maximum 
block condition number, and the execution time (Table 1). 

The original 16 × 16 Hilbert matrix has the advantage of reducing the maxi-
mum block condition number for a maximum 2 × 2 block condition number of 
2.88e+3. The RMSE for this partitioning is only reduced from 14.05 to 8.82. The 
source of this error is most likely from the formation of the Schur matrices in-
volved forming product matrices and subtracting the resultant during the block 
elimination process. The same problem is solved again, but instead of using 16 di-
gits of precision, 32 digits of precision we used, with a much-improved outcome. 

Table 2 shows more dramatic reduction of η and RMSE with the combination 
of block size reduction and extra digits of precision. Note that the RMSEs are 
dramatically reduced, especially for the (2 × 2) blocks, 

Using 32 digits of precision alters the runs. Notice the run times on a serial 
computer are longer, and the maximum block condition numbers have in-
creased due to more accurate calculations of the singular values. The most noti-
ceable improvement in the reduction of the RMSEs. The next exercise is the cal-
culation of a 300 × 300 Hilbert system of equations (Table 3). 
 
Table 1. (16 × 16) Hilbert system with different block sizes, maximum block condition 
number, and RMSEs with 16 digits of precision. 

16 digits Max lock cond. No. RMSE 

4 (8 × 8) 1.33e+11 14.0537 

16 (4 × 4) 4.99+08 9.102 

64 (2 × 2) 2.82e+03 3.832 

 
Table 2. (16 × 16) Hilbert system with different block sizes, execution time, RMS errors 
with 32 digits of precision. 

32 digits of precision Max lock Cond. No. RMSE 

4 (8 × 8) 1.33e+12 3.8e−09 

16 (4 × 4) 1.55e+09 1.63e−12 

64 (2 × 2) 1.54e+04 1.80e−16 

 
Table 3. RMSEs for block decomposition of a (300 × 300) Hilbert matrix with 48 and 200 
digits of precision. 

Blocks Size 48 digits RMSE Blocks Size 200 digits RMSE 

10 (30 × 30) 7.32e−01 10 (30 × 30) 1.1e−52 

15 (20 ×20) 2 .72e−15 15 (20 × 20) 4.3e−527 

30 (10 × 10) 1.9ee−20 30 (10 × 10) 4.9e−537 
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Notice that using 48 digits id precision, the RMS errors dropped to dramati-
cally to a 1e−24 for the fine 5 × 5 blocks. The drop in RMS errors is even more 
dramatic with 200 digits of precision dropping to 4e−537. Using 200 digits of 
precision reduced the accumulation of rounding errors. 

The next examples are the Vandermonde matrices, see [14], defined as a ma-
trix of vectors raised to a power, commonly given by: 

( ) ( )( ), N j
V i j j −=A v ,                      (21) 

where ( ) [ ]0 0 0, , 2 , , Nj v v dv v dv v= + +v  . Specialized fast Vandermonde solvers 
exist, see [15], exist that are more efficient than block Gaussian elimination, but 
the optimal choice of algorithms for Vandermonde systems, Hilbert, Wilson, etc. 
systems is beyond the scope of this study.  

The study of the Vandermonde system of equations will be made into two 
parts. The first part of the study will be performed on a limited memory serial 
computer whose maximum size with APA is 144. The second part of the study 
will be performed on a parallel machine consisting of 16 (Graphical Processing 
Units) GPUs cores that is capable of handling many more digits of precision. For 
the size 100 × 100 matrix, dv = 0.5, and v = 50.5, and for the size 144 matrix, dv 
= 0.5, and v = 72.5. The condition number of the size 100 matrix is estimated to 
be 8e+202. With 360 digits of precision, the results for the 25 (4 × 4) blocks the 
RMSE = 4e−44, and with 50 (2 × 2) blocks, respectively, the RMSE is 4e−95. The 
condition number of the global 144 × 144 matrix is 4e+313 (Table 4). 

 
Table 4. Block size, maximum condition number, digits used, run time, and global MS 
error for the Vandermonde equations. 

Linear system Cond. No. Digits Used Rune Time RMSE 

100 × 100 7.9e+202 300 0.03 7.9e−203 

200 × 200 7.1e+463 600 0.41 5.7e−931 

300 × 300 1.9e+746 1200 3.35 1.8e−2007 

400 × 400 1.8e+1278 1500 14.38 3.3e−2597 

500 ×500 1.3e+1671 1600 30.16 4.8e−3284 

600 × 600 1.4e+1671 1800 47.38 1.4e−3284 

700 × 700 1.3e+1906 2100 58.40 1.3e−3880 

 
P. Holoborodko has constructed parallel machines consisting of 32 or 64 

Graphical Processing Units (GPUs). 
To construct a trial solution, Utrial, the N unknown expansion coefficients need 

to be solved. The sets of equations to find the expansion coefficients can be ill- 
conditioned on electronic digital computers.  

There are many potential causes of numerical ill-conditioning such as: the size 
of the equation system, the minimal distance between data and evaluation cen-
ters, the magnitude of the shape parameters, and the magnitude of the exponen-
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tial, μ. The same BGM-APA hybrid algorithm that was used to solve very 
ill-conditioned Hilbert and Vandermonde equations will be used for C∞ RBF ap-
plications. 

6. Solutions of a 2D Eigenvalue Poisson Equation 

The incentive to develop the Block Gaussian elimination arbitrary precision 
arithmetic (BGE-APA) method is to find accurate numerical solutions of PDEs, 
IEs, and IPDEs using C∞-RBFs, see [16]. The global minimization procedure is 
taken from [17] [18] for small memory computers; the presented procedure can 
be modified for more powerful computers. Note the solutions from C∞RBFs are 
more complex than either the Hilbert or Vandermonde systems. As the mem-
bers of the parameter set, Q, are varied, different outcome RMSEs are produced, 
and a search of the RMSE landscape is required to find the global minima. Be-
cause the RMSEs can vary so much, many calculations of the RMSEs are needed 
to determine which Q produces the minimum RMSE. 

Sometimes collocation will be used in which both the evaluation centers coin-
cide with the data centers, but at other times these centers may be distinct. The 
evaluation centers are allowed to extend slightly beyond the domain, see [19]. In 
addition, the shape parameters can be either uniform or there may be distinct 
shape parameters, see [20] [21]. Also, the shape parameters on the boundary 
may be larger than those on the interior and the MQ exponent may be larger 
than ½, see [21]. 

This produces a system of N linear (linearized) equations in N unknown ex-
pansion coefficients. Given the trial expansion coefficients, rial

tU  is constructed 
by interpolation and compared to Uexact. The goal of this manuscript is to solve 
IEs, PDEs, and I-PDEs with a minimum number of data and evaluation centers 
as possible to avoid the curse of dimensionality for more complex problems oc-
curring in higher dimensions. 

The test problem is the solution of the 2D eigenvalue Poisson PDE:  

( ) ( )2
1 2 1 2, 50exp 5 5 over r \ ,U x x x x∇ = + Ω ∂Ω            (22) 

( ) ( )1 1 1,0 exp 5 ,0 alongU x x= ∂Ω                 (23) 

( ) ( )2 2 20, exp 0,5 alongU x x= ∂Ω                (24) 

( ) ( )1 1 3,1 exp 5 ,0 alongU x x= ∂Ω                 (25) 

( ) ( )2 2 41, exp 0,5 alongU x x= ∂Ω                 (26) 

This test problem will be solved numerically on a unit square using scattered 
data configurations. 

The largest value of U occurs at x1 = 1, x2 = 1 where U = 2.2026e+04. At both r 
x1 = 0, x2 = 1 and x1, x2 = 0, U(x1, x2) = 148.41, and at x1 = 0, x2 = 0, U = 1.  

Case 1. The above problem, Equations (20)-(24), is discretized with 100 (10 
×10) data and evaluation centers. There are 64 randomly generated interior 2D 
points for each of the data and evaluation centers; there were 36 randomly gen-
erated 1D boundary points. 
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There were 100 distinct shape parameters that varied from 4 to 199. Because 
the forcing functions for both the boundary and interior vary very rapidly ap-
proaching near x1 = 1, x2 = 1, the data and evaluation centers are clustered near 
x1 = 1, x2 = 1. There are a total of 36 points on the boundary. The interior evalu-
ation centers extended up to 0.015 beyond the boundary centers. 

The boundary shape parameters were 3.8 larger than the interior ones. The 
MQ exponential, μ = 1.43. There were 200 digits of precision, and NRMSE is 
17.4e−27. 

Unlike the simpler Hilbert and Vandermonde problems, the MQ-PDE prob-
lems are much more complicated because the RBFs are nonlinear in nature 
and the NRMSE landscape is filled with many peaks and valleys and the loca-
tions of the global minima valleys are not known a prior. There were hundreds 
of realizations of the 2D Poisson PDE. Only a small sample of the most signif-
icant realizations will be presented and summarized. The global condition 
number = 1.9e50, and the NRMSE = 8.9e−18. While this NRMS error may be 
improved, a variation of the Newton-Raphson method may lower the NRMSE 
further. 

Case 2. In this test case, there were a total of 100 × 10 (10,000) randomly μ = 
1.43. Generated data and evaluation centers and the evaluation centers extend 
0.001 beyond the boundary. There are 3600 randomly generated 1D boundary 
points, and 6400 randomly generated 2D interior points. In addition, there are 
1e4 randomly generated 1D shape parameters that are scaled from 5e0 to 1.8e4. 
Those shape parameters assigned to the boundary were multiplied by 3.2, and μ 
= 1.43. The condition number of the coefficient matrix was 3.4e159, and the 
NRMSE was 6.2e−124. 

Case 3. In this test, there were 4e4 randomly generated 1D shape parameters, 
and linearly scaled from 1.2e1 to 3.0e4, and μ = 1.43. The boundary shape para-
meters were 8 times greater than the interior parameters. There are 1.6e4 ran-
domly generated 1D boundary randomly generated data and evaluation centers 
and 2.4e4 randomly generated 2D interior data and evaluation centers. The 
number of digits was set to 500 digits of precision.   The condition number was 
2e524 and the NRMSE was 9.8e−228. 

 Case 4. In this test, there are 4e4 1D boundary data and evaluation centers 
and 5e4 2D interior data and evaluation centers. Both sets of data and evaluation 
centers were randomly generated. The shape parameters were also generated as a 
1D column of 9e4 points that were linearly scaled from 2e1 to 9e4, e4, and μ = 
1.43. The boundary shape parameters were multiplied by 4.5. The condition 
number was 6.8e+713 and the NRMSE was 9.8e−372, and there were 800 digits 
of precision. 

The search for the smallest NRMSE is a global minimization problem that 
depends nonlinearly upon the number and location of the data centers, the 
evaluation centers, the boundary and interior shape parameters, and the expo-
nents, μ of the MQ RBFs. This problem was discussed previously in [7] [8]. 
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7. Conclusions 

The application of C¥-RBFs to PDEs, IEs, and I-PDEs involves nonlinear basis 
functions. The usual approach is to estimate appropriate data and evaluation 
centers, the shape parameters, and the MQ exponential. This study examines the 
hybrid combination of Block Gaussian Elimination (BGE) and Arbitrary Preci-
sion Arithmetic (APA) to form a new hybrid algorithm. The algorithm improves 
both accuracy and execution time since the BGE portion is inherently paralle-
lizable and there is no pivoting that stalls the calculations.  

By using many small diagonal block inversions with fewer digits of precision, 
shorter run times are required. Both BGE and APA complement each other. The 
Schur component matrices formed in Gaussian elimination can accumulate 
rounding errors if there is no increase in precision. The optimal balance of error 
control and run time is beyond the limited scope of this more study. 

By using many small diagonal block inversions with fewer digits of precision, 
shorter run times are required. Both BGE and APA complement each other. The 
Schur component matrices formed in Gaussian elimination can accumulate 
rounding errors if there is no increase in precision.  

The problem of ill-conditioning and solution stability is discussed in [22]. The 
more common cause of ill-conditioning is the choice of the shape parameters. 
Luh [23] [24] showed that if the problem to be solved resides in Sobolev space, 
then his theory very accurately predicts the optimal shape parameters for both 
Gaussian and multiquadric C¥-RBFs. 

A similar approach was used in [25] showing that decomposing a large full 
matrix has the main advantage of lowering the component condition numbers 
and increasing solution accuracy as measured from an exact solution. In addi-
tion, it was shown that the counter-diagonal elements whose distance from the 
main diagonal is greater than 1.42 could be set to zero with no significant loss of 
accuracy. In other words, the full matrices arising from C¥-RBFs could have a 
sparse matrix structure with a larger bandwidth and still be quite accurate. The 
main advantage in this present work is the hybrid combination of arbitrary pre-
cision arithmetic that controlled the potential instabilities from Schur matrices.  

The Hilbert and Vandermonde ill-conditioned linear systems are proxies for 
the numerical solutions to the C¥-RBF based discretization of PDEs, IEs, and 
I-PDEs in ℜd space. Because the C¥-RBFs are nonlinear with respect to the data 
and evaluation centers, the shape parameters, and exponent, μ, the equation sys-
tems are far more varied than either the Hilbert or Vandermonde systems and 
can be quite ill-conditioned. The C∞-RBF based PDE coefficient matrix is more 
complicated because it is composed of disjoint inhomogeneous matrix structures 
belonging to the interior and the boundary problem. The solution space of 
C∞-RBF based problems can have many local and global minima and minima as 
well as saddle points. With such a complex solutions landscape of global and lo-
cal maxima and minima, it is not surprising that in some unusual circumstances 
a singular solution is possible, see [26].  
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The algorithm presented here is distinct from domain decomposition. In the 
BGE-APA scheme all matrix and vector blocks are fully coupled, whereas in 
classic domain decomposition, one obtains independent solutions on separate 
subdomains, and iteration is used to blend the separate solutions. If the physical 
processes being modeled are sufficiently dissipative, then the iterative process 
can yield reliable results. 

It would be an interesting study to optimize the execution time and the num-
ber of digits of precision because the desired accuracy of the numerical simula-
tion. Certain engineering applications do not need such high accuracy whereas 
modeling a health issue for a human would need very high accuracy. 

Conflicts of Interest 

The author is unaware of any conflicts of interest. 

References 
[1] Hardy, R.L. (1971) Multiquadric Equations of Topography and other Irregular Sur-

faces. Journal of Geophysical Research, 76, 1905-1915.  
https://doi.org/10.1029/JB076i008p01905 

[2] Buhmann, M.D. (2003) Radial Basis Functions. Cambridge University Press, Cam-
bridge. https://doi.org/10.1017/CBO9780511543241 

[3] Kansa, E.J. (1990) Multiquadrics—A Scattered Data Approximation Scheme with 
Applications to Computational Fluid-Dynamics. II. Solutions to Parabolic, Hyper-
bolic and Elliptic Partial Differential Equations. Computers & Mathematics with 
Applications, 19, 147-161. https://doi.org/10.1016/0898-1221(90)90271-K 

[4] Macon, N. and Spitzbart, A. (February 1958) Inverses of Vandermonde Matrices. 
The American Mathematical Monthly, 65, 95-100.  
https://doi.org/10.1080/00029890.1958.11989147 

[5] Emdadi, A., Kansa, E.J., Ali Libre, N., Rahimian, M. and Shekarchi, M. (2008) Stable 
PDE Solution Methods for Large Multiquadric Shape Parameters. Computer Mod-
eling in Engineering & Sciences, 25, 23-42. 

[6] Benzi, M., Haws, N.J. and Umas, M. (2000) Pre-Conditioning Highly Indefinite and 
Nonsymmetric Matrices. SIAM Journal on Scientific Computing, 22, 133-153.  
https://doi.org/10.1137/S1064827599361308  

[7] Ling, L. and Kansa, E.J. (2005) A Least Squares Preconditioner for Radial Basis Func-
tions Collocation Methods. Advances in Computational Mathematics, 23, 31-54.  

[8] MPlapack. https://github.com/nakatamaho/mplapack  

[9] Holoborodko. https://www.advanpix.com  

[10] Dammel, J.W., Highman, N.J. and Schreiber, R. (1992) Block LU Factorization, 
NASA-BR-97949, Journal of Numerical Linear Algebra and Applications. 

[11] Eldersveld, S.K. and Saunders, M.A. (1992) A Block-LU Update for Large-Scale Li-
near Programming. SIAM Journal on Scientific Computing, 13, 191-201.  
https://doi.org/10.1137/0613016 

[12] Song, X., Jian, L. and Yang, S. (2017) A Chunk Updating LS-SVMs Based on Block 
Gaussian Elimination Method. Applied Soft Computing, 51, 96-104.  
https://doi.org/10.1016/j.asoc.2016.12.004 

[13] Hilbert, D. (1894) Ein Beitrag zur Theorie des Legendre’schen Polynoms. Acta Ma-

https://doi.org/10.4236/ajcm.2023.132019
https://doi.org/10.1029/JB076i008p01905
https://doi.org/10.1017/CBO9780511543241
https://doi.org/10.1016/0898-1221(90)90271-K
https://doi.org/10.1080/00029890.1958.11989147
https://doi.org/10.1137/S1064827599361308
https://github.com/nakatamaho/mplapack
https://www.advanpix.com/
https://doi.org/10.1137/0613016
https://doi.org/10.1016/j.asoc.2016.12.004


E. J. Kansa 
 

 

DOI: 10.4236/ajcm.2023.132019 370 American Journal of Computational Mathematics 
 

thematica, 1, 155-159. https://doi.org/10.1007/BF02418278 

[14] Marcus, M. (1992) Vandermonde Matrix, §2.6.2. In: A Survey of Matrix Theory and 
Matrix Inequalities, Dover, New York, 15-16.  

[15] Highman, N.J. (1999) Fast Solution of Vandermonde-Like Systems Involving Or-
thogonal Polynomials. IMA Journal of Numerical Analysis, 8, 473-486.  
https://doi.org/10.1093/imanum/8.4.473 

[16] Kansa, E.J. and Holoborodko, P. (2017) On the Ill-Conditioned Nature of C∞ RBF 
Strong Collocation. Engineering Analysis with Boundary Elements, 78, 26-36.  
https://doi.org/10.1016/j.enganabound.2017.02.006 

[17] Galperin, E.A., Kansa, E.J., Makroglou. A. and Nelson S.A. (1997) Mathematical 
Programming Methods in the Numerical Solution of Volterra Integral and Integ-
to-Differential Equations with Weakly-Singular Kernel. Nonlinear Analysis: Theory, 
Methods & Applications, 30, 1505-1513.  
https://doi.org/10.1016/S0362-546X(96)00340-9 

[18] Galperin, E.A. and Kansa, E.J. (2002) Application of Global Optimization and Radi-
al Basis Functions to the Numerical Solution of Weakly Singular Volterra Integral 
Equations. Computers & Mathematics with Applications, 43, 439-456.  
https://doi.org/10.1016/S0898-1221(01)00300-5 

[19] Fedoseyev, A.I., Friedman, M.J. and Kansa, E.J. (2002) Improved Multiquadric 
Method for ell Partial Differential Equations via PDE Collocation on the Boundary. 
Computers & Mathematics with Applications, 43, 439-455.  
https://doi.org/10.1016/S0898-1221(01)00297-8 

[20] Kansa E.J. and Carlson, R.A. (1992) Improved Accuracy of Multiquadric Interpola-
tion Using Variable Shape Parameters. Computers & Mathematics with Applica-
tions, 24, 99-120. https://doi.org/10.1016/0898-1221(92)90174-G 

[21] Wertz, J., Kansa, E.J. and Ling, L. (2006) The Role of the Multiquadric Shape Pa-
rameters in Solving Elliptic Partial Differential Equations. Computers & Mathemat-
ics with Applications, 51, 1335-1348. https://doi.org/10.1016/j.camwa.2006.04.009 

[22] Cervenka, M. and Skala, V. (2022) Conditionality Analysis of the Radial Basis Func-
tion Matrix. Computational Science and Its Applications—ICCSA 2020, Cagliari, 
1-4 July 2020, 30-43. https://doi.org/10.1007/978-3-030-58802-1_3 

[23] Luh, L.T. (2016) The Mystery of the Shape Parameter IV. Engineering Analysis with 
Boundary Elements, 80, 103-109.  

[24] Luh, L.-T. (2019) The Choice of the Shape Parameter-A Friendly Approach. Engi-
neering Analysis with Boundary Elements, 98, 103-109.  
https://doi.org/10.1016/j.enganabound.2018.10.011 

[25] Kansa, E.J. and Hon, Y.C. (2000) Circumventing the Ill-Conditioning Problem with 
Multiquadric Radial Basis Functions: Applications to Elliptic Partial Differential 
Equations. Computers & Mathematics with Applications, 39, 123-137.  
https://doi.org/10.1016/S0898-1221(00)00071-7 

[26] Hon, Y.C. and Schaback, R. (2002) On Unsymmetric Collocation by Radial Basis 
Functions. Applied Mathematics and Computation, 119, 177-188.  
https://doi.org/10.1016/S0096-3003(99)00255-6 

https://doi.org/10.4236/ajcm.2023.132019
https://doi.org/10.1007/BF02418278
https://doi.org/10.1093/imanum/8.4.473
https://doi.org/10.1016/j.enganabound.2017.02.006
https://doi.org/10.1016/S0362-546X(96)00340-9
https://doi.org/10.1016/S0898-1221(01)00300-5
https://doi.org/10.1016/S0898-1221(01)00297-8
https://doi.org/10.1016/0898-1221(92)90174-G
https://doi.org/10.1016/j.camwa.2006.04.009
https://doi.org/10.1007/978-3-030-58802-1_3
https://doi.org/10.1016/j.enganabound.2018.10.011
https://doi.org/10.1016/S0898-1221(00)00071-7
https://doi.org/10.1016/S0096-3003(99)00255-6

	A Numerical Method for Solving Ill-Conditioned Equation Systems Arising from Radial Basis Functions
	Abstract
	Keywords
	1. Introduction
	2. A Very Brief Survey Method to Solve Full Ill-Conditioned Linear Equations
	3. The Hybrid Block Gaussian Elimination-Arbitrary Precision Arithmetic Algorithm
	4. Elimination-Arbitrary Precision Arithmetic Algorithm
	5. Calculations with Ill-Conditioned Systems
	6. Solutions of a 2D Eigenvalue Poisson Equation
	7. Conclusions
	Conflicts of Interest
	References

