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Abstract 
This work illustrates the innovative results obtained by applying the recent-
ly developed the 2nd-order predictive modeling methodology called “2nd- 
BERRU-PM”, where the acronym BERRU denotes “best-estimate results with 
reduced uncertainties” and “PM” denotes “predictive modeling.” The physi-
cal system selected for this illustrative application is a polyethylene-reflected 
plutonium (acronym: PERP) OECD/NEA reactor physics benchmark. This 
benchmark is modeled using the neutron transport Boltzmann equation (in-
volving 21,976 uncertain parameters), the solution of which is representative 
of “large-scale computations.” The results obtained in this work confirm the 
fact that the 2nd-BERRU-PM methodology predicts best-estimate results that 
fall in between the corresponding computed and measured values, while re-
ducing the predicted standard deviations of the predicted results to values 
smaller than either the experimentally measured or the computed values of 
the respective standard deviations. The obtained results also indicate that 
2nd-order response sensitivities must always be included to quantify the need 
for including (or not) the 3rd- and/or 4th-order sensitivities. When the para-
meters are known with high precision, the contributions of the higher-order 
sensitivities diminish with increasing order, so that the inclusion of the 1st- 
and 2nd-order sensitivities may suffice for obtaining accurate predicted best- 
estimate response values and best-estimate standard deviations. On the other 
hand, when the parameters’ standard deviations are sufficiently large to ap-
proach (or be outside of) the radius of convergence of the multivariate Tay-
lor-series which represents the response in the phase-space of model parame-
ters, the contributions stemming from the 3rd- and even 4th-order sensitivities 
are necessary to ensure consistency between the computed and measured re-
sponse. In such cases, the use of only the 1st-order sensitivities erroneously 
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indicates that the computed results are inconsistent with the respective 
measured response. Ongoing research aims at extending the 2nd-BERRU-PM 
methodology to fourth-order, thus enabling the computation of third-order 
response correlations (skewness) and fourth-order response correlations 
(kurtosis).  
 

Keywords 
Second-Order Predictive Modeling, OECD/NEA Reactor Physics Benchmark, 
Data Assimilation, Best-Estimate Results, Uncertainty Quantification,  
Reduced Predicted Uncertainties 

 

1. Introduction 

The accompanying works [1] [2] have presented the second-order predictive 
modelling (acronym: PM) methodology conceived by Cacuci for obtaining 
“best-estimate results with reduced uncertainties” (acronym: BERRU). This me-
thodology, designated by the acronym “2nd-BERRU-PM,” relies fundamentally 
on the maximum entropy (MaxEnt) principle of thermodynamics [3] and 
Shannon’s information theory [4]. These conceptual underpinnings of the 2nd- 
BERRU-PM methodology are in contradistinction to the data assimilation me-
thodology [5], which relies on minimizing a subjective user-defined functional 
which is meant to represent, in the energy-norm, the differences between meas-
ured and computed results of interest (called “responses”). As has been pre-
sented in [1] [2], there are two complementary methodological frameworks for 
constructing the 2nd-BERRU-PM methodology, leading to equivalent, but not 
identical results. One framework is constructed by incorporating the representa-
tion of the computational model deterministically; the resulting methodology 
has been designated by the acronym “2nd-BERRU-PMD” [1], where the letter 
“D” indicates “deterministic”. The alternative framework is constructed by in-
corporating the representation of the computational model probabilistically; the 
resulting methodology has been designated by the acronym “2nd-BERRU-PMP” 
[2], where the last letter of the acronym (“P”) indicates “probabilistic”. 

In this work, the 2nd-BERRU-PMD [1] methodology (which deterministically 
incorporates the representation of the computational model) will be used to illu-
strate quantitatively the effects of second- and higher-order sensitivities for ob-
taining best-estimate results with reduced uncertainties for the polyethylene- 
reflected plutonium (acronym: PERP) OECD/NEA reactor physics benchmark 
[6]. This benchmark is modeled using the neutron transport Boltzmann equa-
tion, the solution of which is representative of “large-scale computations” and 
involves a large number (21,976) of uncertain parameters. The Boltzmann for-
ward and adjoint neutron transport equations are solved using the software 
packages PARTISN [7] and SOURCES4C [8] in conjunction with the MENDF71X 
[9] cross section data. The characteristics of the PERP benchmark are briefly 
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presented in Section 2, along with the computational method for solving the 
Boltzmann transport equation. This equation models the neutron distribution 
within this benchmark, including the neutron leakage from the outer surface of 
the benchmark, which will be the “response” of interest in this illustrative appli-
cation. The specific particular forms taken on by the 2nd-BERRU-PMD [1] ma-
thematical formulas for the best-estimate predicted results (responses) along 
with the corresponding reduction in the accompanying predicted standard devi-
ation will also be presented in Section 2. The numerical results produced by the 
2nd-BERRU-PMD [1] will be presented in Section 3, highlighting the essential 
impact and contributions of the 2nd-, 3rd- and 4th-order sensitivities on the re-
sults. In particular, it is shown in Section 3 that mistaken indications of incon-
sistency between measurements and computations—when only 1st-order sensi-
tivities are considered—are actually corrected to the contrary by the inclusion of 
higher-order sensitivities (i.e., using only 1st-order sensitivities indicates that the 
computations are inconsistent with the measurements, but the contrary becomes 
apparent when the contributions from the higher-order sensitivities are in-
cluded). The discussion in Section 4 of the significance of the 2nd-BERRU-PM 
methodology, as illustrated by using the PERP reactor physics benchmark, con-
cludes this work. 

2. Methods 

This Section illustrates the steps involved in applying the 2nd-BERRU-PMD 
methodology [1] to the spherical polyethylene-reflected plutonium (acronym: 
PERP) OECD/NEA reactor physics benchmark [6]. This benchmark is modeled 
using the neutron transport equation, the solution of which is representative of 
“large-scale computations” and involves a large number (21,976) of uncertain 
parameters. The PERP benchmark comprises a metallic inner sphere (“core”) 
containing the following 4 isotopes: Isotope 1 (239Pu), Isotope 2 (240Pu), Iso-
tope 3 (69Ga) and Isotope 4 (71Ga). This core (which is designated as “material 
1”) is surrounded by a spherical shell of polyethylene (designated as “material 
2”), containing two isotopes, designated as Isotope 5 (C) and Isotope 6 (1H), re-
spectively. The characteristics of the PERP benchmark are presented in Table 1, 
below. 

The neutron flux distribution within the PERP benchmark, as well as the lea-
kage of neutrons out of the benchmark’s outer surface, has been modeled using 
the standard multigroup form of the Boltzmann neutron transport equation with 
an internal spontaneous fission source, and subject to the boundary condition of 
no incoming flux, which can be written in the following matrix-form: 

( ) ( ) ( ) ( ), , , , , 0.dr r r r= =  = ⋅ <B Q c n0α ϕ ϕΩ Ω Ω            (1) 

The quantities appearing in Equation (1) are defined as follows: dr  denotes 
the radius of the PERP sphere; the matrix ( )B α  and the vectors ( )Q α  and 

( ),rϕ Ω  are defined as follows:  

https://doi.org/10.4236/ajcm.2023.132015


R. X. Fang, D. G. Cacuci 
 

 

DOI: 10.4236/ajcm.2023.132015 298 American Journal of Computational Mathematics 
 

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 1
11 1 1

1

1

; , ; ;

g G

g g
g gg gG

G G
G Gg GG

B B B Q

B B B r Q

B B B Q

ϕ

ϕ

ϕ

     
     
     
     
     
     
     

    

B Q

 

    

 

   

    

 

 

α α α

α α αα ϕ α

α α α

Ω (2) 

having components defined below: 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )

0 1
,

0

1

4

; , 1, , ;

, ; , ;

, d ; , ; ; ;

gh g h gg gh

g g g
gg t

hh h g g
gh s f

B B B g h G

B r r r

B r r r r

δ

ϕ ϕ

ϕ χ ν→

π

− =

 ⋅∇ + Σ 
 ′ ′ ′Σ → + Σ  ∫

 





α α α

α α

α α α α

Ω Ω Ω

Ω Ω Ω Ω

  (3) 

( ) 131

42 d e sinhe
g

k
k kf

g

a bN
E E ag SF SF

k k k k kE
k k k

Q N F b
a b

E Eλ ν +
−

=

− 
 
 
 π 

∑ ∫c  .    (4) 

The notation ,g hδ , which appears in Equation (3), denotes the Kronecker 
delta-functional, which is defined as usual, i.e., , 1g hδ = , if g h=  and , 0g hδ = , 
if g h≠ . The quantities appearing in Equations (1)-(4) are defined as follows:  

1) The quantity ( ),g rϕ Ω  is the customary “group-flux” for group g,  
1, ,g G=  . 

2) The source ( )gQ c  depends on the vector of model parameters c , de-
fined as follows: 

1 2 1 2 1 2 1 2 1

††
1 2, ; , ; , ; , ; ,, , , 10.SF SF

J
S SF

Q
FF F a Ja bc c b Qλ λ ν ν  =    c       (5) 

3) As indicated in Table 1, the PERP benchmark comprises 2 materials: “ma-
terial 1” comprises 4 isotopes, numbered 1 through 4, while “material 2” com-
prises 2 isotopes, numbered 5 and 6. These materials contain only isotopes that 
are distinct from each other, so the atomic number density iN  of an isotope i, 

1, , 6i I= = , is computed as follows:  

1 ,1 2 ,2; for 1,2,3,4; ; for 5,6,i A i A
i i

i i

w N w N
N i N i

A A
ρ ρ

= = = =        (6) 

where mρ  denotes the mass density of material m, 1,2m = ; ,i mw  denotes the 
weight fraction of isotope i in material m; iA  denotes the atomic weight of  
 

Table 1. Dimensions and material composition of the PERP benchmark. 

Materials Isotopes Weight Fraction Density (g/cm3) Zones 

Material 1 
(plutonium 

metal) 

Isotope 1 (239Pu) 9.3804 × 10−1 

19.6 
Homogeneous sphere of radius 1 3.794 cmr = ,  

designated as “material 1” and assigned to zone 1 

Isotope 2 (240Pu) 5.9411 × 10−2 

Isotope 3 (69Ga) 1.5152 × 10−3 

Isotope 4 (71Ga) 1.0346 × 10−3 

Material 2 
(polyethylene) 

Isotope 5 (C) 8.5630 × 10−1 
0.95 

Homogeneous spherical shell of inner radius 

1 3.794 cmr =  and outer radius 2 7.604 cmr = , 
designated as “material 2” and assigned to zone 2 Isotope 6 (1H) 1.4370 × 10−1 
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isotope i; AN  denotes Avogadro’s number. The atomic number densities iN , 
1, , 6i I= =  will be considered to be components of the vector denoted as N  

and defined as follows: [ ]†
1 2 3 4 5 6, , , , ,N N N N N NN  . 

4) The scattering transfer cross section from energy group g′ , 1, ,g G′ =  , 
into energy group g, 1, ,g G=  , is denoted as ( ); ,g g

s r′→ ′Σ →α Ω Ω  and is 
computed in terms of the l-th order Legendre coefficient , ,

g g
s l iσ ′→  using the fol-

lowing 3rd-order expansion in Legendre functions : 

( ) ( ) ( ), ,

6 3

1 0
; , 2 1 , , 1, ,s l i

I ISCT
g g g g
s i l

i l
r N l P g g Gσ

= =
′ ′→ →

= =

′ ′ ′Σ → = + ⋅ =∑ ∑ α Ω Ω Ω Ω , (7) 

where 3ISCT =  denotes the order of the expansion in Legendre polynomials. 
The microscopic scattering cross sections , ,

g g
s l iσ ′→  for isotope i, and from energy 

group g′  into energy group g, are tabulated parameters. The zeroth-order (i.e., 
0l = ) scattering cross sections must be considered separately from the higher 

order (i.e., 1l ≥ ) scattering cross sections, since the former contribute to the 
total cross sections (as noted below), while the latter do not. The microscopic 
scattering cross sections , ,

g g
s l iσ ′→  will be considered to be components of a vector 

sσ  defined below: 

[ ]
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5) The software package PARTISN [7] computes the quantity ( ) ( );g
f rνΣ α  

for each isotope i and energy group g, as follows: 

( ) ( )
1

,

2

1,, , 30;
f

g
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f i i Gr gN σν ν

=

=

Σ = = =∑ α ,             (9) 

where ,
g
f iσ  denotes the microscopic fission cross section for isotope i and 

energy group g, g
iν  denotes the average number of neutrons per fission for 

isotope i and energy group g, and fN  denotes the total number of fissionable 
isotopes. 
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6) The total cross section for energy group g, 1, ,g G=  , is denoted as 
( )g

tΣ α  and is computed using the following expression: 
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where the quantities ,
g
t iσ , ,

g
f iσ  and ,

g
c iσ  denote, respectively, the total micro-

scopic cross section, the tabulated group microscopic fission, and the neutron 
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capture cross sections for isotope i and group g. Other nuclear reactions in the 
PERP benchmark are negligible. To reduce as much as possible the proliferation 
of indices when determining the higher-order (up to and including the 4th- 
order) sensitivities of the PERP leakage response, it is useful to consider that the 
cross sections ,

g
t iσ  are the components of a vector t , having JTX G I×  

components defined as follows: 

[ ] †† 1 2 1
1 , 1 , 1 , 1 , , ,, , , , , , , , , , , ,

for 1, , 6; 1, , 30; .

G g G
JTX t i t i t i t i t i I t i It t

i I g G JTX I G

σ σ σ σ σ σ= = = = =  
= = = = ×

t       

  

   (13) 

7) The quantity ( );g rχ α  quantifies the fission spectrum in energy group g. 
The fission spectrum is considered to depend on the vector of parameters p , 
defined as follows: 

†† 1 2
1 1 1 1, , , , , , , , , ,

for 1, , ; 1, , ; .

g g G g G
J i i i i NFp p

i NF g G J G NF
χ χ χ χ χ χ

χ

= =
= = =     

= = = ×

p      

 

       (14) 

In summary, the model parameters characterizing the PERP benchmark can 
all be considered to be the components of a “vector of model parameters” de-
noted as [ ]†

1, , TPα α α , where the subscript “TP” stands for “Total number 
of model and response Parameters”, and is defined below: 

[ ]† †
1, , ; ; ; ; ; ; ,

where .
TP s t f

TP JQ I JSX JTX JFX JNU J

α α

χ

  
+ + + + + +

c N p  



σα σ σ ν
        (15) 

The multigroup Boltzmann (forward and adjoint) neutron transport equation 
was solved numerically using the software packages PARTISN [7] and SOURCES- 
4C [8] in conjunction with the MENDF71X [9] 618-group cross section data 
collapsed to 30G =  energy groups, as well as a P3 Legendre expansion of the 
scattering cross section and a fine-mesh spacing of 0.005 cm (comprising 759 
meshes for the plutonium sphere of radius of 3.794 cm, and 762 meshes for the 
polyethylene shell of thickness of 3.81 cm). The first- and second-order response 
sensitivities were computed using an angular quadrature of S256. The 3rd- and 
4th-order sensitivities of the leakage response with respect to the total cross sec-
tions were computed using an angular quadrature of S32. The scattering and fis-
sion terms in Equation (1) contain implicitly a factor 1 4π . The group bounda-
ries of the 30G =  energy groups are provided in Table 2. 

Thus, the numerical model of the PERP benchmark comprises 21,976 uncer-
tain parameters, as follows: 180 group-averaged total microscopic cross sections, 
21,600 group-averaged scattering microscopic cross sections; 120 fission process 
parameters; 60 fission spectrum parameters; 10 parameters describing the expe-
riment’s nuclear sources; and 6 isotopic number densities. 

The quantity of interest in this work, which will be called the “response,” is 
the leakage of neutrons through the outer surface of the spherical benchmark; 
this leakage response is denoted as ( )L α  and is defined below: 

( ) ( )
1 0

d d ,
b

G
g

gS

L S rϕ
= ⋅ >

⋅∑∫ ∫
n

nα
Ω

Ω Ω Ω .              (16) 
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Table 2. Group boundaries, [ ]MeVgE , of the 30G =  energy groups used in the 

PARTISN forward and adjoint neutron transport computations. 

g 1 2 3 4 5 6 

gE  1.50 × 101 1.35 × 101 1.20 × 101 1.00 × 101 7.79 × 100 6.07 × 100 

1gE −  1.70 × 101 1.50 × 101 1.35 × 101 1.20 × 101 1.00 × 101 7.79 × 100 

g 7 8 9 10 11 12 

gE  3.68 × 100 2.87 × 100 2.23 × 100 1.74 × 100 1.35 × 100 8.23 × 10−1 

1gE −  6.07 × 100 3.68 × 100 2.87 × 100 2.23 × 100 1.74 × 100 1.35 × 100 

g 13 14 15 16 17 18 

gE  5.00 × 10−1 3.03 × 10−1 1.84 × 10−1 6.76 × 10−2 2.48 × 10−2 9.12 × 10−3 

1gE −  8.23 × 10−1 5.00 × 10−1 3.03 × 10−1 1.84 × 10−1 6.76 × 10−2 2.48 × 10−2 

g 19 20 21 22 23 24 

gE  3.35 × 10−3 1.24 × 10−3 4.54 × 10−4 1.67 × 10−4 6.14 × 10−5 2.26 × 10−5 

1gE −  9.12 × 10−3 3.35 × 10−3 1.24 × 10−3 4.54 × 10−4 1.67 × 10−4 6.14 × 10−5 

g 25 26 27 28 29 30 

gE  8.32 × 10−6 3.06 × 10−6 1.13 × 10−6 4.14 × 10−7 1.52 × 10−7 1.39 × 10−10 

1gE −  2.26 × 10−5 8.32 × 10−6 3.06 × 10−6 1.13 × 10−6 4.14 × 10−7 1.52 × 10−7 

 
For convenient reference, the histogram plot of the leakage for each energy 

group for the PERP benchmark is presented in Figure 1, below. The value of the 
total leakage computed using Equation (16) for the PERP benchmark is 1.7648 × 
106 neutrons/sec. 

As generally presented in [10], the formulas/expressions used for computing 
the mean value and the variance of the leakage response are based on the Taylor 
series of the leakage response around the expected (nominal) parameter values 

0α , which has the following form up to fourth-order:  
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 (17) 

The radius/domain of convergence of the series in Equation (17) determines 
the largest values of the parameter variations jδα  which are admissible before 
the respective series becomes divergent.  

Considering that the model parameters underlying the PERP benchmark are 
uncorrelated and normally distributed, and considering only the unmixed high-
er-order sensitivities, the computed mean value and, respectively, computed  
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Figure 1. Histogram plot of the leakage for each energy group for the PERP benchmark. 

 
variance of the leakage response have the following expressions [11] when the 
sensitivities up to fourth-order are included:  
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where ( )0 61.7648 10cL = ×α  neutrons/sec denotes the value of the computed 
leakage response at the nominal parameter values and where 21976TP =  de-
notes the “total number of model parameters.” 

The computed variance of the leakage response, ( )var cL , has the following 
expression [11] when considering only the unmixed response sensitivities to 
uncorrelated and normally distributed parameters: 
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∑ ∑

∑ ∑

∑

α α

α α α

α α

   (19) 

The expressions provided in Equations (18) and (19) are valid only if the Tay-
lor series shown in Equation (17) converges. The largest admissible parameter 
variations jδα  which are still within the radius of convergence of Equation 
(17) provide the largest parameter covariances/standard deviations which can be 
considered to ensure that the expressions provided in Equations (18) and (19) 
are valid.  
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The best-estimate predicted response (leakage) value, denoted as beL , which 
is obtained after combining the computed response value with a measured re-
sponse value, is given by the following particular form of the expression derived 
in [1]: 

( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

var var
var ,

var var var var

c e e c c e
be e e

e c e c

E L L L L E L L
L L L

L L L L

− +
= + =

+ +
  (20) 

where: eL  denotes the experimentally measured mean value of the leakage re-
sponse; ( )var eL  denotes the experimentally measured variance of the leakage 
response; ( )cE L  denotes the computed mean value of the leakage response; 
and ( )var cL  denotes the computed variance of the leakage response. It is im-
portant to note that the relation provided in Equation (20) implies the following 
inequalities: 

( ) ( )If 0 , thene c e be cL E L L L E L< < < < ,           (21) 

( ) ( )If 0 , thenc e c be eE L L E L L L< < < < .           (22) 

The inequalities shown in Equations (21) and (22) indicate that the best- 
estimate predicted value beL  of the leakage response will fall in between the in-
itially measured value, eL , and the computed value, ( )cE L , of the leakage re-
sponse. 

The predicted variance, ( )var beL , of the best-estimate (leakage) response 
beL  is given by the following particular form of the expression derived in [1]: 

( ) ( ) ( ) ( ) ( ){ }
( ) ( )

( ) ( )

1
var var 1 var var var

var var
.

var var

be e e e c

e c

e c

L L L L L

L L

L L

−
 = − + 

=
+

      (23) 

Note that the expression in Equation (23) ensures the reduction of the pre-
dicted variance ( )var beL  by comparison to either the variance ( )var eL  of the 
experimentally measured response or the variance ( )var cL  of the computed 
response, since Equation (23) implies the following inequalities:  

( ) ( ) ( ) ( )var var ; var var .be e be cL L L L< <             (24) 

The first-order partial sensitivities ( )0
jL α∂ ∂α , for all jα , 1, ,j TP=  , 

have the following expressions [10]:  

( ) ( ) ( )
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 (31) 

In Equations (25)-(31), the 1st-level adjoint function ( )1ψ  is the solution of 
the following 1st-Level Adjoint Sensitivity System (1st-LASS): 

( ) ( ) ( ) ( ) [ ]†1 , ; 1, ,1, ,1dr r rδ = ⋅ − A I n I   α ψ Ω Ω ,      (32) 

( ) ( )1 , , , 0,dr r r=   = ⋅ >n0ψ Ω Ω                (33) 

where ( )A α  denotes the operator adjoint to ( )B α , having components  
( ) ( ) *

gh hgA B  α α , where the symbol [ ]*  indicates “formal adjoint opera-
tor.” In component form, Equations (32) and (33) are as follows:  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 , 1 , 1 ,

1 4

, , d ,
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ν χ δ
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 ′× Σ → + Σ = ⋅ − =  

∑ ∫
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α

α α α

Ω Ω Ω Ω Ω

Ω Ω Ω
 (34) 

( ) ( )1 , , 0 , , 0, 1, , .g
dr r r g Gψ =    = ⋅ > =n Ω Ω          (35) 

The expressions of the sensitivities provided in Equations (25)-(31) are to be 
evaluated at the nominal values ( )0 0 0;u  ϕ α . Evidently, the computations of 
these sensitivities are inexpensive, involving only integrations using quadrature 
formulas after having obtained the 1st-level adjoint function ( ) ( )1 ,rψ Ω . The 
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1st-LASS is independent of parameter variations, so it needs to be solved just 
once to obtain ( ) ( )1 ,rψ Ω . Thus, the computation of the TP partial sensitivities 

( )0
jL α∂ ∂α , 1, ,j TP=  , requires just a single large-scale computation in or-

der to determine ( ) ( )1 ,rψ Ω , followed by TP inexpensive computations to per-
form each integration (quadrature) involving the 1st-level adjoint function 

( ) ( )1 ,rψ Ω . 
Each of the first-order sensitivities provided in Equations (25)-(31) gives rise 

to corresponding 2nd-order sensitivities, which are computed using a 2nd-level 
adjoint function that is obtained by solving a corresponding 2nd-Level Adjoint 
Sensitivity System (2nd-LASS). For example, the 2nd-order sensitivities which 
arise from the 1st-order sensitivities of the response to the total cross sections, cf. 
Equation (28), have the following expression [10]:  
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 (36) 

The 2nd-level adjoint function ( ) ( ) ( ) ( ) ( ) ( )
†2 2 2

1 1 1 2 1; , ; , , ; ,j r j r j r 
 ψ ψ ψΩ Ω Ω , 

( ) ( ) ( )( )†2 2 ,1 2 ,, , G
i i iuψ ψ , 1,2i = , is the solution of the following 2nd-Level Ad-

joint Sensitivity System (2nd-LASS): 
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( ) ( )2
1 1 1; , , , 0; 1, , ,dj r r r j JTX= = ⋅ > =n 0ψ Ω Ω          (39) 

( ) ( )2
2 1 1; , , , 0; 1, , ,dj r r j JTXr= = ⋅ < =n 0ψ Ω Ω          (40) 

where, for each 1 1, , 30 6 180j JTX G I= = × = × = , ( )1;jS α  is a G G×  di-
agonal matrix having non-zero elements of the form ( )

1
, 1, ,g

t jt g G∂Σ ∂ = α  
on its diagonal, i.e.,  

( )
( )

( )

1

1

1

1

0

; ,
0

t j

G
t j

t

j
t

 ∂Σ ∂
 
 
  ∂Σ ∂ 

S



   



α

α
α

           (41) 

( ) ( )

( ) ( )( )

( ) ( )( )

( ) ( )( )
( ) ( )( )

( ) ( )( )

1 1

1

1 1

2 1

2 1

2 1

1; , ;

; ,

; , ;

1; , ;

, ; ,

; , ;

Q

Q G

Q

Q G

δ

δ

δ

δ

δ

δ

 
 
 
 
 
 

 
 
 
 
 
 

Q

Q

 

 

α ψ α

α α

α ψ α

α ψ α

α ψ α

α ψ α

             (42) 

https://doi.org/10.4236/ajcm.2023.132015


R. X. Fang, D. G. Cacuci 
 

 

DOI: 10.4236/ajcm.2023.132015 306 American Journal of Computational Mathematics 
 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

1

1 4

; , ; ,

;
d , ,

g g
tg

hg
h gG f
sh

h

Q
Q g r

r

δ ϕ

χ

δ δ

δ δ
ν

ϕ
= π

→

Σ
−

  Σ′Σ →

∂ ∂
∂ ∂

   ′ ′+ + 


∂∂
∂

 
∂ 

∑ ∫



α α
α ϕ α α α

α α

α αα
α α

α α

Ω

Ω Ω
Ω Ω

 (43) 
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 (44) 

The expressions of the 3rd- and 4th-order sensitivities will not be reproduced 
here but can be found in [10] [12] [13]. 

3. Results 

This Section presents results that will illustrate the reduction of the predicted 
standard deviation of the leakage response when applying the 2nd-BERRU-PMD 
methodology to incorporate a measurement, even when the measurement ap-
pears initially to be inconsistent with the computation. The effects of the mea-
surement’s precision are also investigated, as are the respective impacts of the 
1st-, 2nd-, 3rd- and 4th-order sensitivities. Results are also presented for illustrating 
the effects of parameters standard deviations which are within, borderline, or 
outside of the radius of convergence of the Taylor-series provided in Equation 
(17). 

3.1. High-Precision Measured Response ( eL 63.0 10= ×   
Neutrons/Sec; Relative ( )eSD 2%= ) and High Precision  
Parameters (Relative SD = 3%) 

This section presents the results produced by using the 2nd-BERRU-PMD in 
conjunction with an experimental response measured with high precision, and 
models parameters which are also known fairly precisely, all having relative 
standard deviations of 3%. For uniform relative standard deviations of 3% for 
the model parameters, the approximate radius of convergence for the Taylor- 
series presented in Equation (17) can be computed by considering the conver-
gence “ratio-test.” The ratio of the 3rd-order term with respect to the 2nd-order 
term of the Taylor series is 0.58; and the ratio of the 4th-order term with respect 
to the 3rd-order term of the Taylor series is 0.68. Both of these results are well 
below 1.00, which indicates that the Taylor-series is expected to be convergent 
for unform relative standard deviations of 3% for the model parameters. 

3.1.1. Including Only Contributions from the 1st-Order Sensitivities of  
the Leakage Response to the Total Cross Sections 

Almost all of the largest sensitivities (1st-through 4th-order) of the leakage re-
sponse are with respect to the total cross sections. When only the 1st-order sensi-

https://doi.org/10.4236/ajcm.2023.132015


R. X. Fang, D. G. Cacuci 
 

 

DOI: 10.4236/ajcm.2023.132015 307 American Journal of Computational Mathematics 
 

tivities with respect to the total cross sections are considered, the 2nd-BERRU- 
PMD expressions shown in Equations (20) and (23), respectively, yield the re-
sults presented in Table 3 and depicted in Figure 2, below.  

The results presented in Table 3 and Figure 2 indicate that:  
1) The inequality ( )c be eE L L L< < , predicted by Equation (22), is fulfilled, as 

expected. 
2) The reduction of the predicted standard deviation of the predicted re-

sponse, predicted by Equation (24), has been accomplished; the numerical re-
sults given in Table 3 indicate that ( ) ( ) ( ),1 1be eSD SD SD< < .  

3) However, the computed results, which only include the contributions 
stemming from the 1st-order sensitivities, appear to be inconsistent with the ex-
perimental results. This apparent inconsistency occurs despite the fact that the 
Taylor-series in Equation (17) is expected to be convergent. Thus, this apparent 
“inconsistency between computation and experiment” indicates that, at the very 
least, the contributions stemming from the 2nd-order sensitivities must also be 
included.  

The results obtained by including the contributions from both the 1st-order 
and 2nd-order sensitivities are presented in Subsection 3.1.2, below. 
 

 

Figure 2. Comparison of ( ) ( )1cE L SD±  (in green), ( ),1bebeL SD±  (in red), ( )eeL SD±  

(in blue), due to 3% standard deviations for uncorrelated and normally distributed total 
microscopic cross sections tσ , when only the first-order sensitivities are considered. 

 
Table 3. Values of ( ) ( )1cE L SD± , ( ),1bebeL SD± , ( )eeL SD± , due to 3% standard devia-

tions for uncorrelated and normally distributed total microscopic cross sections tσ , 
when only the first-order sensitivities are considered. 

Responses Numerical Values (only tσ ) 

( ) ( )1cE L SD±  1.765 × 106 ± 5.548 × 105 

( ),1bebeL SD±  2.956 × 106 ± 5.965 × 104 

( )eeL SD±  3.000 × 106 ± 6.000 × 104 
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3.1.2. Including Contributions from the 1st + 2nd -Order Sensitivities of  
the Leakage Response to the Total Cross Sections 

The numerical results obtained by including in Equations (20) and (23) the con-
tributions stemming from the 1st + 2nd-order sensitivities of the leakage response 
to the total cross sections are presented in Table 4 and depicted in Figure 3, be-
low. 

The results presented in Table 4 and Figure 3 indicate that:  
1) The inequality ( )c be eE L L L< <  predicted by Equation (22) is fulfilled, as 

expected. 
2) The expected value ( )cE L  of the computed response approaches from 

below the values of both the best estimate value beL  and the experimentally 
measured mean/nominal value eL . 

3) The inequality ( ) ( ) ( ),2 2be eSD SD SD< < , predicted by Equation (24), is pre-
served. By comparison to the results shown in Table 3, the inclusion of the con-
tributions stemming from the 2nd-order sensitivities (in addition to the contribu-
tions stemming from the 1st-order sensitivities) brings the best-estimate pre-
dicted value beL  closer to the precisely-measured value eL .  

4) However, the “computed results” for the response are still slightly inconsis-
tent with the “experimental results.” This inconsistency, albeit small, indicates  
 

 

Figure 3. Comparison of ( ) ( )2cE L SD±  (in green), ( ),2bebeL SD±  (in red), ( )eeL SD±  

(in blue), due to 3% standard deviations for uncorrelated and normally distributed total 
microscopic cross sections tσ , when the 1st + 2nd-order sensitivities are included. 

 
Table 4. Values of ( ) ( )2cE L SD± , ( ),2bebeL SD± , ( )eeL SD± , due to 3% standard devia-

tions for uncorrelated and normally distributed total microscopic cross sections tσ , 
when the 1st + 2nd-order sensitivities are included. 

Responses Numerical Values (only tσ ) 

( ) ( )2cE L SD±  2.179 × 106 ± 7.355 × 105 

( ),2bebeL SD±  2.995 × 106 ± 5.980 × 104 

( )eeL SD±  3.000 × 106 ± 6.000 × 104 
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that the contributions from the 3rd-order sensitivities must also be included, in 
addition to the contributions stemming from the 1st-order and the 2nd-order sen-
sitivities.  

The results obtained by including the contributions from the 1st-, 2nd-, and 
3rd-order sensitivities are presented in Subsection 3.1.3, below. 

3.1.3. Including Contributions from the 1st + 2nd + 3rd-Order  
Sensitivities of the Leakage Response to the Total Cross Sections 

The numerical results obtained by including in Equations (20) and (23) the con-
tributions stemming from the 1st + 2nd + 3rd-order sensitivities of the leakage re-
sponse to the total cross sections are presented in Table 5 and depicted in Fig-
ure 4, below. 

The results presented in Table 5 and Figure 4 indicate that:  
1) The inequality ( )c be eE L L L< <  predicted by Equation (22) is fulfilled, as 

expected. 
2) The expected value ( )cE L  of the computed response continues to ap-

proach monotonically from below the values of both the best estimate value beL  
and the experimentally measured mean/nominal value eL . 
 

 

Figure 4. Comparison of ( ) ( )3cE L SD±  (in green), ( ),3bebeL SD±  (in red), ( )eeL SD±  

(in blue), due to 3% standard deviations for uncorrelated and normally distributed total 
microscopic cross sections tσ , when the 1st + 2nd + 3rd-order sensitivities are included. 

 
Table 5. Values of ( ) ( )3cE L SD± , ( )3beL SD± , ( )eeL SD± , due to 3% standard deviations 

for uncorrelated and normally distributed total microscopic cross sections tσ , when the 
1st + 2nd + 3rd-order sensitivities are included. 

Responses Numerical Values (only tσ ) 

( ) ( )3cE L SD±  2.179 × 106 ± 1.443 × 106 

( )3beL SD±  2.999 × 106 ± 5.995 × 104 

( )eeL SD±  3.000 × 106 ± 6.000 × 104 
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3) The inequality ( ) ( ) ( ),3 3be eSD SD SD< < , predicted by Equation (24), is pre-
served. By comparison to the results shown in Table 4, the inclusion of the con-
tributions stemming from the 3rd-order sensitivities (in addition to the contribu-
tions stemming from the 1st- and 2nd-order sensitivities) brings the best-estimate 
predicted value beL  even closer to the precisely-measured value eL .  

4) The “computed results” for the response are now consistent with the “expe-
rimental results.”  

The results obtained by including the contributions from the 1st-, 2nd-, 3rd-, 
and 4th-order sensitivities are presented in Subsection 3.1.4, below. 

3.1.4. Including Contributions from the 1st + 2nd + 3rd + 4th-Order  
Sensitivities of the Leakage Response to the Total Cross Sections 

The numerical results obtained by including in Equations (20) and (23) the con-
tributions stemming from the 1st + 2nd + 3rd + 4th-order sensitivities of the lea-
kage response to the total cross sections are presented in Table 6 and depicted in 
Figure 5, below. 

The results presented in Table 6 and Figure 5 indicate that:  
 

 

Figure 5. Comparison of ( ) ( )4cE L SD±  (in green), ( ),4bebeL SD±  (in red), ( )eeL SD±  

(in blue), due to 3% standard deviations for uncorrelated and normally distributed total 
microscopic cross sections tσ , when the 1st + 2nd + 3rd + 4th-order sensitivities are in-
cluded. 
 
Table 6. Values of ( ) ( )4cE L SD± , ( ),4bebeL SD± , ( )eeL SD± , due to 3% standard devia-

tions for uncorrelated and normally distributed total microscopic cross sections tσ , 
when the 1st + 2nd + 3rd + 4th-order sensitivities are included. 

Responses Numerical Values (only tσ ) 

( ) ( )4cE L SD±  2.667 × 106 ± 1.847 × 106 

( ),4bebeL SD±  2.999 × 106 ± 5.997 × 104 

( )eeL SD±  3.000 × 106 ± 6.000 × 104 
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1) The inequality ( )c be eE L L L< <  predicted by Equation (22) is fulfilled, as 
expected. 

2) The expected value ( )cE L  of the computed response continued to ap-
proach monotonically from below the values of both the best estimate value beL  
and the experimentally measured mean/nominal value eL . 

3) The inequality ( ) ( ) ( ),4 4be eSD SD SD< < , predicted by Equation (24), is pre-
served. By comparison to the results shown in Table 4, the inclusion of the con-
tributions stemming from the 4th-order sensitivities (in addition to the contribu-
tions stemming from the 1st - 2nd- and 3rd-order sensitivities) practically renders 
the best-estimate predicted value beL  to be the same as the precisely-measured 
value eL .  

4) The “computed results” for the response are consistent with the “experi-
mental results.”  

The additional contributions from the 4th-order sensitivities have only insigni-
ficantly changed the results obtained by having included only the sensitivities up 
to 3rd-order. This conclusion indicates that it is not necessary to include contri-
butions from 5th- and higher-order, since their contributions are expected to be 
increasingly less significant as their order increases, because the Taylor-series 
provided in Equation (17) is convergent for the parameter standard deviations 
(3%) considered in this illustrative example. 

3.2. High-Precision Measured Response ( eL 63.0 10= ×   
Neutrons/Sec; Relative ( )eSD 2%= ) and Low Precision  
Parameters (Relative SD = 10%, Outside of Taylor-Series  
Convergence Radius) 

This section presents the results produced by using the 2nd-BERRU-PMD in 
conjunction with an experimental response measured with high precision, but 
with rather imprecisely known model parameters, all having relative standard 
deviations of 10%. Such standard deviations are not prevalent in practice but 
may nevertheless be encountered for total cross sections. The ratio of the 3rd- 
order term with respect to the 2nd-order term of the Taylor series is 1.93; the ra-
tio of the 4th-order term with respect to the 3rd-order term of the Taylor series is 
2.26. Both of these results are larger than 1.00, which indicates that the Taylor- 
series presented in Equation (17) is being used outside its radius of convergence 
to compute the response’s expected value and variance. This illustrative example 
involving precise measurements, but rather imprecise parameters has been deli-
berately chosen in order to underscore the decisive impact of higher-order 
sensitivities and the ability of the 2nd-BERRU-PMD methodology to yield best- 
estimate results with reduced uncertainties despite the imprecisely known model 
parameters.  

3.2.1. Including Only Contributions from the 1st-Order Sensitivities of  
the Leakage Response to the Total Cross Sections 

When only the 1st-order sensitivities with respect to the total cross sections are 
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considered, the 2nd-BERRU-PMD expressions shown in Equations (20) and (23), 
respectively, yield the results presented in Table 7 and depicted in Figure 6, be-
low. 

The results presented in Table 7 and Figure 6 indicate that:  
1) The inequality ( )c be eE L L L< < , predicted by Equation (22), is fulfilled, as 

expected; the best-estimate response value beL  practically coincides with the 
nominal value eL  of the experimental response. 

2) The reduction of the predicted standard deviation of the predicted re-
sponse, predicted by Equation (24), has been accomplished; the numerical re-
sults given in Table 7 indicate that ( ) ( ) ( ),1 1be eSD SD SD< < ; ( ) ( ),1e beSD SD≅ . 

3) The computed results are consistent with the experimental results, even 
though only the contributions stemming from the 1st-order sensitivities are in-
cluded. This apparent consistency occurs despite the fact that the Taylor-series 
in Equation (17) is expected to be divergent for the value of 10% considered (un-
iformly) for the relative standard deviations of parameters.  

The results obtained by including the contributions from both the 1st-order 
and 2nd-order sensitivities are presented in Subsection 3.2.2, below. 
 

 

Figure 6. Comparison of ( ) ( )1cE L SD±  (in green), ( ),1bebeL SD±  (in red), ( )eeL SD±  

(in blue), due to 10% standard deviations for uncorrelated and normally distributed total 
microscopic cross sections tσ , when only the first-order sensitivities are considered. 

 
Table 7. Values of ( ) ( )1cE L SD± , ( ),1bebeL SD± , ( )eeL SD± , due to 10% standard devia-

tions for uncorrelated and normally distributed total microscopic cross sections tσ , 
when only the first-order sensitivities are considered. 

Responses Numerical Values (only tσ ) 

( ) ( )1cE L SD±  1.765 × 106 ± 1.849 × 106 

( ),1bebeL SD±  2.999 × 106 ± 5.997 × 104 

( )eeL SD±  3.000 × 106 ± 6.000 × 104 
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3.2.2. Including Contributions from the 1st + 2nd-Order Sensitivities of  
the Leakage Response to the Total Cross Sections 

When both the 1st-order and 2nd-order sensitivities with respect to the total cross 
sections are considered, the 2nd-BERRU-PMD expressions shown in Equations 
(20) and (23), respectively, yield the results presented in Table 8 and depicted in 
Figure 7, below. 

The results presented in Table 8 and Figure 7 indicate that:  
1) The inequality ( )c be eE L L L< < , predicted by Equation (22), is violated, 

thus indicating the effects of the divergence of the Taylor-series in Equation (17) 
for the value of 10% considered for the relative standard deviations of parame-
ters. The best-estimate response value beL  practically coincides with the no-
minal value eL  of the experimental response. 

2) The numerical results given in Table 8 indicate that ( ) ( ),2e beSD SD≅ . 
Comparing the results provided in Table 8 with the results provided in Table 

4 indicates that when considering an accurate measurement but inaccurate pa-
rameters, the 2nd-BERRU-PMD uses the “flexibility” provided by the inaccurate 
parameters (as opposed to the constraints stemming from the accurately known 
parameters considered in Table 4) to yield best-estimate nominal response values  
 

 

Figure 7. Comparison of ( ) ( )2cE L SD±  (in green), ( ),2bebeL SD±  (in red), ( )eeL SD±  

(in blue), due to 10% standard deviations for uncorrelated and normally distributed total 
microscopic cross sections tσ , when the 1st + 2nd-order sensitivities are included. 

 
Table 8. Values of ( ) ( )2cE L SD± , ( ),2bebeL SD± , ( )eeL SD± , due to 10% standard devia-

tions for uncorrelated and normally distributed total microscopic cross sections tσ , 
when the 1st + 2nd-order sensitivities are included. 

Responses Numerical Values (only tσ ) 

( ) ( )2cE L SD±  6.363 × 106 ± 5.675 × 106 

( ),2bebeL SD±  3.001 × 106 ± 5.999 × 104 

( )eeL SD±  3.000 × 106 ± 6.000 × 104 
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that practically coincides with the precisely measured response value, while sig-
nificantly reducing the accompanying predicted best-estimate standard devia-
tions. After including the 2nd-order sensitivities and noting that their inclusion 
had no practical effects (as can be concluded by intercomparing the results pre-
sented in Table 7 and Table 8), it becomes apparent that higher-order sensitivi-
ties are not needed; the values of the best-estimate response and accompanying 
best-estimate standard deviation have been already provided by using just the 
1st-order sensitivities (results presented in Table 7), as confirmed by the results 
presented in Table 8, which imply that even the 2nd-order sensitivities have in-
significant impact in the case considered (high precision measurement and im-
precisely known model parameters). 

3.3. Low-Precision Measured Response ( eL 67.0 10= ×  
Neutrons/Sec; Relative ( )eSD 10%= ); Borderline Parameter  
Precision (Relative SD = 5%) 

This section presents the results produced by using the 2nd-BERRU-PMD in 
conjunction with an experimental response measured with low precision, and 
relatively imprecisely known model parameters, all having relative standard 
deviations of 5%, which often occurs in practice. The ratio of the 3rd-order term 
with respect to the 2nd-order term of the Taylor series is 0.97 < 1.00, but the ra-
tio of the 4th-order term with respect to the 3rd-order term of the Taylor series 
is 1.13 > 1.00. These ratios indicate that relative standard deviations of 5% for 
the model parameters are “borderline” values regarding the convergence (or 
non-convergence) of the Taylor-series presented in Equation (17). Thus, this il-
lustrative example involves a low-precision measurement and model parameters 
that are representative of the “usual uncertainties encountered in practice.” The 
has been deliberately chosen in order to underscore the impact of the higher- 
order response sensitivities to parameters when the parameter uncertainties are 
representative of uncertainties usually encountered in practice while also being 
“borderline” in terms of the convergence of the Taylor-series that underlies the 
determination of the statistics (expected values, variance, etc.) of the distribution 
of the computed response in the phase-space of imprecisely known model para-
meters. 

3.3.1. Including Only Contributions from the 1st-Order Sensitivities of  
the Leakage Response to All Important Parameters 

Table 9 presents numerical results obtained for the expected value and standard 
deviation of the computed response, together with the best estimate mean value 
and best-estimate standard deviation for the best-estimate response, when con-
sidering the 1st-order sensitivities with respect to the total cross sections and, in 
parallel, considering all of the important 1st-order response sensitivities (i.e., 
with respect to the total cross sections, fission cross section, fission parameters 
and isotopic atomic densities). The numerical results presented in Table 9 are 
depicted in Figure 8. 

https://doi.org/10.4236/ajcm.2023.132015


R. X. Fang, D. G. Cacuci 
 

 

DOI: 10.4236/ajcm.2023.132015 315 American Journal of Computational Mathematics 
 

 

Figure 8. Comparison of ( ) ( )1cE L SD±  (in green), ( ),1bebeL SD±  (in red), ( )eeL SD±  

(in blue), due to 5% standard deviations for uncorrelated and normally distributed total 

microscopic cross sections tσ , and all important parameters ( )t f+ + + Nσ σ ν , when 

the first-order sensitivities are considered. 
 
Table 9. Values of ( ) ( )1cE L SD± , ( ),1bebeL SD± , ( )eeL SD± , due to 5% standard devia-

tions for uncorrelated and normally distributed total microscopic cross sections tσ , and 

all important parameters ( )t f+ + + Nσ σ ν , when only the first-order sensitivities are 

considered. 

Responses 
Numerical Values For 

tσ  
Numerical Values For 

( )t f+ + + Nσ σ ν  

( ) ( )1cE L SD±  1.765 × 106 ± 9.246 × 105 1.765 × 106 ± 1.107 × 106 

( ),1bebeL SD±  5.093 × 106 ± 5.581 × 105 5.505 × 106 ± 5.916 × 105 

( )eeL SD±  7.000 × 106 ± 7.000 × 105 7.000 × 106 ± 7.000 × 105 

 
The results presented in Table 9 and Figure 8 indicate that:  
1) The inequality ( )c be eE L L L< < , predicted by Equation (22), is fulfilled 

both when considering only the total cross sections and when considering all of 
the important model parameters. The predicted response value, beL , is closer to 
the experimentally measured value when the 1st-order sensitivities to all impor-
tant parameters are included. 

2) The reduction of the predicted standard deviation to a value smaller than 
either the originally computed or the measured standard deviations, i.e.,  

( ) ( ),1be eSD SD<  and ( ) ( ),1 1beSD SD< , which is guaranteed by the application of 
the 2nd-BERRU-PMD methodology, is also apparent. 

3) The computed results are apparently inconsistent with the experimental 
results, both if only the total cross sections and also if all important model para-
meters are considered. 

4) The contributions of the 1st-order sensitivities stemming from the addition-
al parameters (i.e., the parameters in addition to the total cross sections) are in-
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significant. 
The results obtained by including the contributions from both the 1st-order 

and 2nd-order sensitivities are presented in Subsection 3.3.2, below. 

3.3.2. Including Contributions from the 1st + 2nd-Order Sensitivities of  
the Leakage Response to All Important Parameters 

Table 10 presents numerical results obtained for the expected value and stan-
dard deviation of the computed response, together with the best estimate mean 
value and best-estimate standard deviation for the best-estimate response, when 
considering the 1st- and 2nd-order sensitivities with respect to the total cross sec-
tions. In parallel, Table 10 also presents numerical results obtained for the ex-
pected value and standard deviation of the computed response, together with the 
best estimate mean value and best-estimate standard deviation for the best- 
estimate response, when considering the 1st- and 2nd-order sensitivities with re-
spect to all of the significant model parameters (total cross sections, fission cross 
section, fission parameters and isotopic atomic densities). The numerical results 
presented in Table 10 are depicted in Figure 9. 
 

 

Figure 9. Comparison of ( ) ( )2cE L SD±  (in green), ( ),2bebeL SD±  (in red), ( )eeL SD±  

(in blue), due to 5% standard deviations of the uncorrelated and normally distributed to-

tal microscopic cross sections tσ  and all important parameters ( )t f+ + + Nσ σ ν , 

when the 1st + 2nd-order sensitivities are included. 
 
Table 10. Values of ( ) ( )2cE L SD± , ( ),2bebeL SD± , ( )eeL SD± , due to 5% standard devia-

tions for uncorrelated total microscopic cross sections tσ  and all important parameters 

( )t f+ + + Nσ σ ν , when the 1st + 2nd-order sensitivities are included. 

Responses 
Numerical Values For 

tσ  
Numerical Values For 

( )t f+ + + Nσ σ ν  

( ) ( )2cE L SD±  2.914 × 106 ± 1.629 × 106 3.120 × 106 ± 1.754 × 106 

( ),2bebeL SD±  6.363 × 106 ± 6.431 × 105 6.467 × 106 ± 6.502 × 105 

( )eeL SD±  7.000 × 106 ± 7.000 × 105 7.000 × 106 ± 7.000 × 105 
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The results presented in Table 10 and Figure 9 indicate that:  
1) The inequality ( )c be eE L L L< < , predicted by Equation (22), is fulfilled 

both when considering only the total cross sections and when considering all of 
the important model parameters. The predicted response value, beL , is closer to 
the experimentally measured value when the 1st- and 2nd-order sensitivities to all 
important parameters are included. 

2) As guaranteed by the application of the 2nd-BERRU-PMD methodology, the 
reduction of the predicted standard deviation to a value smaller than either the 
originally computed or the measured standard deviations, i.e., ( ) ( ),2be eSD SD<  
and ( ) ( ),2 2beSD SD< , is apparent. 

3) The computed results are apparently still inconsistent (albeit less so than 
when only the 1st-order sensitivities are included) with the experimental results, 
both if only the total cross sections and also if all important model parameters 
are considered. 

4) The contributions of the 1st- and 2nd-order sensitivities stemming from the 
additional parameters (i.e., the parameters in addition to the total cross sections) 
are insignificant. This observation indicates that the contributions of the higher- 
order sensitivities stemming from the model parameters other than the total 
cross sections can be omitted by comparison to the contributions of the higher- 
order sensitivities stemming just from the total cross sections. 

The results obtained by including the contributions from the 1st-, 2nd-, and 
3rd-order sensitivities are presented in Subsection 3.3.3, below. 

3.3.3. Including Contributions from the 1st + 2nd + 3rd-Order  
Sensitivities of the Leakage Response to the Total Cross Sections 

Table 11 presents numerical results obtained for the expected value and stan-
dard deviation of the computed response, together with the best estimate mean 
value and best-estimate standard deviation for the best-estimate response, when 
considering the 1st-, 2nd-, and 3rd-order sensitivities with respect to the total cross 
sections. The numerical results presented in Table 11 are depicted in Figure 10. 
 

 

Figure 10. Comparison of ( ) ( )3cE L SD±  (in green), ( ),3bebeL SD±  (in red), ( )eeL SD±  

(in blue), due to 5% standard deviations for uncorrelated and normally distributed total 
microscopic cross sections tσ , when the 1st + 2nd + 3rd-order sensitivities are included. 
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Table 11. Values of ( ) ( )3cE L SD± , ( ),3bebeL SD± , ( )eeL SD± , due to 5% standard devia-

tions for uncorrelated and normally distributed total microscopic cross sections tσ , 
when the 1st + 2nd + 3rd-order sensitivities are included. 

Responses Numerical Values (only tσ ) 

( ) ( )3cE L SD±  2.914 × 106 ± 5.103 × 106 

( ),3bebeL SD±  6.925 × 106 ± 6.935 × 105 

( )eeL SD±  7.000 × 106 ± 7.000 × 105 

 
The results presented in Table 11 and Figure 10 indicate that:  
1) The inequality ( )c be eE L L L< < , predicted by Equation (22), is fulfilled. 

The predicted response value, beL , is much closer to the experimentally meas-
ured value when also including the contributions stemming from the 3rd-order 
sensitivities (in addition to the contributions stemming from the 1st- and 2nd- 
order ones). 

2) As guaranteed by the application of the 2nd-BERRU-PMD methodology, the 
reduction of the predicted standard deviation to a value smaller than either the 
originally computed or the measured standard deviations, i.e., ( ) ( ),3be eSD SD<  
and ( ) ( ),3 3beSD SD< , is apparent. 

3) When the contributions stemming from the 3rd-order are also included, the 
computed results become consistent with the experimental results.  

The results obtained by including the contributions from the 1st-, 2nd-, 3rd-, 
and 4th-order sensitivities are presented in Subsection 3.3.4, below. 

3.3.4. Including Contributions from the 1st + 2nd + 3rd + 4th-Order  
Sensitivities of the Leakage Response to the Total Cross Sections 

Table 12 presents numerical results obtained for the best estimate mean value 
and best-estimate standard deviation for the best-estimate response, together 
with numerical results for the expected value and standard deviation of the 
computed response, when considering the 1st-, 2nd-, 3rd-, and 4th-order sensitivi-
ties with respect to the total cross sections. The numerical results presented in 
Table 12 are depicted in Figure 11. 

The results presented in Table 12 and Figure 11 indicate that:  
1) The inequality ( )c be eE L L L< < , predicted by Equation (22), is fulfilled. All 

three of these quantities have remarkably clustered together, with be eL L≅ . 
2) As guaranteed by the application of the 2nd-BERRU-PMD methodology, the 

reduction of the predicted standard deviation to a value smaller than either the 
originally computed or the measured standard deviations, i.e., ( ) ( ),4be eSD SD<  
and ( ) ( ),4 4beSD SD< , is apparent. 

3) Comparing the results presented in Table 11 with the corresponding re-
sults presented in Table 12 indicates that the 4th-order sensitivities contribute 
very little to the respective results; in turn, this observation indicates that higher- 
order sensitivities need not be considered.  
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Figure 11. Comparison of ( ) ( )4cE L SD±  (in green), ( ),4bebeL SD±  (in red), ( )eeL SD±  

(in blue), due to 5% standard deviations for uncorrelated and normally distributed total 
microscopic cross sections tσ , when the 1st + 2nd + 3rd + 4th-order sensitivities are in-
cluded. 
 
Table 12. Values of ( ) ( )4cE L SD± , ( ),4bebeL SD± , ( )eeL SD± , due to 5% standard devia-

tions for uncorrelated and normally distributed total microscopic cross sections tσ , 
when the 1st + 2nd + 3rd + 4th-order sensitivities are included. 

Responses Numerical Values (only tσ ) 

( ) ( )4cE L SD±  6.681 × 106 ± 7.386 × 106 

( ),4bebeL SD±  6.997 × 106 ± 6.969 × 105 

( )eeL SD±  7.000 × 106 ± 7.000 × 105 

4. Discussion and Conclusion 

Using the maximum entropy (MaxEnt) principle of thermodynamics [3] and 
concepts of information theory [4], Cacuci [1] [2] has conceived the 2nd-BERRU- 
PM methodology; this acronym stands for “second-order predictive modelling 
methodology conceived by for obtaining “best-estimate results with reduced 
uncertainties.” The conceptual underpinnings of the 2nd-BERRU-PM methodol-
ogy are in contradistinction to the data assimilation methodology [5], which re-
lies on minimizing a subjective user-defined functional which is meant to 
represent, in the energy-norm, the differences between measured and computed 
results of interest (called “responses”). The 2nd-BERRU-PM methodology can be 
constructed either by incorporating the representation of the computational 
model deterministically (yielding the “2nd-BERRU-PMD” [1] methodology) or 
by incorporating the representation of the computational model probabilistically 
(yielding the alternative “2nd-BERRU-PMP” [2] methodology). These metho-
dologies yield equivalent but not identical expression for the predicted results 
(second-order best-estimate predicted values for the predicted model response 
and calibrated model parameters, along with reduced predicted best-estimate 
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standard deviations).  
This work has illustrated the application of the 2nd-BERRU-PMD [1] metho-

dology to illustrate quantitatively the effects of second- and higher-order sen-
sitivities for obtaining best-estimate results with reduced uncertainties for the 
polyethylene-reflected plutonium (acronym: PERP) OECD/NEA reactor phys-
ics benchmark [6]. This benchmark is modeled using the neutron transport 
Boltzmann equation, the solution of which is representative of “large-scale 
computations” and involves a large number (21,976) of uncertain parameters. 
Several representative practical situations have been considered, as follows: 1) 
high-precision measured response and high precision parameters; 2) high- 
precision measured response and low precision parameters; 3) low-precision 
measured response and borderline (in terms of convergence of the expressions 
underlying the computation of the expected value and, respectively, the standard 
deviation of the computed response) parameter precision. In all situations, as 
predicted by the 2nd-BERRU-PMD [1] methodology, the predicted best-estimate 
value of the response has fallen in between the computed and measured values of 
the leakage response. Also as predicted by the 2nd-BERRU-PMD [1] methodolo-
gy, it has been observed that the predicted standard deviation of the predicted 
response is smaller than either the measure or the computed standard deviation, 
regardless of the order of sensitivities included in the respective computation, 
i.e., ( ) ( )be eSD SD<  and ( ) ( )be compSD SD< . It has also been observed that when 
the parameters are known with high precision, the contributions of the high-
er-order sensitivities diminish with increasing order, so that the inclusion of the 
2nd-order sensitivities (in addition to the 1st-order sensitivities), while necessary, 
may suffice for obtaining accurate predicted best-estimate response values and 
best-estimate standard deviations. On the other hand, when the parameters’ 
standard deviations are sufficiently large to approach (or be outside of) the ra-
dius of convergence of the multivariate Taylor-series which represents the re-
sponse in the phase-space of model parameters, the contributions of the 3rd- and 
even 4th-order sensitivities are necessary to ensure consistency between the 
computed and measured response. In such cases, the use of only the 1st-order 
sensitivities invariably indicates erroneously that the computed results are in-
consistent with the respective measured response.  

The results presented in this work indicate the general conclusion that at least 
the 1st- and 2nd-order sensitivities need to be computed and included in any me-
thodology that combines computational and experimental information. While 
the higher-order sensitivities may contribute little in special situations, e.g., 
when the model parameters are known with high precision, at least the 2nd-order 
sensitivities are needed to be included, while the 3rd-order sensitivities would be 
needed in order to quantitatively confirm or infirm the necessity of including 
sensitivities of order three and/or higher-order.  

Ongoing research is dedicated to computing the best-estimate calibrated pa-
rameters, and their corresponding best-estimate reduced uncertainties, which 
are to be obtained by applying the 2nd-BERRU-PM methodology for the illustra-

https://doi.org/10.4236/ajcm.2023.132015


R. X. Fang, D. G. Cacuci 
 

 

DOI: 10.4236/ajcm.2023.132015 321 American Journal of Computational Mathematics 
 

tive example presented in this work. Once the best-estimate calibrated parame-
ters and their accompanying best-estimate reduced uncertainties are obtained, 
they will enable the subsequent computations, via a corresponding forward 
computation using the PARTISN-software, that will produce the best-estimate 
responses values and their accompanying reduced uncertainties. Ongoing re-
search also aims at extending Cacuci’s 2nd-BERRU-PM [1] [2] methodology to 
fourth-order, thus enabling the computation of third-order response correla-
tions (skewness) and fourth-order response correlations (kurtosis). 
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