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Abstract 
This work presents a comprehensive second-order predictive modeling (PM) 
methodology based on the maximum entropy (MaxEnt) principle for obtain-
ing best-estimate mean values and correlations for model responses and pa-
rameters. This methodology is designated by the acronym 2nd-BERRU-PMP, 
where the attribute “2nd” indicates that this methodology incorporates second- 
order uncertainties (means and covariances) and second (and higher) order 
sensitivities of computed model responses to model parameters. The acronym 
BERRU stands for “Best-Estimate Results with Reduced Uncertainties” and 
the last letter (“P”) in the acronym indicates “probabilistic,” referring to the 
MaxEnt probabilistic inclusion of the computational model responses. This is 
in contradistinction to the 2nd-BERRU-PMD methodology, which determi-
nistically combines the computed model responses with the experimental in-
formation, as presented in the accompanying work (Part I). Although both 
the 2nd-BERRU-PMP and the 2nd-BERRU-PMD methodologies yield expres-
sions that include second (and higher) order sensitivities of responses to 
model parameters, the respective expressions for the predicted responses, for 
the calibrated predicted parameters and for their predicted uncertainties (co-
variances), are not identical to each other. Nevertheless, the results predicted 
by both the 2nd-BERRU-PMP and the 2nd-BERRU-PMD methodologies en-
compass, as particular cases, the results produced by the extant data assimila-
tion and data adjustment procedures, which rely on the minimization, in a 
least-square sense, of a user-defined functional meant to represent the dis-
crepancies between measured and computed model responses.  
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1. Introduction 

An accompanying work [1] has presented a comprehensive second-order pre-
dictive modeling (PM) methodology based on the maximum entropy (MaxEnt) 
principle [2], for obtaining best-estimate mean values and correlations for model 
responses and parameters, which was designated by the acronym 2nd-BERRU- 
PMD. The attribute “2nd” indicates that this methodology incorporates second- 
order uncertainties (means and covariances) and second-order sensitivities of 
computed model responses to model parameters. The acronym BERRU stands 
for “Best-Estimate Results with Reduced Uncertainties” and the last letter (“D”) 
in the acronym indicates “deterministic,” referring to the deterministic inclusion 
of the computational model responses. 

Alternative to the 2nd-BERRU-PMD methodology, this work presents the 2nd- 
BERRU-PMP methodology for obtaining best-estimate mean values and correla-
tions for model responses and parameters. The 2nd-BERRU-PMP methodology is 
also based on the MaxEnt principle but includes the computational model res-
ponses probabilistically-through a MaxEnt representation-in contradistinction 
to its deterministic inclusion within the 2nd-BERRU-PMD methodology. This 
(contra) distinction is indicated the last letter (“P”) in the acronym, which refers 
to the “probabilistic” inclusion of the computed model responses.  

This work is structured as follows: Section 2 presents the second-order Max-
Ent probabilistic representation of the computational model. Section 3 presents 
the “second order predictive modeling methodology with probabilistically in-
cluded computed responses” (2nd-BERRU-PMP) methodology. Although both 
the 2nd-BERRU-PMP and the 2nd-BERRU-PMD methodologies yield expressions 
that include second (and higher) order sensitivities of responses to model para-
meters, the respective expressions for the predicted responses, calibrated pre-
dicted parameters and their predicted uncertainties (covariances) are not iden-
tical to each other, although they encompass, as particular cases, the results 
produced by the extant data assimilation [3] [4] and data adjustment procedures 
[5] [6] [7] [8] [9]. Comparisons with the results produced by the first-order 
BERRU-PM methodology [10] [11] [12] are also presented. The advantages of 
the 2nd-BERRU-PMP methodology over the results produced by the data assimi-
lation method [3] [4] are presented in Section 5. The discussion presented in 
Section 6 concludes this work. Illustrative applications of the 2nd-BERRU-PMP 
and the 2nd-BERRU-PMD methodologies to forward and inverse problems are 
currently in progress. 

2. Second-Order MaxEnt Probabilistic Representation of the  
Computational Model 

The modeling of a physical system requires consideration of the following mod-
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eling components:  
1) A mathematical model comprising linear and/or nonlinear equations that 

relate the system’s independent variables and parameters to the system’s state 
(i.e., dependent) variables. In this work, matrices will be denoted using capital 
bold letters while vectors will be denoted using either capital or lower-case bold 
letters. The symbol “  ” will be used to denote “is defined as” or “is by definition 
equal to.” Transposition will be indicated by a dagger ( † ) superscript. The 
equalities in this work are considered to hold in the weak (“distributional”) 
sense. 

2) Nominal values and uncertainties that characterize the model’s parameters.  
3) One or several computational results, customarily referred to as model 

responses (or objective functions, or indices of performance), which are com-
puted using the mathematical model; and 

4) External to the model: experimentally measured responses that correspond 
to the computed responses, with their respective experimentally determined 
nominal (mean) values and uncertainties (variances, covariances, skewness, 
kurtosis, etc.). Occasionally, measurements of correlations among the measured 
responses and the model parameters, as well as externally performed measure-
ments of model parameters (in addition to the information about parameters 
used in the model-computations) might be available. 

The model parameters usually stem from processes that are external to the 
physical system (and, hence, model) under consideration and their precise val-
ues are seldom, if ever, known. The known characteristics of the model parame-
ters may include their nominal (expected/mean) values and, possibly, higher- 
order moments (i.e., variance/covariances, skewness, kurtosis), which are usually 
determined from experimental data and/or processes external to the physical 
system under consideration. Occasionally, just the lower and the upper bounds 
may be known for some model parameters. Without loss of generality, the mod-
el parameters will be considered in this work to be real-valued scalars, and will 
be denoted as 1, , TPα α , where the quantity “TP” denotes the “total number of 
model parameters.” Mathematically, these parameters are considered as compo-
nents of a TP-dimensional vector denoted as ( )†

1, , TP
TP Dαα α ∈ ∈  α , de-

fined over a domain Dα , which is included in a TP-dimensional subset of the 
TP
 . The components of the TP-dimensional column vector TP∈α  are con-
sidered to include imprecisely known geometrical parameters that characterize 
the physical system’s boundaries in the phase-space of the model’s independent 
variables. The model parameters can be considered to be quasi-random sca-
lar-valued quantities which follow an unknown multivariate distribution de-
noted as ( )pα α . The mean values which will be called “nominal” values in the 
context of computational modeling of the model parameters will be denoted as 

0
iα ; the superscript “0” will be used throughout this work to denote “nominal 

values.” These nominal values are formally defined as follows: 

( )0 d , 1, , .i i
D

p i TP
α

αα α =∫ α α                  (1) 
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The expected values of the measured parameters will be considered to consti-
tute the components of a “vector of nominal values” denoted as  

†0 0 0 0
1 , , , ,i TPα α α    α .  

The covariance, ( )cov ,i jα α , of two model parameters, iα  and jα , is de-
fined as follows: 

( ) ( )( ) ( )0 0cov , d ; , 1, , .i j i i j j
D

p i j TP
α

αα α α α α α− − =∫ α α       (2) 

The covariances ( )cov ,i jα α  are considered to be the components of the pa-
rameter covariance matrix, denoted as ( )cov ,i j TP TPαα α α

×
  C  . 

The results computed using a mathematical model are customarily called 
“model responses” (or “system responses” or “objective functions” or “indices of 
performance”). Consider that there are a total number of TR such model res-
ponses, each of which can be considered to be a component of the “vector of 
model responses” ( )†, , , ,1 k TRr r rr    . Each of these model responses is for-
mally a function (implicit and/or explicit) of the model parameters α , i.e., 

( ); 1, ,k kr r k TR= = α . The uncertainties affecting the model parameters α  
will “propagate” both directly and indirectly, through the model’s dependent va-
riables, to induce uncertainties in the computed responses, which will therefore 
be denoted as ( )c

kr α . Each computed response can be formally expanded in a 
multivariate Taylor-series around the parameters’ mean values. In particular, the 
fourth-order Taylor-series of a system response, denoted as ( )kr α , around the 
expected (or nominal) parameter values 0α  has the following formal expres-
sion: 

( ) ( ) ( ) ( )

( )

( )

1 1 2
0 01 1 21 1 2

1 2 3
01 2 3 1 2 3

04 1 2 3 4

2
0

1 1 1

3

1 1 1

4

1

1
2

1
3!

1
4!

TP TP TP
k k

k k j j j
j j jj j j

TP TP TP
k

j j j
j j j j j j

TP
k

j j j j j

r r
r r

r

r

δα δα δα
α α α

δα δα δα
α α α

α α α α

= = =

= = =

=

   ∂ ∂   = + +   ∂ ∂ ∂      

 ∂ +  
∂ ∂ ∂  

 ∂ +  
∂ ∂ ∂ ∂  

∑ ∑∑

∑∑ ∑

∑

α α

α

α

α α
α α

α

α
1 2 3 4

1 2 31 1 1
.

TP TP TP

j j j j k
j j j

δα δα δα δα ε
= = =

+∑ ∑ ∑

   (3) 

In Equation (3), the quantity ( )0
kr α  indicates the computed value of the 

response using the expected/nominal parameter values ( )†0 0 0
1 , , TPα α α . The 

notation {} 0α
 indicates that the quantities within the braces are also computed 

using the expected/nominal parameter values. The quantity kε  in Equation (3) 
comprises all quantifiable errors in the representation of the computed response 
as a function of the model parameters, including the truncation errors ( )5

jO δα  
of the Taylor-series expansion, possible bias-errors due to incompletely modeled 
physical phenomena, and possible random errors due to numerical approxima-
tions. The radius/domain of convergence of the series in Equation (3) deter-
mines the largest values of the parameter variations jαδ  which are admissible 
before the respective series becomes divergent. In turn, these maximum admiss-
ible parameter variations limit, through Equation (3), the largest parameter co-
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variances/standard deviations which can be considered for using the Taylor- 
expansion for the subsequent purposes of computing moments of the distribu-
tion of computed responses.  

As is well known, and as indicated by Equation (3), the Taylor-series of a 
function of TP-variables [e.g., ( )kr α ] comprises TP 1st-order derivatives,  

( )1 2TP TP +  distinct 2nd-order derivatives, and so on. The computation by 
conventional methods of the nth-order functional derivatives (called “sensitivi-
ties” in the field of sensitivity analysis) of a response with respect to the TP- 
parameters (on which it depends) would require at least ( )nO TP  large-scale 
computations. The exponential increase with the order of response sensitivities 
of the number of large-scale computations needed to determine higher-order 
sensitivities is the manifestation of the “curse of dimensionality in sensitivity 
analysis,” by analogy to the expression coined by Bellman [13] to express the dif-
ficulty of using “brute-force” grid search when optimizing a function with many 
input variables. The “nth-order Comprehensive Adjoint Sensitivity Analysis 
Methodology for Nonlinear Systems” (nth-CASAM-N) conceived by Cacuci [14] 
and the “nth-order Comprehensive Adjoint Sensitivity Analysis Methodology 
for Response-Coupled Forward/Adjoint Linear Systems” (nth-CASAM-L) con-
ceived by Cacuci [15] are currently the only methodologies that enable the exact 
and efficient computation of arbitrarily high-order sensitivities while overcom-
ing the curse of dimensionality. 

Uncertainties in the model’s parameters will evidently give rise to uncertain-
ties in the computed model responses ( )kr α . The computed model responses 
are considered to be distributed according to an unknown distribution denoted 
as ( )cp r . The unknown joint probability distribution of model parameters and 
responses will be denoted as ( ) ( ) ( ),c cp p pαr rα α . The approximate mo-
ments of the unknown distribution of ( )kr α  are obtained by using the so- 
called “propagation of errors” methodology, which entails the formal integration 
over ( ) ( ) ( ),c cp p pαr rα α  of various expressions involving the truncated 
Taylor-series expansion of the response provided in Equation (3). This proce-
dure was first used by Tukey [16]. Tukey’s results were generalized to 6th-order 
by Cacuci [15]. 

The expectation value, ( )c kE r , of a computed response ( )kr α  is obtained 
by integrating formally Equation (3) over ( ),cp rα , which yields the following 
expression:  

( ) ( ) ( )

( ) ( ) ( )

( )

( )

0

0

04 4

2

1 2
1 11 2 1 2

3

1 2 3 1 2 3
1 1 11 2 3 1 2 3
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24

, d d
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1
6

TP TP
k

j j
j j j j

TP TP TP
k

j j j j j j

T TP TP
k

j j j j j j j

c k k c

k

j j j j j j

r

E r r p

r

r
t

r

α α
α α

α α α

α α α α

σ σ σ

= =

= = =

= = =

∂

∂ ∂
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∂ ∂ ∂

∂

∂ ∂ ∂
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  

  +  
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.
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j
j j j j j j j j
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∑ ∑

    (4) 
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The expectation values ( )c kE r , 1, ,k TR=  , are considered to be the com-
ponents of a vector defined as follows: ( ) ( ) ( ) ( ) †

1 , , , ,c c c k c TRE r E r E r  E r    . 
The expression of the correlation between a computed responses and a para-

meter variance, which will be denoted as ( )cor ,i krα , is presented below: 

( ) ( ) ( ) ( )
( ) ( ) ( )

( )

1 2 1 2
0 01 2 1 2

1 2 3 1 2 3 4
01 2 3 1 2 3

2

,
1 1 1

3

,
1 1 1

cor , , d d

1cov ,
2

1
6

i k i k c k c

TP TP TP
k k

i j i j j i j j
j j jj j j

TP TP TP
k

i j j j j j j j
j j j j j j

r r E r p

r r
t

r
q

α δα

α α σ σ σ
α α α

σ σ σ σ
α α α

= = =

= = =

 − 
  ∂ ∂   = +   

∂ ∂ ∂      

 ∂ +  ∂ ∂ ∂  

+

∫

∑ ∑∑

∑∑ ∑

r r

α α

α

α α α

α α

α

( )1 2 3 4 5
.j j j j jO σ σ σ σ σ

     (5) 

The correlations ( )cor ,i krα , 1, ,i TP=  , 1, ,k TR=  , are considered to be 
the components of a “parameter-response computed correlation matrix” de-
noted as c

rαC  and defined as follows: 

( ) ( )

( ) ( )

1 1 1

1

cor , cor ,
.

cor , cor ,

TR
c

r

TP TP TR

r r

r r
α

α α

α α

 
 
 
 
 

C


   



               (6) 

The expression of the covariance between two responses kr  and r


, denoted 
as ( )cov ,kr r



, is presented below: 

( ) ( ) ( ) ( ) ( ) ( )
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 (7) 

The covariances ( )cov ,kr r


, , 1, ,k TR=  , are considered to be the compo-
nents of a “computed-responses covariance matrix” denoted as c

rrC  and de-
fined as follows:  

( ) ( )

( ) ( )

1 1 1

1

cor , cor ,
.

cor , cor ,

TR
c
rr

TP TP TR

r r r r

r r r r

 
 
 
 
 

C


   



                (8) 

The information provided in Equations (1)-(8) regarding the mean values and 
correlations for the model parameters and computed model responses will be 
used to construct a second-order MaxEnt approximation, denoted as ( ),c c cp z z C , 
to represent the distribution ( ) ( ) ( ),c cp p pαr rα α  of computed model res-
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ponses and parameters. The distribution ( ),c c cp z z C  is constructed by fol-
lowing the procedure outlined in Appendix, to obtain the following expression: 

( ) ( ) ( ) ( )

( )
( ) ( )

2
† 12 1, , exp

2

TR TP

c c c c c c c
c

p p
Det

− +
− ≅ − − − 

π


r z z C z z C z z

C
α ,  (9) 

where: 

( ) ( )†

0; ; ;
c c

c c crr r
c r r cc

r

α
α α

α αα

    
= =    
    

r E rC C
C C C z z

C C
 

α α
.    (10) 

It is important to note that even though the MaxEnt distribution represented 
in Equation (9) is a multivariate normal distribution characterized by just the 
first-order moments (mean values) and second-order moments (variance/ 
covariances) of the full but unknown “joint distribution ( ),cp rα  of computed 
responses and parameters,” the components of the vector cz  of mean values 
and the components of the covariance matrix cC  may comprise terms involv-
ing third- and higher-order response sensitivities and parameter correlations 
(e.g., triple and quadruple correlations), if available, as indicated in Equations 
(4), (5), and (7). 

3. 2nd-BERRU-PMP: Second Order Predictive Modeling  
Methodology with Probabilistically Included Computed  
Responses 

This Section presents the mathematical and physical considerations leading to 
the development of the second-order predictive modeling methodology in which 
the computational model is probabilistically incorporated with the measurements 
into the combined 2nd-order MaxEnt posterior distribution which represents all 
of the available computational and experimental information. This methodology 
will be designated using the acronym 2nd-BERRU-PMP, where the last letter 
(“P”) indicates “probabilistic.” Subsection 3.1 presents the general case, in which 
measurements (mean values and correlations) for parameters are available−in 
addition to the information used in the computational model−for incorporation 
together with the measured responses into the MaxEnt probabilistic representa-
tion of the computational model in order to finally obtain the joint posterior 
distribution that would represent all of the available second-order information. 
This general case seldom occurs in practice because additional measurements 
regarding the model parameters (outside of, and in addition to, their use in the 
model) are rarely available. Usually, only measurements for responses are avail-
able for incorporation into the MaxEnt representation of the computational 
model; this case is analyzed in Subsection 3.2. 

3.1. General Case: Measurements for Both Responses and  
Parameters Are Available for Combination with the MaxEnt 
Probabilistic Representation of the Computational Model to 
Obtain Their Joint Posterior Distribution 

In the most general case, measurements could be available not only for the res-
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ponses (results) of interest but also about the parameters used in the model to 
compute the respective results. In such a case, the second-order MaxEnt distri-
bution which will represent probabilistically the computed model responses and 
model parameters is to be combined with a second-order MaxEnt distribution 
which is to represent probabilistically the measured model responses and the 
additionally measured model parameters (i.e., model parameters measured in 
addition to, and independently of, the computational model). Since only first- 
and second-order moments are considered to be available, each of these MaxEnt 
distributions will be multivariate normal distributions, so their combination will 
also yield a multivariate posterior MaxEnt distribution (for all of the first- and 
second-order available moments). 

Consider that the total number of experimentally measured responses is TR. 
The information usually available regarding the distribution of such measured 
responses comprises the first-order moments (mean values), which will be denoted 
as e

ir , 1, ,i TR=  , and the second-order moments (variances/covariances), 
which will be denoted as ( )cov ,i j e

r r , , 1, ,i j TR=  , for the measured res-
ponses. Occasionally, measured correlations between the model parameters and 
the measured responses could also be available. The letter “e” will be used either 
as a superscript or a superscript to indicate experimentally measured quantities. 
The expected values of the measured responses will be considered to constitute 
the components of a vector denoted as ( )†

1 , ,e e e
TRr rr   . The covariances of 

the measured responses are considered to be components of the TR TR×
-dimensional covariance matrix of measured responses, which will be denoted as 

( )cov ,e
rr i j e TR TR

r r
×

 
 C  . In principle, it is also possible to obtain correlations 

between some measured responses and some model parameters. When such 
correlations between measured responses and measured model parameters are 
available, they are defined as ( )cor ,i j e

rα , 1, ,i TP=  ; 1, ,j TR=  , and can 
formally be considered to be elements of a rectangular correlation matrix which 
will be denoted as ( )cov ,e

r i j e TP TR
rα α

×
 
 C  . In the most general situation, it is 

possible to have not only measured responses but also new measurements for 
the parameters, in addition to and independently of, the parameters used in the 
mathematical/computational model (i.e., where they are considered to have no-
minal values 0α  and covariance matrix ααC ). These measured parameters will 
be considered to have a vector of mean values denoted as ( )1 , ,e e e

TPα α α , and 
a covariance matrix denoted as ( )cov ,e

r i j e TP TR
rα α

×
 
 C  . 

The MaxEnt principle can now be applied, as described in Appendix, to con-
struct the least informative (and hence, most conservative) distribution using the 
available experimental information, to obtain the following expression: 

( ) ( ) ( )

( )
( ) ( )

2
† 12 1, exp ,

2

TR TP

e e e e e e
e

p
Det

− +
− = − −

π
−  

z z C z z C z z
C

       (11) 

where: 

; ; .
e e e
rr r

e ee e e
r

α

α αα

    
= =    
    

rC C r
C z z

C C


α α
             (12) 
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The joint posterior probability distribution of all computed and experimen-
tally measured quantities, which will be denoted as ( ),p p pp z z C  where the sub-
script “p” indicates “posterior,” is obtained as the properly normalized product 
of the distributions ( ),e e ep z z C  and ( ),c c cp z z C . Since both ( ),e e ep z z C  
and ( ),c c cp z z C  are normally distributed, it follows that the posterior proba-
bility ( ),p p pp z z C  will also be normally distributed and will be given by the 
following expression: 

( ) ( ) ( ) ( )1, , , exp , ,
2p p p c c c e e e p pp p p K Q = −  

z z C z z C z z C z z C    (13) 

where the normalization constant K and the quadratic form ( ),p pQ z C  have 
the following expressions, respectively: 

( ) ( ) ( ) ( ) ( )1 2 † 12 12 exp ;
2

N
c e c e c e c eK Det

− −−   + − − + −    
π C C z z C C z z  (14) 

( ) ( ) ( )† 1, ;p p p p pQ −− −z z C z z C z z                 (15) 

( ) ( ) ( )
1 1 11 1 ;p c e c c c e c e e c e e

− − −− −+ = − + = − +C C C C C C C C C C C C C     (16) 

( )1 1 .p p c c e e
− −+z C C z C z                     (17) 

The expression obtained in Equation (13) provides the exact first-order (mean 
values) and second-order (variances and co-variances) of the most comprehen-
sive combined distribution of computations and measurements of responses and 
parameters. In practice, however, such a comprehensive amount of experimental 
information is highly unlikely to be available. Furthermore, even if such massive 
amount of experimental information were available, the inversion of the matrix 
( ) 1

c e
−+C C  may be impractical since it would require massive computational 

resources when the physical systems involve many (thousands of) parameters. 

3.2. Practical Case: Only Response Measurements Are Available  
for Combination with the MaxEnt Probabilistic  
Representation of the Computational Model to Obtain Their  
Joint Posterior Distribution 

In practice, the information (mean values and covariances) about the model pa-
rameters indicated in Equations (1) and (2) is obtained and assessed prior to us-
ing this information in the mathematical/computational model used for compu-
ting responses. Thus, all of the information available regarding the model para-
meters would be used to construct the components of the vector  

( )†0 0 0
1 , , TPα α α  of parameter nominal values and the components of the pa-

rameter covariance matrix ααC . In practice, only information about measured 
responses would become additionally available, i.e., only the vector  

( )†

1 , ,e e e
TRr rr    and the covariance matrix ( )cov ,e

rr i j e TR TR
r r

×
 
 C  would be-

come available for combination with the computational information. In such a 
case, the MaxEnt distribution corresponding to Equation (11) will reduce to the 
following expression: 
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( ) ( ) ( ) ( ) ( ) ( )1 2 † 12 1, 2 exp .
2

TRe e e e e e
e rr rr rrp Det

− −−π   = − − −    
r r C C r r C r r  (18) 

Furthermore, when only the experimental information represented by the 
distribution ( ),e e

e rrp r r C  is available, the posterior joint probability distribu-
tion of the computed and measured quantities, which will be denoted as 

( ),pp r α  will have the following form: 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1

† 1† 1

1 1, exp , ; exp , d d ;
2 2

, .

p

e e e
c c c rr

p N Q N Q

Q

−

−−

    = − −        

− − + − −

∫r r r r

r z z C z z r r C r r





α α α α

α

   (19) 

The evaluation of the moments of the posterior distribution represented by 
Equation (19) will involve the evaluation of ratios of integrals having the follow-
ing form: 

( ) ( ) ( )
1

exp d exp dI g f g
−

    = − −    ∫ ∫z z z z z .          (20) 

The evaluations of expressions such as shown in Equation (20) can be per-
formed to a high degree of accuracy, with a controlled error, by employing the 
saddle-point (Laplace) method, see e.g., [17] [18], which yields the following re-
sult:  

( )3 41 2 1 2
1 2 3 4 1 2 1 2 3

1 1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ
2 2

i ii i j j
i i i i j j j j jI f f g g g f g O f= − + + ,         (21) 

where: 
1) The derivative of a function with respect to a component of z  is denoted 

using a subscript, e.g., i if f z∂ ∂ , 2
ij i jf f z z∂ ∂ ∂ , , 1, ,i j TI=  , where TI 

denotes the total number of independent variables; 
2) The superscripts denote the respective component of the inverse Hessian of 

the respective function, e.g., ijf  denotes the ( ),i j -element of the inverse Hes-
sian matrix 1

ijf −   ; 
3) An index that appears as a subscript and a superscript implies a summation 

over all possible values of that index; 
4) The “hat” denotes that the respective quantity is to be evaluated at the sad-

dle point of ( )exp g − z , which is defined as the point at which the gradient 
( ) ( )1 , , TIg g z g z∂ ∂ ∂ ∂z z    of ( )g z  vanishes, i.e., ( )g =z z 0 . 

The saddle-point of the normalization integral N will be denoted as ( ),s sr α  
and is defined by the following relations:  

( ) ( ) ( ) ( )
, ,

, , at , , .s s

Q Q∂ ∂
= = =

∂ ∂
r r

r r
r

0 0
α α

α α
α

           (22) 

To obtain the partial gradients (differentials) shown in Equation (22), it is 

convenient to write the matrix 1
c
−C  in the form 11 121

21 22
c
−  
=  
 

C C
C

C C
, and use  

this form together with the definitions provided in Equations (10) and (12) in 
Equation (19) to expand the functional ( ),Q r α  into the following form: 
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

† † 0
11 12

† †0 0 0
21 22

† 1

,

.

c c c

c

e e e
rr

Q

−

     = − − + − −     

 + − − + − − 

+ − −

r r E r C r E r r E r C

C r E r C

r r C r r

α α α

α α α α α α   (23) 

Taking the partial differentials of the expression in Equation (23) yields the 
following equation for determining the coordinates of the saddle point  
( ) ( ), ,s s=r rα α : 

( ) ( ) ( )1

0 .
c c e e

s c rr r rr s
c

s r

α

α αα

−   − − = −    −    

r E r C C C r r
C C 0α α

          (24) 

Solving Equation (24) leads to the following expressions for the coordinates 

sr  and sα  of the saddle point: 

( ) ( )
1e e e c e

s rr rr rr c

−
 = + + − r r C C C E r r ,            (25) 

( ) ( )
10 c e c e

s r rr rr cα

−
 = − + − C C C E r rα α .            (26) 

The best-estimate predicted mean values for the responses and parameters are 
defined below: 

( ), d d
p

bep
p

D

p∫r r r r α α ,                  (27) 

( ), d d
p

bep
p

D

p∫ r rα α α α .                 (28) 

The superscript “bep” has been used in Equations (29) and (30), respectively, 
to indicate that the expressions obtained for the respective predicted responses 
and parameters are “best estimates with probabilistic computational model.” 
The saddle-point method is applied to evaluate the integrals represented by Eq-
uations (27) and (28), respectively, to obtain the following expressions for the 
optimally-predicted “best-estimate” values for the responses and calibrated pa-
rameters: 

( ) ( )
1bep e e e c e

s rr rr rr c

−
 = = + + − r r r C C C E r r ,           (29) 

( ) ( )
10bep c e c e

s r rr rr cα

−
 = = − + − C C C E r rα α α .          (30) 

Since the components of the vector ( )cE r , and the components of the ma-
trices c

rrC  and c
rαC  can contain arbitrarily high-order response sensitivities to 

model parameters, the expressions presented in Equations (29) and (30) gene-
ralize the previous formulas of this type found in data adjustment/assimilation 
procedures published to date (which contain at most second-order sensitivities). 
The best-estimate parameter values are the “calibrated model parameters” which 
can be used for subsequent computations with the “calibrated model.” 

The second-order moments of the posterior distribution ( ),pp r α  comprise 
the covariances between the best estimated response, which will be denoted as 

bep
rrC , the covariances between the best-estimate parameters, which will be de-
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noted as bep
ααC , and the correlations between the best-estimate parameters and 

responses, which will be denoted as bep
rαC . The expression of the “best-estimate 

probabilistic model” posterior parameter covariance matrix, bep
rrC , for the best- 

estimate responses bepr  is derived by using the result given in Equation (29) to 
obtain the following expression:  

( )( ) ( ) ( )† 1
, d d

p

bep bep bep e e e c e
rr p rr rr rr rr rr

D

p
−

− − = − +∫C r r r r r r C C C C C α α . (31) 

The following important result has been used to obtain the expression pro-
vided in Equation (31): 

( ) ( )

( ) ( )

†

†
.

e e
c c

e e e c
c c rr rr

   − −   

   = − − + − − + = +   

E r r E r r

r r r E r r r r E r C C
      (32) 

As indicated in Equation (31), the initial covariance matrix e
rrC  for the expe-

rimentally measured responses is multiplied by the matrix ( ) 1e c e
rr rr rr

− − +  
I C C C , 

which means that the variances contained on the diagonal of the best-estimate 
matrix bep

rrC  will be smaller than the experimentally measured variances con-
tained in e

rrC . Hence, the incorporation of experimental information reduces 
the predicted best-estimate response variances in bep

rrC  by comparison to the 
measured variances contained a priori in e

rrC . Since the components of the ma-
trix bep

rrC  contain high-order sensitivities, the formula presented in Equation 
(31) generalizes the previous formulas of this type found in data adjustment/ 
assimilation procedures published to date. 

The expression of the “best-estimate” posterior parameter covariance matrix 
bep
ααC  for the best-estimate parameters bepα  is derived by using the result given 

in Equation (30) to obtain:  

( )( ) ( ) ( )† 1
, d d .

p

bep bep bep c e c c
p r rr rr r

D

pαα αα α α

−
− − = − +∫C r r C C C C C α α α α α α  (33) 

The matrices ααC  and ( ) 1c e c c
r rr rr rα α

−
+C C C C  are symmetric and positive de-

finite. Therefore, the subtraction indicated in Equation (33) implies that the 
components of the main diagonal of bep

ααC  must have smaller values than the 
corresponding elements of the main diagonal of ααC . In this sense, the combi-
nation of computational and experimental information has reduced the best- 
estimate parameter variances on the diagonal of bep

ααC . Since the components of 
the matrices ααC , c

rαC , and c
rrC  contain high-order response sensitivities, the 

formula presented in Equation (33) generalizes the previous formulas of this 
type found in data adjustment/assimilation procedures published to date. 

The expressions of the “best-estimate” posterior parameter correlation matrix 
bep

rαC  and/or its transpose bep
rαC , for the best-estimate parameters bepα  and 

best-estimate responses bepr , are derived by using the results given in Equation 
(29) and Equation (30) to obtain the following expressions:  

( )( ) ( ) ( )† 1
, d d ;

p

bep bep bep e c e c e
r p r r rr rr rr

D

pα α α

−
− − = − +∫C r r r r C C C C C α α α α  (34) 
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( )( ) ( )

( ) ( )1

, d d

.

p

bep bep bep
r p

D

e e e c c bep
r rr rr rr r r

pα

α α α

−

− −

= − + =

∫C r r r r

C C C C C C

 α α α α
†

†
            (35) 

Since the components of the matrices c
rαC  and c

rrC  contain high-order sen-
sitivities, the formulas presented in Equations (34) and (35) generalize the pre-
vious formulas of this type found in data adjustment/assimilation procedures 
published to date. 

It is important to note from the results shown in Equations (29)-(35) that the 
computation of the best estimate parameter and response values, together with 
their corresponding best-estimate covariance matrices, only involves a single 
matrix inversion when computing ( ) 1e c

rr rr

−
+C C , which entails the inversion of a 

matrix of size TR TR× . This is computationally very advantageous, since 
TR TP , i.e., the number of responses is much less than the number of model 
parameters in the overwhelming majority of practical situations. 

Using Equations (24), (29) and (30) in Equation (23) yields the following ex-
pression for the minimum value, ( )min ,bep bepQ Q= rα , of the quadratic form 
( ),Q rα : 

( ) ( )

( ) ( ) ( )
( ) ( ) ( )

1†

min 0 0

† 1

1†
.

c cbep bep
rr rc c
cbep bep

r

bep e e bep e
rr

e e c e
c rr rr c

Q α

α αα

−

−

−

    − −
=     

− −    

+ − −

   = − + −   

C Cr E r r E r
C C

r r C r r

E r r C C E r r

α α α α

        (36) 

As the expression obtained in Equation (36) indicates, the quantity minQ  
represents the square of the length of the vector ( ) e

c − E r r , measuring (in 
the corresponding metric) the deviations between the experimental and nomi-
nally computed responses. The quantity minQ  is independent of calibrating (or 
adjusting) the original data, so it can be evaluated directly from the given data 
(i.e., model parameters and computed and measured responses, together with 
their original uncertainties) after having computed the matrix ( ) 1e c

rr rr

−
+C C . As 

the dimension of the vector ( ) e
c − E r r  indicates, the number of degrees of 

freedom characteristic of the calibration under consideration is equal to the 
number TR of experimental responses. 

4. Inter-Comparison: 2nd-BERRU-PMP vs. 2nd-BERRU-PMD 

In this section, the results obtained for the best-estimate mean values for the 
responses and parameters, together with their corresponding best estimate cova-
riances/correlations will be compared to the corresponding results produced by 
the 2nd-BERRU-PMD methodology, as well as to the corresponding results pro-
duced by the 1st-BERRU-PM [10] [11] [12]. 

4.1. Inter-Comparison of Expressions for the Best-Estimate  
Predicted Mean Values for Responses 

Recall that the 2nd-BERRU-PMD (best-estimated values with deterministically 
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incorporated computed responses) methodology incorporates deterministically 
(into the second-order MaxEnt representation of the experimentally measured 
responses) the following second-order Taylor-expansion of the computed res-
ponses:  

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

0 0 0 0

†0 0 0
1

†0 0 0 01
2

; ;

; ; , , ; ;

; .

c

TR

k k

p p

p

= + +  − 

 
 

 − − 

p

p

r r S

Q α

 



α α α α α α

α α α α α α

α α α α α α

           (37) 

In Equation (37), the components of the vector ( ) ( ) ( ) †0 0 0
1 , ,c c c

TRr r 
 r  α α α  

represent the values of the model responses computed at the nominal parameter 
values 0α , and the other vectors and matrices contain first-order and second- 
order sensitivities of responses with respect to the model parameters, evaluated 
at the nominal parameter values 0α , as defined below: 

( )

( ) ( )

( ) ( )

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 1

111 1,

,1 ,

1

2 2

1 1 111 1,

2 2
,1 ,

1

;
TPTR

TR TR TR TR TR

TP

c c
k k

k k
TPTP

k
c ck k

k kTP TP TP

TP TP TP

r r
s s

s s r r

r r
q q

r rq q

α α

α α

α α α α

α α α α

 ∂ ∂
 

∂ ∂           ∂ ∂  
 ∂ ∂ 
 ∂ ∂
  ∂ ∂ ∂ ∂       ∂ ∂ 
∂ ∂ ∂ ∂

S

Q





       









       





α α

α
α α

α α

α

α α

.







 
 



     (38) 

The expressions of the end-results produced the “best-estimated values with 
deterministically incorporated computed responses” (2nd-BERRU-PMD) me-
thodology will be designated using the superscript “bed.” The expression ob-
tained using the 2nd-BERRU-PMD methodology for the best-estimate responses 
is as follows [1]:  

( ) ( ), 1† h nbed e e e
rr rα

+= + −r r C C S θ ,               (39) 

where the vector ( ) ( ) ( ) ( )( )†, 1 , 1 , 1 , 1
1 , , , ,h n h n h n h n

k TRθ θ θ+ + + +
  θ  is the solution of the 

following iterative (Newton’s method) equation  

( ) ( ) ( )( ) ( )( )1
1 ; 0,1, .n n n n n

−
+  = − = 

A w θ θ θ θ           (40) 

In Equation (40), the components/elements ( ),k nA θ  of the Jacobian matrix 
( )A θ  have the following expressions: 

( ) ( ) ,kn kn knA D V= −θ θ                     (41) 

where: 

( )† † ,e e e
kj rr r r kj TR TRkj

D Dαα α α ×
 + − −  C SC S C S SC D  ;      (42) 
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( ) ( ) ( ) ( ) ( ) ( )
1

, .
TR

k n j
kn j nj kj kn kn TR TR

j
V M M M Vθ

×
=

   + +   ∑ V θ θ θ      (43) 

( ) ( ) ( ) ( ) ( ) ( )0k k ke e
ij r k rTR TR

M α αα α αα
×

    − − =    M C C S Q C C S M  α
††† † . (44) 

( ) ( ) ( ) ( ) ( )†
1 , , , ,k TRw w w  − + + w d D u   θ θ θ θ θ θ .      (45) 

( ) ( ) ( )†0 0
1 1; , , ; ; 1, , .c e c e

TR i id d d r r i TR− − =d r r d    α α    (46) 

( ) ( ) ( ) ( ) ( ) ( )† †
1

1 1

1
2

, , ; .
TR TR

k i
TR k i kj j

i j
u u u Mθ θ

= =

  − −  ∑ ∑u M  θ θ θ θ θ θ    (47) 

The initial iterate for starting the iterations for obtaining solution of Equation 
(40) can be chosen [1] as follows: 

( ) ( ) ( ) ( )( ) ( ) ( )†,0 ,0 ,0 ,0 ,0
1 , , , , ; 2 3 ; 1, , .h h h h h j

j TR j jj jjD M j TRθ θ θ θ = =   θ   (48) 

( )( ) ( ) ( ) ( ) ( ),0 ,0

1
.

TR
h h k n j

kn kn j nj kj kn
j

A D M M Mθ
=

 = − + + ∑θ           (49) 

( )( ) ( )( ) ( ),0 ,0 ,0

1
, 1, , ;

TR
h h h

k k kj j k
j

w u D d k TRθ
=

= + − =∑ θ θ        (50) 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( )

,0 ,0 ,0 ,0 ,0

1 1 1 1

1 1

1
2

1
2

4 , 1, , .
9

TR TR TR TR
h h k h h i h

k i ij j i kj j
i j i j

TR TR
jj k iii

ij kji j
i j ii jj

u M M

DD M M k TR
M M

θ θ θ θ
= = = =

= =

= − −

     ≅ − + =         

∑∑ ∑ ∑

∑∑ 

θ

   (51) 

The first-iterate ( ),1hθ  of the solution of Equation (40) has the following ex-
pression: 

( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

1,1 ,0 ,0 ,0 ,0

,0 ,0 ,0 ,0

;

; .

h h h h h

h h h h

−
= − − + −D V u D d

V V u u 

θ θ θ

θ θ
         (52) 

Using the first-iterate, ( ),1hθ , in Equation (39) yields the following expres-
sions for the “first-iterate best-estimate” values for the responses:  

( )

( ) ( ) ( ) ( )( ) ( ) ( )( )
1 (0)

10 ,0 ,0 ,0 ,0†

;

.

bed e

h h h he e
rr rα

−

= +

 − − − + −  

r r r

r C C S D V u D d θ θ
    (53) 

It is noteworthy that the “vector of deviations” d  can be considered to be a 
(quasi-) random variable; it has been shown in [1] that the “vector of mean val-
ues of deviations” 

†
1, , TRd d  d    and the covariance matrix ij TR TR

D
×

  D   
of the vector of deviations d  have the following expressions (up to second- 
order sensitivities): 

( ) ( ) †0 0
1 , , TRαα αα

 =  d Q α C Q C α ;             (54) 

† †e e e
rr r rαα α α= + − −D C SC S C S SC .              (55) 

Comparing the expression of the first-iterate, cf., Equation (53) produced by 

https://doi.org/10.4236/ajcm.2023.132014


D. G. Cacuci 
 

 

DOI: 10.4236/ajcm.2023.132014 282 American Journal of Computational Mathematics 
 

the 2nd-BERRU-PMD methodology with the corresponding expression produced 
by the 2nd-BERRU-PMP methodology, cf. Equation (29), indicates that both ex-
pressions include the second-order sensitivities of the responses with respect to 
the parameters, but in distinct ways. Furthermore, the expression produced by 
the 2nd-BERRU-PMP methodology, cf. Equation (29), can include all of the re-
sponse sensitivities and parameter correlations of order higher than two, if 
available. Such an inclusion of higher-order sensitivities and parameter correla-
tions is not provided by the result, cf. Equation (53), obtained using the 2nd- 
BERRU-PMD methodology.  

The expression provided in Equation (29) coincides with the expression pro-
vided in Equation (53) only if the following relationship holds: 

( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( )

11

1,0 ,0 ,0 ,0†

iff :

.

bedbep e e c e
rr rr rr c

h h h he e
rr rα

−

−

 = + − 
 = − − − + −  

r r C C C E r r

C C S D V u D dθ θ
      (56) 

The equality in Equation (56) can hold if the following conditions are simul-
taneously satisfied: e

rα =C 0 , ( ),0h = 0θ , ( ),0h =V 0 , ( ),0h =u 0 , †c
rr αα=C SC S , 

( ) e
c = − d E r r , in which case we also have the relation  

†e e c
rr rr rrαα= + = +D C SC S C C . These conditions are satisfied if all of the sensitiv-

ities higher than first-order are ignored, and if the experimental responses are 
uncorrelated to the model parameters. In this particular case, the results pro-
duced by the 2nd-BERRU-PMP and 2nd-BERRU-PMD methodologies also coin-
cide with the results produced by the first-order 1st-BERRU-PM methodology. 

4.2. Inter-Comparison of Expressions for the Best-Estimate  
Predicted Mean Values for Parameters 

The expression obtained using the 2nd-BERRU-PMD methodology for the best- 
estimate parameters is as follows [1]: 

( ) ( ), 10 h nbed e
rα αα

+= + −C C Sα α θ† .                (57) 

Using the first-iterate ( ),1hθ  in Equation (57) yields the following first-iterate 
expression for the best-estimate parameters: 

( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )( )
1 00

10 ,0 ,0 ,0 ,0†

;

.

bed

h h h he
rα αα

−

= +

 − − − + −  
C C S D V u D d

α α β

β θ θ
   (58) 

Comparing the expression provided in Equation (58), namely the first-iterate 
produced by the 2nd-BERRU-PMD methodology, with the corresponding ex-
pression produced by the 2nd-BERRU-PMP methodology, cf. Equation (30), in-
dicates that both expressions include the second-order sensitivities of the res-
ponses with respect to the parameters, but in distinct ways. Furthermore, the 
expression produced by the 2nd-BERRU-PMP methodology, cf. Equation (30), 
can include all of the response sensitivities and parameter correlations of order 
higher than two, if available. Such an inclusion of higher-order sensitivities and 
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parameter correlations is not possible with the result obtained using the 2nd- 
BERRU-PMD methodology, cf. Equation (58).  

The expression provided in Equation (30) coincides with the expression pro-
vided in Equation (58) only if the following relationship holds: 

( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( )

11

1,0 ,0 ,0 ,0†

iff :

.

bedbep c e c e
r rr rr c

h h h he
r

α

α αα

−

−

 = − + − 
 = − − − + −  

C C C E r r

C C S D V u D d

α α

θ θ
     (59) 

The equality in Equation (59) can hold if the following conditions are simul-
taneously satisfied: e

rα =C 0 , ( ),0h = 0θ , ( ),0h =V 0 , ( ),0h =u 0 , †c
rr αα=C SC S , 

( ) e
c = − d E r r , in which case we also have the relation  

†e e c
rr rr rrαα= + = +D C SC S C C . These conditions are satisfied if all of the sensitiv-

ities higher than first-order are ignored. In this particular case, the results pro-
duced by the 2nd-BERRU-PMP and 2nd-BERRU-PMD methodologies also coin-
cide with the results produced by the first-order 1st-BERRU-PM methodology. 

4.3. Inter-Comparison of Expressions for the Best-Estimate  
Predicted Response Covariances 

The expression obtained using the 2nd-BERRU-PMD methodology [1] for the 
“first-iterate best-estimate” covariance matrix ( )1 bed

rrC  for the responses is as 
follows:  

( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( )( ) ( )( )
( )( ) ( ) ( )( )

( ) ( ) ( )( )

†1 1 ,0 ,0 ,0† † † †

† † †,0 ,0 1 ,0† †

† †,0 ,0 ,0† † †

†,0 ,0 ,0† † †.

bed h h he
rr rr rd r r r r r

h h h
r r r rd r r

h h h
r r r r r r

h h h
r r r r

= − + −

+ − −

+ − +

− +

C C C Y X X X d Y

X u Y Y C Y d X

Y DY Y d u Y Y u X

Y u d Y Y u u Y

θ θ θ

θ θ

θ
     (60) 

where: 

( ) ( ) ( )( ) ( ) ( )( )1 11 1 ,0 1 ,0†; ; .h he e
rd rr r r rd r rdα

− − = − − − −  
C C C S X C D V D I Y C D V   (61) 

Comparing the 2nd-BERRU-PMD-expression provided in Equation (60) with 
the corresponding expression obtained using the 2nd-BERRU-PMP methodolo-
gy, cf. Equation (31), indicates that both expressions include the second-order 
sensitivities of the responses with respect to the parameters, but in distinct ways. 
Furthermore, the expression produced by the 2nd-BERRU-PMP methodology, cf. 
Equation (31), can include all of the response sensitivities and parameter corre-
lations of order higher than two, if available. Such an inclusion of higher-order 
sensitivities and parameter correlations is not possible with the result obtained 
using the 2nd-BERRU-PMD methodology, cf. Equation (60).  

The expression provided in Equation (31) coincides with the expression pro-
vided in Equation (60) only if the following relationship holds: 
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( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( )( ) ( )( )

( )( ) ( ) ( )( ) ( ) ( ) ( )( )

†11 1 ,0 ,0† †

† † †,0 ,0 ,0 1 ,0† † † † †

† † †,0 ,0 ,0 ,0 ,0 ,0† † † † †

iff :

.

bed h hbep e e c e
rr rr rr rr rr rr rd r r r

h h h h
r r r r r rd r r r r

h h h h h h
r r r r r r r r

−
= − + = − +

− + − − +

− + − +

C C C C C C C Y X X

X d Y X u Y Y C Y d X Y DY

Y d u Y Y u X Y u d Y Y u u Y

θ θ

θ θ θ

θ

 (62) 

The equality shown in Equation (62) can hold only if all of the second-order 
sensitivities are neglected, and if the experimental responses are uncorrelated to 
the model parameters, in which case the following simplifications occur: r =X 0 , 

( )1 1
r rd

−=Y C D , and ( )1 e
rd rr=C C , in which case we also have the relation  

†e e c
rr rr rrαα= + = +D C SC S C C . In this particular case, the results produced by the 

2nd-BERRU-PMP and 2nd-BERRU-PMD methodologies also coincide with the 
results produced by the first-order 1st-BERRU-PM methodology. 

4.4. Inter-Comparison of Expressions for the Best-Estimate  
Predicted Parameter Covariances 

The expression obtained using the 2nd-BERRU-PMD methodology [1] for the 
“first-iterate best-estimate” covariance matrix ( )1 be

ααC  for the model parameters 
is as follows:  

( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( )( ) ( )( )
( )( ) ( ) ( )( )

( ) ( ) ( )( )

†1 1 ,0 ,0 ,0† † † †

† † †,0 ,0 1 ,0† †

† †,0 ,0 ,0† † †

†,0 ,0 ,0† † †.

bed h h he
d

h h h
d

h h h

h h h

αα αα α α α α α α

α α α α α α

α α α α α α

α α α α

= − + −

+ − −

+ − +

− +

C C C Y X X X d Y

X u Y Y C Y d X

Y DY Y d u Y Y u X

Y u d Y Y u u Y

θ θ θ

θ θ

θ
     (63) 

were: 
( ) ( ) ( )( ) ( ) ( )( )1 11 1 ,0 1 ,0†; ; .h he e

d r d dα α αα α α α α

− − = − − − −  
C C C S X C D V D I Y C D V  (64) 

Comparing the 2nd-BERRU-PMD-expression provided in Equation (63) with 
the corresponding expression obtained using the 2nd-BERRU-PMP methodolo-
gy, cf. Equation (33), indicates that both expressions include the second-order 
sensitivities of the responses with respect to the parameters, but in distinct ways. 
Furthermore, the expression produced by the 2nd-BERRU-PMP methodology, cf. 
Equation (33), can include all of the response sensitivities and parameter corre-
lations of order higher than two, if available. Such an inclusion of higher-order 
sensitivities and parameter correlations is not possible with the result obtained 
using the 2nd-BERRU-PMD methodology, cf. Equation (63).  

The expression provided in Equation (33) coincides with the expression pro-
vided in Equation (63) only if the following relationship holds: 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( )( ) ( )( )

( )( ) ( ) ( )( ) ( ) ( ) ( )( )

†11 1 ,0 ,0† †

† † †,0 ,0 ,0 1 ,0† † † † †

† † †,0 ,0 ,0 ,0 ,0 ,0† † † † †

iff :

.

bed h hbep c e c c
r rr rr r d

h h h h
d

h h h h h h

αα αα α α α α α α

α α α α α α α α α α

α α α α α α α α

−
= − + = − +

− + − − +

− + − +

C C C C C C C Y X X

X d Y X u Y Y C Y d X Y DY

Y d u Y Y u X Y u d Y Y u u Y

θ θ

θ θ θ

θ

(65) 
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The equality shown in Equation (65) can hold only if all of the second-order 
sensitivities are neglected, and if the experimental responses are uncorrelated to 
the model parameters, in which case the following simplifications occur: α =X 0 , 

( )1 1
dα α

−=Y C D , in which case we also have the relation  
†e e c

rr rr rrαα= + = +D C SC S C C . In this particular case, the results produced by the 
2nd-BERRU-PMP and 2nd-BERRU-PMD methodologies also coincide with the 
results produced by the first-order 1st-BERRU-PM methodology. 

4.5. Inter-Comparison of Expressions for the Best-Estimate  
Predicted Correlations between Parameters and Responses 

The expression obtained using the 2nd-BERRU-PMD methodology [1] for the 
“first-iterate best-estimate” correlation matrix ( )1 bed

rαC  for the parameters and 
responses is as follows:  

( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( )( ) ( )( )
( )( ) ( ) ( )( )

( ) ( ) ( )( )

†1 1 ,0 ,0 ,0† † † †

† † †,0 ,0 1 ,0† †

† †,0 ,0 ,0† † †

†,0 ,0 ,0† † †.

bed h h he
r r d r r r

h h h
r rd r

h h h
r r r

h h h
r r

α α α α α

α α α

α α α

α α

= − + −

+ − −

+ − +

− +

C C C Y X X X d Y

X u Y Y C Y d X

Y DY Y d u Y Y u X

Y u d Y Y u u Y

θ θ θ

θ θ

θ
      (66) 

Comparing the 2nd-BERRU-PMD-expression provided in Equation (66) with 
the corresponding expression obtained using the 2nd-BERRU-PMP methodolo-
gy, cf. Equation (34), indicates that both expressions include the second-order 
sensitivities of the responses with respect to the parameters, but in distinct ways. 
Furthermore, the expression produced by the 2nd-BERRU-PMP methodology, cf. 
Equation (34), can include all of the response sensitivities and parameter corre-
lations of order higher than two, if available. Such an inclusion of higher-order 
sensitivities and parameter correlations is not possible with the result obtained 
using the 2nd-BERRU-PMD methodology, cf. Equation (66) 

The expression provided in Equation (34) coincides with the expression pro-
vided in Equation (66) only if the following relationship holds: 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( )( ) ( )( )

( )( ) ( ) ( )( ) ( ) ( ) ( )( )

†11 1 ,0 ,0† †

† † †,0 ,0 ,0 1 ,0† † † † †

† † †,0 ,0 ,0 ,0 ,0 ,0† † † † †

iff :

.

bed h hbep c e c e
r r r rr rr rr d r r

h h h h
r r rd r r

h h h h h h
r r r r

α α α α α

α α α α α

α α α α

−
= − + = − +

− + − − +

− + − +

C C C C C C C Y X X

X d Y X u Y Y C Y d X Y DY

Y d u Y Y u X Y u d Y Y u u Y

θ θ

θ θ θ

θ

(67) 

The equality shown in Equation (67) can hold only if all of the second-order 
sensitivities are neglected, and if the experimental responses are uncorrelated to 
the model parameters. In this particular case, the results produced by the 2nd- 
BERRU-PMP and 2nd-BERRU-PMD methodologies also coincide with the re-
sults produced by the first-order 1st-BERRU-PM methodology. 

5. Fundamental Advantages of 2nd-BERRU-PMP over  
Second-Order Data Assimilation 

This section summarizes the decisive advantages of the 2nd-BERRU-PM metho-
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dology over the 2nd-Order Data Assimilation methodology [3] [4]. The 2nd-Order 
Data Assimilation methodology [3] [4] relies on using a 2nd-order procedure to 
minimize a user-defined functional which is meant to represent, in a chosen 
norm (usually the energy-norm), the discrepancies between computed and ex-
perimental results (“responses”). Mathematically, the 2nd-Order Data Assimila-
tion method involves the following steps [3] [4]: 

1) Consider that the physical system is represented, as in [1], by the operator 
equations ( ) ( ), ,m m  = N v x Q xα α . Consider that the vector of measured 
responses (“observations”), denoted by the vector ( )†

1, , TRz zz   , is a known 
function of the vector of state-variables ( ) ( ) ( ) †

1 , , TDv v  v x x x   and of the 
vector of errors ( )†

1, , TRw ww   , having the following expression: ( )= +z h v w , 
where ( ) ( ) ( ) †

1 , , TRh h  h v v v   denotes a known vector-function of v . The 
error term, w , is considered here to include “representative errors” stemming 
from sampling and grid interpolation; the mean value of w  corresponds to 

( )†

1 , ,e e
e TRr rr    and the covariance matrixof w  corresponds to e

rrC . As de-
scribed in [3] [4], w  is often considered to have the characteristics of “white 
noise,” in which case ( )~ , e

rrN   z h v C  is a normal distribution with mean 
( )h v  and covariance rr

eC . In addition, it is assumed that the prior “back-
ground” information is also known, being represented by a multivariate normal 
distribution with a known mean, denoted as bv , and a known covariance matrix 
denoted as B , i.e., [ ]~ ,bNv v B . The posterior distribution, ( )p z v , is ob-
tained by applying Bayes’ Theorem to the above information, which yields the 
result ( ) ( )~ expp J − z v v , where: 

( ) ( ) ( ) ( ) ( ) ( ){ }1† † 11
2

e
rr b bJ

− −   − − + − −   v z h v C z h v v v B v v .    (68) 

The maximum posterior estimate is obtained by determining the minimum of 
the functional ( )J v , which occurs at the root (s) of the following equation: 

( ) ( ) ( ) ( ) ( )
1†10 e

b h rrJ
−−    = ∇ = − − −   v B v v D v C z h v .       (69) 

where ( )hD v  denotes the Jacobian matrix of ( )h v  with respect to the com-
ponents of v . 

The “first-order data assimilation” procedure solves Equation (69) by using a 
“partial quadratic approximation” to ( )J v , while the “second-order data assi-
milation” procedure solves Equation (69) by using a “full quadratic approxima-
tion” to ( )J v , as detailed in [3] [4], to obtain the “optimal data assimilation 
solution,” which is here denoted as DAv , as the solution of Equation (69). The 
following fundamental differences become apparent by comparing the “Data 
Assimilation” result represented by Equation (69) and the 2nd-BERRU-PMP re-
sults. 

2) Data assimilation (DA) is formulated conceptually [3] [4] either just in the 
phase-space of measured responses (“observation-space formulation”) or just in 
the phase-space of the model’s dependent variables (“state-space formulation”). 
Hence, DA can calibrate initial conditions as “direct results” but cannot directly 
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calibrate any other model parameters. In contradistinction, the 2nd-BERRU-PMP 
methodology is formulated conceptually in the most inclusive “joint-phase- 
space of parameters, computed and measured responses.” Consequently, the 
2nd-BERRU-PMP methodology simultaneously calibrates responses and para-
meters, thus simultaneously providing results for forward and inverse problems. 

3) If experiments are perfectly well known, i.e., if e
rr =C 0 , Equation (69) in-

dicates that the DA methodology fails fundamentally. In contradistinction, Equ-
ations (33)-(35) indicate that the 2nd-BERRU-PMP methodology does not fail 
when e

rr =C 0  because, in any situation, c
rr ≠C 0 . 

4) The DA methodology also fails fundamentally when the response mea-
surements happen to coincide with the computed value of the response, i.e., 
when ( )=z h v  at some point in the state-space. In such a case, the DA’s Equa-
tion (69) yields the trivial result DA b=v v . In contradistinction, the 2nd-BERRU- 
PMP methodology does not yield such a trivial result when the response mea-
surements happen to coincide with the computed value of the response, i.e., 
when ( )0

e k=r r α , because the difference ( )c e−E r r , which appears on the 
rights sides of Equations (29) and (30), remains non-zero due to the contribu-
tions of the second- and higher-order sensitivities of the responses with respect 
to the model parameters, as shown in Equation (4), i.e.,:  

( ){ } ( ) ( ){ } ( )00
1 1

2 cov , 2 0
TP TP

e
k k i j

e
c k k k i j i jr r

E r r r α α α α
= =

=
− = ∂ ∂ ∂ + ≠∑∑ 

αα
α , 

for 1, ,k TR=  . This situation clearly underscores the need for computing and 
retaining (at least) the second-order response sensitivities to the model parame-
ters. Although a situation when ( )0

e k=r r α  is not expected to occur frequently 
in practice, there are no negative consequences (should such a situation occur) if 
the 2nd-BERRU-PMP methodology is used, in contradistinction to using the DA 
methodology. 

5) The 2nd-BERRU-PMP methodology only requires the inversion of the ma-
trix ( )e c

rr rr+C C  of size TR TR× . In contradistinction, the solution of the “1st- 
order DA” requires the inversion of the Jacobian ( )hD v  of ( )h v , while the 
solution of the “2nd-order DA” also requires the inversion of a matrix-vector 
product involving the Hessian matrix of ( )h v ; these matrices are significantly 
larger [3] [4] than the matrix ( )e c

rr rr+C C . Hence, the 2nd-BERRU-PM metho-
dology is significantly more efficient computationally than DAE. 

6) The DA methodology is practically non-extendable beyond “second-order.” 
A “3rd-order DA” would be computationally impractical because of the massive 
sizes of the matrices that would need to be inverted. In contradistinction, the 
2nd-BERRU-PM methodology presented herein already comprises 4th-order sen-
sitivities of responses to parameters and can be readily extended/generalized to 
include even higher-order sensitivities and parameter correlations.  

All of the above advantages of the 2nd-BERRU-PM methodology over the DA 
methodology stem from the fact that the 2nd-BERRU-PM methodology is fun-
damentally anchored in physics-based principles (thermodynamics & informa-
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tion theory) formulated in the most inclusive possible phase-space (namely the 
combined phase-space of computed and measured parameters and responses), 
whereas the DA methodology is fundamentally based on the minimization of a 
subjective user-chosen functional. 

6. Discussion and Conclusions 

This work has presented the “second order predictive modeling methodology 
with probabilistically included computed responses” (2nd-BERRU-PMP) me-
thodology, as underscored by the letter “P” in the acronym (which indicates the 
“probabilistic” inclusion of the computed model responses). This methodology 
is a companion to the alternative 2nd-BERRU-PMD methodology, in which the 
computational model is included deterministically, as underscored by the letter 
“D” in this acronym. Both methodologies are fundamentally based on the Max-
Ent principle. Although both the 2nd-BERRU-PMP and the 2nd-BERRU-PMD 
methodologies yield expressions that include second (and higher) order sensitiv-
ities of responses to model parameters, it is shown in this work that the respec-
tive expressions for the predicted responses, calibrated predicted parameters and 
their predicted uncertainties (covariances) are not identical to each other. Nev-
ertheless, these second-order methodologies encompass, as particular cases, the 
results produced by the extant data assimilation [3] [4], data adjustment proce-
dures [5] [6] [7] [8] [9], and the first-order BERRU-PM methodology [10] [11] 
[12].  

Notably, the 2nd-BERRU-PMP methodology enables the use of sensitivities 
and parameter correlations beyond second-order, if available; this opportunity is 
not available within the 2nd-BERRU-PMD methodology. If it is imperative to 
combine experimental information for both the responses and parameters with 
the computational information produced by the model, then the complete Gaus-
sian expression of the 2nd-BERRU-PMP should be used, if it is possible to ac-
commodate the massive computational requirements underlying the inversion 
of the matrices that arise within this methodology. On the other hand, the sim-
plest to implement computationally is the simplified 2nd-BERRU-PMP, which 
should be used when experimental information about the model parameters in 
addition to the information used in the computational model is not important. 
The 2nd-BERRU-PMD methodology offers an intermediary alternative, being 
easier to implement computationally than the complete version of the 2nd- 
BERRU-PMP methodology but involving more computations than the simpli-
fied 2nd-BERRU-PMP methodology. 

Illustrative applications of the 2nd-BERRU-PMP and the 2nd-BERRU-PMD 
methodologies to various paradigm forward and inverse problems are currently 
in progress. 
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Appendix: Construction of the Second-Order Maximum  
Entropy Distribution for Responses and Parameters 

When an unknown distribution ( ),p rα , defined on a domain rD D Dα ∪  
(where Dα  denotes the domain of definition of the parameters and rD  de-
notes the domain of definition of the responses) needs to be reconstructed from 
a finite number of its known moments, the principle of maximum entropy 
(MaxEnt) originally formulated by Jaynes [2] provides the optimal compatibility 
with the available information, while simultaneously ensuring minimal spurious 
information content. In particular, when only the first-order and second-order 
moments of the joint distribution of model parameters and responses ( ),p rα  
are known, the corresponding second-order MaxEnt distribution ( ),p rα  is 
constructed by following the procedure outlined below. 

1) Known means and covariances for responses: 

( )0 , d d , 1, , ;i i
D

r r p i TR=∫ r r α α                 (70) 

( ) ( )( ) ( )0 0cov , , d d ; , 1, , .
e

i j i i j j
D

r r r r r r p i j TR− − =∫ r r α α       (71) 

2) Known means and covariances for parameters: 

( )0 , d d , 1, , ;
e

j j
D

p j TPα α =∫ r r α α                (72) 

( ) ( )( ) ( )0 0cov , , d d ; , 1, , ;
e

i j i i j j
D

p i j TPα α α α α α− − =∫ r r α α      (73) 

( ) ( )( ) ( )0 0cov , , d d ; 1, , ; 1, , .
e

i j i i j j
D

r r r p i TP j TRα α α− − = =∫ r r  α α  (74) 

According to the MaxEnt principle, the probability density ( ),p rα  would 
satisfy the “available information” provided in Equations (70)-(74), without im-
plying any spurious information or hidden assumptions, if:  

1) ( ),p rα  maximizes the Shannon [19] information entropy, S, as defined 
below: 

( ) ( ), ln , d d
D

S p p = −  ∫ r r rα α α ,                (75) 

2) ( ),p rα  satisfies the “moments constraints” defined by Equations (70)- 
(74); 

3) ( ),p rα  satisfies the normalization condition:  

( ), d d 1.
D

p =∫ r rα α                       (76) 

The MaxEnt distribution ( ),p rα  is obtained as the solution of the con-
strained variational problem ( ) 0H p p∂ ∂ = , where the entropy (Lagrangian 
functional) ( )H p  is defined as follows: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

1 20 0

1 1

, ln , d d , d d 1

, d d , d d

D D

TR TP

k k k i i i
k iD D

H p p p p

r p r p

λ

λ λ α α
= =

 
= − − −    

 
   

− − − −   
   

∫ ∫

∑ ∑∫ ∫

r r r r r

r r r r

α α α α α

α α α α
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

11 0 0

1 1

12 0 0

1 1

22 0 0

1 1

1 , d d ,
2

, d d ,

1 , d d cov , .
2

TR TR

k k k k
k D

TR TP

ki k i k i k i
k i D

TP TP

ij i j i j i j
i j D

r r p cov r r r r

r p cov r r

p

λ

λ α α α

λ α α α α α α

= =

= =

= =

 
− − − 

 
 

− − − 
 
 

− − − 
 

∑∑ ∫

∑∑ ∫

∑∑ ∫

   



r r

r r

r r

α α

α α

α α

     (77) 

In Equation (77), the quantities ( )1
kλ , ( )2

kλ , ( )11
kλ 

, ( )12
kλ 

, and ( )22
kλ 

 denote 
the respective Lagrange multipliers, and the factors 1/2 have been introduced for 
subsequent computational convenience.  

Solving the equation ( ) 0H p p∂ ∂ =  yields the following expression for the 
resulting MaxEnt distribution ( )p z :  

( ) ( )
† †1 1exp

, 2cp
Z

 = − − 
 

z b z z z
b

Λ
Λ

,              (78) 

where the various vectors and matrices are defined as follows: 

( )

( )
( )

( )

( )

( )

( )

( )

1 2
1 1 1

1 2

2
1 1

; ; ; ;

TR TP

λ λ

λ λ

   
      
 =             

   

r
z b     

λ
λ λ

α λ
          (79) 

( ) ( )

( ) ( )
( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

11 11
11 12 11 1,

11 11
†12 22

11 11
,1 ,

12 12 22 22
11 1, 11 1,

12 12 22 22

12 12 22 22
,1 , ,1 ,

; ;

; .

TR

k

TR TR TR

TP TP

k k

TR TR TP TP TP TP

λ λ

λ

λ λ

λ λ λ λ

λ λ

λ λ λ λ

 
   
   
         

 
   
   
   
   
   
   



 



   



 

     

 

Λ Λ
Λ Λ

Λ Λ

Λ Λ

      (80) 

The normalization constant ( ),Z b Λ  in Equation (104) is defined as follows: 

( ) † †1, exp d ; d d d .
2D

Z  = − − ≡ 
 ∫b b z z z z z rαΛ Λ            (81) 

In statistical mechanics, the normalization constant Z is called the partition 
function (or sum over states) and carries all of the information available about 
the possible states of the system, while the MaxEnt distribution ( )p z  is called 
the canonical Boltzmann-Gibbs distribution. The integral in Equation (107) can 
be evaluated explicitly by conservatively extending the computational domain D 
to the entire multidimensional real vector space N

 , where N TR TP+ , to 
obtain the following expression: 

( ) ( )
( )

† 12 1
† † 221, exp d e .

2N

N

c cZ
Det

− 
 
  = − − = 



π

∫
b b

b b z z z z


Λ
Λ Λ

Λ
     (82) 

The Lagrange multipliers are determined in terms of the known information 
(means and covariances of parameters and responses) by differentiating the “free 
energy” ( ) ( ), ln ,F Z−b C b C  with respect to the components of the vector 
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( ) ( )( )†1 2,b  λ λ  to obtain the following expressions: 

( )
( ) ( )

† †1
02

1

, 1 e d , d ; 1, , ;
c

k k k
D Dk

F
r r p r k TR

Zλ

 − − 
 

∂
= = = =

∂ ∫ ∫
b z z zb C

z r z α
Λ

  (83) 

( )
( ) ( )

† †1
02

2

, 1 e d , d d ; 1, , .i i i
D Di

F
p i TP

Z
α α α

λ

 − − 
 

∂
= = = =

∂ ∫ ∫
b z z zb C

z r r α α
Λ

 (84) 

The results obtained in Equations (83) and (84) can be collectively written in 
vector-matrix form as follows:  

( ) ( ) ( )†0 0 0 0 0 0 0
1

,
; , ; , , .TR

F
r r

∂
=

∂
b C

z z r r
b

  α          (85) 

On the other hand, it follows from Equation (82) that:  

( ) ( ) 1ln ,,
.

ZF −
 ∂∂  = − = −

∂ ∂

b Cb C
b

b b
Λ               (86) 

The relations obtained in Equations (85) and (86) imply the following rela-
tion:  

0.= −b zΛ                           (87) 

Differentiating a second time the relation provided in Equation (83) or (84) 
yields the following relations: 

( )
( ) ( ) ( ) ( )

( )

† †12
0 2

21 1 1

, 1 1 e d

cov , ; , 1, , ;

k j k
Dj k j

j k

F Z r r r
ZZ

r r j k TR

λ λ λ

 − − 
 

∂ ∂
= − + −

∂ ∂ ∂

= − =

∫
b z z zb C

z



Λ

        (88) 

( )
( ) ( ) ( )

2

2 1

,
cov , ; 1, , ; 1, , ;i k

i k

F
r i TP k TRα

λ λ

∂
= − = =

∂ ∂

b C
          (89) 

( )
( ) ( ) ( )

2

2 2

,
cov , ; , 1, , .i j

i j

F
i j TPα α

λ λ

∂
= − =

∂ ∂

b C
            (90) 

The results obtained in Equations (88)-(90) can be collectively written in vec-
tor-matrix form as follows:  

( ) ( )

( ) ( ) ( )

2

†

,
; ; cov , ;

cov , ; cov , .

rr r
c rr

j kr TR TR

r r
k i i jTR TP TP TP

F
r r

r

α

α αα

α α ααα α α

×

× ×

∂    = −    ∂ ∂  

   =   

b C C CC C C
b b C C

C C C

 

 

    (91) 

On the other hand, it follows from Equation (86) that:  

( )2
1,
.

F −∂
= −

∂ ∂
b C

b b
Λ                       (92) 

The relations obtained in Equations (91) and (92) imply the following rela-
tion:  

1 .− =CΛ                           (93) 

Introducing the results obtained in Equations (87) and (93) into Equation (78) 
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and (82) yields the following expression for the MaxEnt distribution ( ),p z z C : 

( ) ( )
( )

( ) ( )
2

†0 1 02 1, exp .
2

N

p
Det

−
−π  = − − −  

z z C z z C z z
C

         (94) 
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