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Abstract 

This work presents a comprehensive second-order predictive modeling (PM) 
methodology designated by the acronym 2nd-BERRU-PMD. The attribute 
“2nd” indicates that this methodology incorporates second-order uncertainties 
(means and covariances) and second-order sensitivities of computed model 
responses to model parameters. The acronym BERRU stands for “Best- 
Estimate Results with Reduced Uncertainties” and the last letter (“D”) in the 
acronym indicates “deterministic,” referring to the deterministic inclusion of 
the computational model responses. The 2nd-BERRU-PMD methodology is 
fundamentally based on the maximum entropy (MaxEnt) principle. This 
principle is in contradistinction to the fundamental principle that underlies 
the extant data assimilation and/or adjustment procedures which minimize in 
a least-square sense a subjective user-defined functional which is meant to 
represent the discrepancies between measured and computed model res-
ponses. It is shown that the 2nd-BERRU-PMD methodology generalizes and 
extends current data assimilation and/or data adjustment procedures while 
overcoming the fundamental limitations of these procedures. In the accom-
panying work (Part II), the alternative framework for developing the “second- 
order MaxEnt predictive modelling methodology” is presented by incorpo-
rating probabilistically (as opposed to “deterministically”) the computed 
model responses.  
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1. Introduction 

The results of measurements and computations are never perfectly accurate. On 
the one hand, results of measurements inevitably reflect the influence of experi-
mental errors, imperfect instruments, or imperfectly known calibration stan-
dards. Around any reported experimental value, therefore, there always exists a 
range of values that may also be plausibly representative of the true but un-
known value of the measured quantity. On the other hand, computations are af-
flicted by errors stemming from numerical procedures, uncertain model para-
meters, boundary and initial conditions, and/or imperfectly known physical 
processes or problem geometry. Therefore, knowing just the nominal values ex-
perimentally measured or computed quantities is insufficient for applications. 
The quantitative uncertainties accompanying measurements and computations 
are also needed, along with the respective nominal values. The discrepancies 
between experimental and computational results provide the basic motivation 
for performing quantitative model verification (meaning: “is the mathematical 
model solved correctly?”) and model validation (meaning: “does the model 
represent reality?”), which are essential components of “predictive modeling.” 

Predictive modeling commences by identifying and characterizing the uncer-
tainties involved in every step in the sequence of the numerical simulation 
processes that ultimately lead to a prediction. Predictive modeling comprises 
three key elements, namely model calibration, model extrapolation, and estima-
tion of the validation domain. Model calibration addresses the combination of 
experimental and computational data and their uncertainties for the purpose of 
obtaining “best estimate” values for model parameters (to be used for updating 
the model’s parameters) and predicted model results, along with “best estimate” 
uncertainties (covariance/correlation matrices) for these “best-estimate” predicted 
parameters and results requires. Such a combination of computational and ex-
perimental information requires reasoning from incomplete, error-afflicted, and 
occasionally discrepant information, which includes: 1) errors and uncertainties 
in the data used in the simulation (e.g., input data, model parameters, initial 
conditions, boundary conditions, sources and forcing functions); 2) numerical 
discretization errors; and 3) uncertainties in (e.g., lack of knowledge of) the 
processes being modeled.  

Under ideal circumstances, the result of predictive modeling is a probabilistic 
description of possible future outcomes based on all recognized errors and un-
certainties. This probabilistic description enables the subsequent activity of 
“model extrapolation,” which aims at quantifying the uncertainties in predic-
tions under new environments or conditions, including both untested regions of 
the parameter space and higher levels of system complexity in the validation 
hierarchy. The quantification of the validation domain underlying the models of 
interest requires estimation of contours of constant uncertainty in the high- 
dimensional space that characterizes the application of interest, including the 
identification of areas where the predictive estimation of uncertainty meets spe-
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cified requirements for the performance, reliability, or safety of the system of in-
terest.  

The earliest activities aimed at extracting best-estimate values for model pa-
rameters by combining computational and experimental information using var-
iational methods were initiated in the 1960s in the atmospheric and oceano-
graphic sciences [1] [2] [3] and, in parallel, in the nuclear energy field [4]. In the 
earth, atmospheric and oceanographic sciences these activities were carried out 
under the name of “data assimilation” (DA) as described in well-known books 
[5] [6] [7] [8], while in the nuclear sciences these activities reached conceptual 
maturity under the name of “nuclear data or cross section adjustment” [9] [10] 
[11] [12]. The “data adjustment” and “data assimilation” methodologies can thus 
be considered to have been the earliest systematic methodologies that embody 
the principles of “predictive modeling.  

The fundamental criterion used in data adjustment and data assimilation me-
thods is the least squares criterion, which is employed in a variety of determinis-
tic (variational) and/or statistical forms (including Bayesian minimization, 
maximum likelihood, and minimum variance methods). The fundamental tenet 
of data adjustment and data assimilation is the minimization of a user-defined 
“cost functional” which describes the squared departures between computational 
results and the observations/experiments of the respective results. In contradis-
tinction to the least-squares tenet underlying data adjustment and/or assimila-
tion, the “BERRU-PM” methodology developed by Cacuci [13] [14] employs the 
“maximum entropy” (MaxEnt) principle [15] to combine computational and 
experimental information for obtaining best-estimate predicted mean values for 
model responses and parameters, together with reduced predicted uncertainties 
for these best-estimate values, thereby eliminating the need for minimizing the 
user-chosen “quadratic cost functional representing the weighted errors between 
measured and computed responses.” BERRU-PM is an acronym for “Best- 
Estimate Results with Reduced Uncertainties -Predictive Modeling” and is a 
MaxEnt methodology that incorporates first-order sensitivities of model res-
ponses with respect to the model parameters. Such sensitivities are most effi-
ciently computed by using the adjoint sensitivity analysis method for nonlinear 
systems originally developed by Cacuci [16] [17]. The first-order BERRU-PM 
methodology was recently extended by Cacuci [18] to include second-order sen-
sitivities. The main differences between DA [5] [6] [7] [8] results and the 
BERRU-PM [16] [17] [18] results are as follows: 

1) DA [5] [6] [7] [8] is formulated conceptually either just in the phase-space 
of measured responses (“observation-space formulation”) or just in the phase- 
space of the model’s dependent variables (“state-space formulation”). Hence, DA 
can calibrate initial conditions as “direct results” but cannot directly calibrate 
any other model parameters. In contradistinction, the BERRU-PM methodology 
is formulated conceptually in the most inclusive “joint-phase-space of parame-
ters, computed and measured responses.” Consequently, the BERRU-PM me-
thodology simultaneously calibrates responses and parameters, thus simulta-
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neously providing results for forward and inverse problems.  
2) If experiments are perfectly well known, the DA methodology fails funda-

mentally, but the BERRU-PM methodology does not. The DA methodology also 
fails fundamentally when the response measurements happen to coincide with 
the computed value of the response, in which DA yields the trivial result. In 
contradistinction, the BERRU-PM methodology yields a non-trivial result.  

3) The BERRU-PM methodology is significantly more efficient computation-
ally than DA since it only requires the inversion a matrix of size having the di-
mensions of the number of model responses, whereas DA requires inversion of 
much larger matrices in the phase-space of dependent variables. 

In this work, the methodology presented in [18] will be extended by including 
the full second-order representation of the computed responses, thereby creating 
the 2nd-BERRU-PMD methodology, where the attribute “2nd” indicates that this 
methodology incorporates second-order uncertainties (means and covariances) 
and second-order sensitivities of computed model responses to model parame-
ters, and where the acronym BERRU stands, as before, for “Best-Estimate Re-
sults with Reduced Uncertainties;” the last letter (“D”) in the acronym indicates 
“deterministic,” referring to the deterministic inclusion of the computational 
model responses. The 2nd-BERRU-PMD methodology is fundamentally based on 
the MaxEnt principle.  

This work is structured as follows: Section 2 presents the mathematical mod-
eling of the physical system under consideration. Section 3 presents the devel-
opment of the 2nd-BERRU-PMD methodology. It is shown that the results pro-
duced by the 2nd-BERRU-PMD methodology include and extend the results 
produced by the first-order BERRU-PM methodology and the extant data assi-
milation and/or data adjustment procedures while overcoming the fundamental 
limitations of these procedures. The concluding discussion presented in Section 
4 lays the ground for the subsequent presentation [19] of the alternative frame-
work for developing the “second-order MaxEnt predictive modelling methodol-
ogy” which probabilistically (as opposed to “deterministically”) incorporates the 
computed model responses. This alternative methodology [19] will be designat-
ed by the acronym 2nd-BERRU-PMP, where the last letter (“P”) in the acronym 
indicates “probabilistic” inclusion of the computational model responses. 

2. Mathematical Modeling of the Physical System 

In general terms, the modeling of a physical system and/or the result of an indi-
rect experimental measurement requires consideration of the following model-
ing components:  

1) A mathematical model comprising linear and/or nonlinear equations that 
relate the system’s independent variables and parameters to the system’s state 
(i.e., dependent) variables;  

2) Inequality and/or equality constraints that delimit the ranges of the sys-
tem’s parameters; 
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3) One or several computational results, customarily referred to as system 
responses (or objective functions, or indices of performance), which are com-
puted using the mathematical model; and 

4) Experimentally measured responses, with their respective nominal (mean) 
values and uncertainties (variances, covariances, skewness, kurtosis, etc.). 

A nonlinear physical system can be generally modeled by means of coupled 
equations which can be represented in operator form as follows: 

( ) ( ) ( ), , ,m m
x  = ∈Ω N v x Q x xα α α .              (1) 

The superscript “m” in Equation (1) indicates “model.” Boundary and/or ini-
tial conditions must also be provided if differential operators appear in Equation 
(1). In operator form, these boundaries and/or initial conditions are represented 
as follows: 

( ) ( ) ( ); ; , ,m s
x  − = ∈∂Ω B v x x B x x0α α α ,            (2) 

where the vector ( ),sB x α  symbolically indicates “source terms on the boun-
dary.” In this work, matrices will be denoted using capital bold letters while vec-
tors will be denoted using either capital or lower-case bold letters. The symbol 
“  ” will be used to denote “is defined as” or “is by definition equal to.” Trans-
position will be indicated by a dagger ( † ) superscript. The equalities in this work 
are considered to hold in the weak (“distributional”) sense. The right-sides of 
Equations (1) and (2), as well as of other various equations to be derived in this 
work, may contain “generalized functions/functionals”, particularly Dirac- 
distributions and derivatives thereof. The quantities which appear in Equations 
(1) and (2) are defined below.  

1) The quantity ( )†
1, , TPα α α  is a TP-dimensional vector, having com-

ponents 1, , TPα α , which denote the model’s imprecisely known parameters. 
The quantity “TP” denotes the “total number of model parameters.” Without 
loss of generality, the model parameters ( )†

1, , TP
TP Dαα α ∈ ∈  α  can be 

considered to be real scalars defined over a domain Dα , which is included in a 
TP-dimensional subset of the TP

 . These model parameters usually stem from 
processes that are external to the physical system under consideration and their 
precise value is seldom, if ever, known. The known characteristics of the model 
parameters may include their nominal (expected/mean) values and, possibly, 
higher-order moments or cumulants (i.e., variance/covariances, skewness, kur-
tosis), which are usually determined from experimental data and/or processes 
external to the physical system under consideration. Occasionally, just the lower 
and the upper bounds may be known for some model parameters. The compo-
nents of the TP-dimensional column vector TP∈α  are considered to also in-
clude imprecisely known geometrical parameters that characterize the physical 
system’s boundaries in the phase-space of the model’s independent variables. 
Mathematically, the model parameters can be considered to be quasi-random 
scalar-valued quantities which follow an unknown multivariate distribution de-
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noted as ( )pα α . The mean values (which in the context of computational 
modeling are called “nominal” values) of the model parameters will be denoted 
as 0

iα ; the superscript “0” will be used throughout this monograph to denote 
“nominal values.” These nominal values are formally defined as follows: 

( )0 d , 1, , .i i
D

p i TP
α

αα α =∫ α α                  (3) 

The expected values of the measured parameters will be considered to consti-
tute the components of a vector denoted as 

†0 0 0 0
1 , , , ,i TPα α α    α . The co-

variance, ( )cov ,i jα α , of two model parameters, iα  and jα , is defined as fol-
lows: 

( ) ( )( ) ( )0 0cov , d ; , 1, , .i j i i j j
D

p i j TP
α

αα α α α α α− − =∫ α α      (4) 

The covariances ( )cov ,i jα α  are considered to constitutes the components 
of the covariance matrix for the model parameters and will be denoted as 

( )cov ,i j TP TPαα α α
×

  C  .  
2) The generic nonlinear model is considered to comprise TI independent va-

riables which will be denoted as , 1, ,ix i TI=  , and which are considered to be 
components of a TI-dimensional column vector denoted as ( )†

1, , TI
TIx x ∈x    , 

where the sub/superscript “TI” denotes the “total number of independent va-
riables.” The vector TI∈x   of independent variables is considered to be de-
fined on a phase-space domain which will be denoted as ( )Ω α  and which is 
defined as follows: ( ) ( ) ( ){ }; 1, ,i i ix i TIλ ωΩ −∞ ≤ ≤ ≤ ≤ ∞ = α α α . The lower 
boundary-point of an independent variable is denoted as ( )iλ α  and the cor-
responding upper boundary-point is denoted as ( )iω α . The boundary ( )Ω α  
is also considered to be imprecisely known since it may depend on both geome-
trical parameters and material properties. A typical example of boundaries that 
depend on both geometrical parameters and material properties are the “boun-
daries facing vacuum” in models based on diffusion theory, where conditions are 
imposed on the “extrapolated boundary” of the respective spatial domain. The 
“extrapolated boundary” depends both on the imprecisely known physical di-
mensions of the problem’s domain and also on the medium’s properties, such as 
atomic number densities and microscopic transport cross sections. The boun-
dary of ( )Ω α , denoted as ( ) ( ) ( ){ }, 1, ,i i i TIλ ω∂Ω ∪ = α α α , includes the 
set of the endpoints ( ) ( ), , 1, ,i i i TIλ ω = α α  of the respective intervals on 
which the components of x  are defined. 

3) The vector ( ) ( ) ( ) †
1 , , TDv v  v x x x   is a TD-dimensional column vec-

tor, having components ( ) , 1, ,iv i TD=x  , which represent the model’s de-
pendent variables (also called the model’s “state functions”). The abbreviation 
“TD” denotes “total number of dependent variables.” Without loss of generality, 
we can consider that ( ) v∈v x E , where vE  is a normed linear space over the 
scalar field F  of real numbers.  

4) The quantity ( ) ( ) ( )
†

1; ; , , ;m m m
TDN N     N v x v v α α α  is a TD-dimen- 
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sional column vector comprising the left-sides of the equations underlying the 
mathematical/computational model; the superscript “m” indicates “model.” The 
components ( ); , 1, ,m

iN i TD=v α  are operators (including differential, dif-
ference, integral, distributions, and/or finite or infinite matrices) acting nonli-
nearly on the dependent variables ( )v x , the independent variables x  and the 
model parameters α . The mapping ( );mN v α  is defined on the combined 
domains of the model’s parameters and state functions, i.e., : Q⊂ →N D E E , 
where u α= ⊕D D D , u u⊂D E , α α⊂D E , u α= ⊕E E E . 

5) The vector ( ) ( ) ( )
†

1, ; , , ;m m m
TD Qq q  ∈ Q x x x α α α E  is a TD-dimensional 

column vector which represents inhomogeneous source terms (i.e., the right- 
sides of the equations underlying the model), which usually depend nonlinearly 
on the uncertain parameters α . The vector ( ),mQ x α  is defined on a normed 
linear space denoted as QE .  

6) In Equation (2), the vector ( ) ( ) ( )
†

1; ; , , ;m m m
TBB B  B v v v α α α , where 

the subscript “TB” denotes “total number of boundary conditions,” comprises 
components ( ); , 1, ,m

iB i TB=v α , which are nonlinear operators in ( )v x  
and α , which are defined on the boundary ( )x∂Ω α  of the model’s domain 

( )xΩ α . The vector ( ) ( ) ( )
†

1, ; , , ;s s s
TBB B  B x x x α α α  comprises inhomo-

geneous boundary sources (indicated by the superscript “s”) which are nonlinear 
functions of α . The column vector 0  has TB components, all of which are 
identically zero. 

Solving Equations (1) and (2) at the nominal parameter values, 0α , provides 
the “nominal solution” ( )0v x , i.e., the vectors ( )0v x  and 0α  satisfy the fol-
lowing equations: 

( ) ( )0 0 0; , ,m m
x  = ∈Ω N v x Q x xα α ,             (5) 

( ) ( ) ( )0 0 0 0; ; , , .m s
x  − = ∈∂Ω B v x x B x x0α α α          (6) 

The results computed using a mathematical model are customarily called 
“model responses” (or “system responses” or “objective functions” or “indices of 
performance”). Consider that there are a total number of TR such model res-
ponses, each of which can be considered to be a component of the “vector of 
model responses” ( )†, , , ,1 k TRr r rr    . Each of these model responses is for-
mally a function (implicit and/or explicit) of the dependent variables and model 
parameters α , which can be represented formally as follows:  

( ); ; 1, , .k kr r k TR = = v x α                  (7) 

In particular, a measurement of a physical quantity that depends on the mod-
el’s state functions and parameters can be considered to be a response denoted as 

( );pR   v x α , which is to be evaluated at ( )p=x x α , where  
( ) ( ) ( ) ( )

†

1 , , , ,p p p p
k TIx x x  x   α α α α  denotes the location in phase-space of 

the specific “measurement point.” Such a measurement (or measurement-like) 
response can be represented mathematically as follows: 
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( )

( ) ( )
( )

( )

( )

( )

( )
1

1

1 1 1

;

; ; d d .
TI

TI

p

p p
TI TI TI

R

x x x xF x x
ω ω

λ λ

δ δ

  

     − × × −     ∫ ∫

v x

v x x   

α α

α α

α

α α α
(8) 

where the function ( ); ; F   v x xα  comprises the mathematical dependence of 
the measurement device on the model’s dependent variable(s), and where the 
quantity ( )p

i ix xδ  − α  denotes the Dirac-delta functional. The measure-
ment’s location in phase-space, ( )px α , may itself be afflicted by measurement 
(experimental) uncertainties. Hence, the components of ( )px α  must be in-
cluded among the components of the vector α  of model parameters, even 
though the quantity ( )px α  appears only in the definition of the response but 
does not appear in Equations (1) and (2), which mathematically define the 
physical model. Thus, the physical “system” is to be understood as being defined 
to comprise both the system’s computational model and the system’s responses. 
In most cases, the coordinates ( )p

kx α , 1, ,k TI= 
, will simply be independent 

(albeit uncertain) model parameters included among the components of the 
vector α , in which case ( ) 1p

k nx α∂ ∂ =α , if p
n kxα ≡  and ( ) 0p

k nx α∂ ∂ =α , if 
p

n kxα ≠ . 
The expression on the right-side of Equation (8) can evidently be computed 

using the model, thus producing the “computed response” value, which will be 
denoted as ( ); ;c

kr   v x xα , and which can be compared to the corresponding 
“experimentally measured” value; the superscript “c” indicates “computed. The 
computed response ( ); ;c

kr   v x xα  depends (implicitly and/or explicitly) on 
the model’s parameters and dependent variables, which also depend, in turn, on 
the model’s parameters. Therefore, the uncertainties affecting the model para-
meters α  will “propagate” both directly and indirectly, through the model’s 
dependent variables, to induce uncertainties in the computed responses, which 
will therefore be denoted simply as ( )c

kr α . The nominal value of the response 
will be denoted ( )0

kr α , indicating that this value is obtained by computing the 
model response using the expected/nominal parameter values ( )†0 0 0

1 , , TPα α α . 

3. 2nd-BERRU-PMD: Second Order MaxEnt Predictive  
Modeling Methodology with Deterministically Included  
Computed Responses 

This Section presents the mathematical and physical considerations leading to 
the development of the “second-order MaxEnt predictive modeling methodolo-
gy for obtaining best-estimate results with reduced uncertainties” by determinis-
tically incorporating the computational model. This methodology is designated 
using the acronym 2nd-BERRU-PMD, where the last letter (“D”) indicates “de-
terministic,” referring to the inclusion of the computed model responses. The 
posterior first-order moments (best-estimate predicted mean values) and post-
erior second-order moments (best-estimate predicted correlations) produced by 
the 2nd-BERRU-PMD methodology are compared with the results produced by 
the 1st-BERRU-PM methodology [14], as well as to the results produced by data 

https://doi.org/10.4236/ajcm.2023.132013


D. G. Cacuci 
 

 

DOI: 10.4236/ajcm.2023.132013 244 American Journal of Computational Mathematics 
 

assimilation procedures, indicating the specific ways in which the 2nd-BERRU- 
PMD overcomes limitations of these latter procedures.  

3.1. MaxEnt Representation of Experimental Information for  
Responses and Parameters 

Consider that the total number of experimentally measured responses is TR. The 
information usually available regarding the distribution of such measured res-
ponses comprises the first-order moments (mean values), which will be denoted 
as e

ir , 1, ,i TR= 
, and the second-order moments (variances/covariances), 

which will be denoted as ( )cov ,i j e
r r , , 1, ,i j TR=  , for the measured res-

ponses. The letter “e” will be used either as a superscript or a superscript to in-
dicate experimentally measured quantities. The expected values of the experi-
mentally measured responses will be considered to constitute the components of 
a vector denoted as ( )†

1 , ,e e e
TRr rr   . The covariances of the measured res-

ponses are considered to be components of the TR TR× -dimensional cova-
riance matrix of measured responses, which will be denoted as  

( )cov ,e
rr i j e TR TR

r r
×

 
 C  . In principle, it is also possible to obtain correlations 

between some measured responses and some model parameters. When such 
correlations between measured responses and measured model parameters are 
available, they will be denoted as ( )cor ,i j e

rα , 1, , ; 1, ,i TP j TR= =  , and they 
can formally be considered to be elements of a rectangular correlation matrix 
which will be denoted as ( )cor ,e

r i j e TP TR
rα α

×
 
 C  . As discussed in Section 2, cf. 

Equations (3) and (4), the model parameters are characterized by the vector of  

mean values 
†0 0 0 0

1 , , , ,i TPα α α    α  and the covariance matrix  

( )cov ,i j TP TPαα α α
×

  C  . 

The MaxEnt principle can now be applied, as described in Appendix A, to 
construct the least informative (and hence, most conservative) distribution using 
the available experimental information, to obtain the following expression:  

( ) ( ) ( )

( )
( ) ( )

2
† 12 1, exp ,

2

TR TP

e e e e e e
e

p
Det

− +
− = − −

π
−  

z z C z z C z z
C

         (9) 

where ( )eDet C  denotes the determinant of the matrix eC  and where:  

0; ; .
e e e
rr r

e ee
r

α

α αα

    
= =    
    

rC C r
C z z

C C


α α
               (10) 

3.2. Construction of the Joint Posterior MaxEnt Probability  
Distribution 2nd-BERRU-PMD 

Consistent with the consideration that only mean values and covariances (i.e., 
first- and second-order distributional moments) are available, the 2nd-BERRU- 
PMD methodology considers that only first- and second-order sensitivities of 
the computed responses with respect to the model parameters are available. In 
this case, the vector of model responses can be represented by the following 
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second-order Taylor-series written in “vector/matrix” form:  

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

0 0 0 0

†0 0 0
1

†0 0 0 01
2

; ;

; ; , , ; ;

; ,

c

TR

k k

p p

p

= + +  − 

 
 

 − − 

p

p

r r S

Q

 



α α α α α α

α α α α α α

α α α α α α α

            (11) 

where the components of the vector ( ) ( ) ( ) †0 0 0
1 , ,c c c

TRr r 
 r  α α α  represent 

the values of the model responses computed at the nominal parameter values 
0α , while the other vectors and matrices contain first-order and second-order 

sensitivities of responses with respect to the model parameters, evaluated at the 
nominal parameter values 0α , and are defined below. 

( )

( ) ( )

( ) ( )

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 1

111 1,

,1 ,

1

2 2

1 1 111 1,

2 2
,1 ,

1

;
TPTR

TR TR TR TR TR

TP

c c
k k

k k
TPTP

k
c ck k

k kTP TP TP

TP TP TP

r r
s s

s s r r

r r
q q

r rq q

α α

α α

α α α α

α α α α

 ∂ ∂
 

∂ ∂           ∂ ∂  
 ∂ ∂ 
 ∂ ∂
  ∂ ∂ ∂ ∂       ∂ ∂ 
∂ ∂ ∂ ∂

S

Q





       









       





α α

α
α α

α α

α

α α

.







 
 



      (12) 

The merging of the experimental information with the computational infor-
mation using the mathematical model is accomplished by seeking a mathemati-
cal representation of a “true” probability distribution ( )p z , ( )†,z r α , which 
incorporates all of the second-order information provided in the foregoing 
about the model parameters, measured and computed responses. This “true” 
probability distribution must satisfy the following characteristics: 1) ( )p z  is 
normalized to unity; 2) ( )p z  is approximated as closely as possible by the ex-
perimental distribution ( ),e

e ep z z C  and 3) ( )p z  satisfies the following 
integral forms of the deterministic relationships among responses and parame-
ters represented mathematically by Equation (11):  

( ) ( )

( ) ( ) ( )0

1 1 1

d 0;

1 0; 1, , .
2

k
Dz

TP TP TP
kc

k k k ki i ij i j
i i j

g p

g r r s q k TRδα δα δα
= = =

=

− − − = =

∫

∑ ∑∑

z z z

z  α
  (13) 

The “true” normalized distribution ( )p z  which minimizes the discrepancy 
between it and the distribution ( ),e

e ep z z C  while satisfying the constraints 
expressed by Equation (13) is obtained by applying the steps generally outlined 
in Appendix B, which yields the following expressions:  

( )
( )

( )
1

,
exp ;k

e
TRe e

k
k

p
p g

Z
θ

=

 = − 
 
∑

z z C
z z               (14) 
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( ) ( )
1

, exp d .k

TR
e

e e k
kDz

Z p gθ
=

 − 
 
∑∫ z z C z z               (15) 

In Equations (14) and (15), the quantities 1, , , ,k TRθ θ θ   are Lagrange mul-
tipliers which remain to be determined. In statistical mechanics, the normaliza-
tion integral Z defined in Equation (15) is called the partition function (or sum 
over states) and carries all of the information available about the possible states 
of the system. The quantity ( )log Z−  is called the “free energy” and plays an 
important role in determining the expressions of the Lagrange multipliers and 
hence of the probability distribution ( )p z . In the present case, it follows from 
Equations (15) and (13) that: 

[ ] ( ) ( ) ( )
1

ln 1 , exp d 0, 1, , .k

TR
e

k e e k
kk Dz

Z
g p g k TR

Z
θ

θ =

∂ −  = − = = 
∂  

∑∫ z z z C z z   (16) 

On the other hand, alternative expressions for the derivatives [ ]ln kZ θ∂ − ∂  
of the free energy with respect to the Lagrange multipliers can be obtained by 
evaluating the integral which defines the partition function Z in Equation (15). 
Equating these alternative expressions to zero, in view of Equation (16), will 
provide equations which are to be solved to obtain the explicit expressions of the 
Lagrange multipliers.  

Integrals such as represented by Equation (15) can be quantified, to any de-
sired order of accuracy—even exactly—using the well-known saddle-point (Lap-
lace expansion) method, see e.g., [20]. Examining the exponent of the function 
entering the normalization integral Z defined in Equation (15) readily indicates 
that if the term involving the second-order sensitivities of the response with re-
spect to the parameters is retained in the exponent, the expression of the sad-
dle-point will involve the vector of Lagrange multipliers, ( )†

1, , , ,k TRθ θ θ  θ , 
in a nonlinear equation which cannot be solved analytically to obtain a closed- 
form expression for these Lagrange multipliers. Furthermore, solving numeri-
cally this nonlinear equation in θ  would require the inversion of the (very large) 
parameter-covariance matrix ααC , which is impractical. On the other hand, as 
will be shown below, a closed-form expression for the saddle-point and, conse-
quently, for the Lagrange multipliers can be obtained if the terms containing the 
second-order response sensitivities are considered by expanding the respective 
exponential term in a Taylor-series in powers of ( )†

1, , , ,k TRθ θ θ  θ  or, equi-
valently, around the nominal parameter values. Expanding the second-order 
terms transforms the normalization integral Z defined in Equation (15) into the 
following form: 

( ) ( ), ;, e d dh

Dz

Z f −∫ rr r

α θα α ,                   (17) 

where ( )†
1, , , ,k TRθ θ θ  θ  and where: 

( )

( ) ( )

1†

0 0

† 0 0

1, ;
2

,

e ee e
rr r
e

r

c

h α

α αα

−
    − −
    

− −    
 + − + + − 

C Cr r r rr
C C

r r S

α θ
α α α α

θ α α α

           (18) 
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( ) ( ) ( ) ( )†0 0 0

1

1
2

, 1 ,
TR

k k
k

f hotsθ
=

 − − − + ∑r Qα α α α α α        (19) 

where the acronym “hots” stands for “higher-order terms in the expansion of the 

exponential ( )
1

exp k

TR

k
k

gθ
=

 − 
 
∑ z .” Neglecting these higher-order terms, it follows 

from Equations (17)-(19) that 

1
1

1
2

TR

k k
k

Z I Jθ
=

= − ∑ ,                      (20) 

where 
( ), ;

1 e d dh

Dz

I −∫ r r

α θ α ,                     (21) 

( ) ( ) ( ) ( )† , ;0 0 0 e d dh
k k

Dz

J − − − ∫ rQ r

α θα α α α α α .         (22) 

The saddle-point, denoted as ( )†
,sp sp spz r α , of the function ( ), ;h r α θ  is 

defined as the point where the following partial gradients vanish: 

( ) ( ), ; , , ; , at .sph h∇ = ∇ = =r r r z z0 0αα θ α θ            (23) 

The conditions represented by Equation (23) yield the following equation: 
1

†0 .
e e sp e
rr r
e sp

r

α

α αα

−
   −  

=     −−    

C C r r
SC C
θ
θα α

              (24) 

Solving Equation (24) yields the following expressions for the components of 
the saddle point ( )†

,sp sp spz r α  of the function ( ), ;h r α θ :  

( )†sp e e e
rr rα= + −r r C C S θ ,                 (25) 

( )0sp e
rα αα= + −C C Sα α θ† .                 (26) 

Using the saddle point method (which is exact for the integral 1I ) or “com-
pleting the square in the exponent of 1I ” yields the following exact expression 
for the integral 1I : 

( ) ( )
†

1 22 †
1 † †

12 exp
2

TR TP
e eI C C+

    
= − +    − −    

π


d
S S
θ θ

θ
θ θ

,     (27) 

where eC  denotes the determinant of the matrix eC  and where d  denotes 
the “vector of deviations between the nominal values of computed and measured 
responses” and is defined below:  

( ) ( ) ( )†0 0
1 1; , , ; ; 1, , .c e c e

TR i id d d r r i TR− − =d r r d    α α   (28) 

The expression of the response in terms of the computational model, i.e., Eq-
uation (11), can be used to obtain the following representation for d  in terms 
of the computed responses: 

( ) ( )0 0;e− − − − pd r r S α α α α .                (29) 

Thus, the “vector of deviations” d  can be considered to be a (quasi-) ran-
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dom variable. The expressions of the “vector of mean values of deviations”  
†

1, , TRd d  d    and the covariance matrix ij TR TR
D

×
  D   of the vector of 

deviations d  are derived below:  

( ) ( ) ( ) †0 0
1; , d , ,e e

e e TR
Dz

p d d   − − − − =   ∫ pd r r S z z C z α α α α ,  (30) 

( ) ( )
1 1

cov , ; 1, ,
TP TP

k
k ij i j

i j
d q k TRα α

= =

=∑∑  ;             (31) 

( ) ( )
( ) ( ) ( )

( ) ( )

†

0 0

†0 0

† †

, d

, ;

; d

.

e
e e

Dz

e e
e e

Dz

e

e e e
rr r r

p

p

αα α α

 = − − − − 

 × − − − − 
≅ + − −

∫

∫ p

p

D dd z z C z

z z C r r S

r r S z

C SC S C S SC



α α α α

α α α α

         (32) 

The third- and fourth-order correlations were neglected in the final expres-
sion obtained for the covariance matrix ij TR TR

D
×

  D   in Equation (32). Nota-
bly, the result obtained in Equation (30) indicates that if the second-order sensi-
tivities of the response with respect to the model parameters are neglected, then 

0, 1, ,kd k TR= =  , in which case d  would be a random vector with zero- 
mean and covariance D . Therefore, neglecting the second-order sensitivities 
would imply that the computed model responses would be consistent with the 
measurements only if =d 0 , i.e., ( )0c e≅r rα . Although such a situation would 
not be impossible to conceive, it would probably not occur often in practice. 
These considerations further underscore the significant impact which the second- 
order response sensitivities have on the correct interpretation of actual, physical 
systems.  

Applying the saddle-point method to the expression provided in Equation 
(22) yields the following expression:  

( ) ( ) ( ) ( )
†0 0 0

1 1 ,sp sp
k kJ I O Cαα

   = − − +  Qα α α α α          (33) 

where the quantity ( )O Cαα  denotes terms of the order of the components of 
the parameter covariance matrix Cαα , and can therefore be neglected by com-
parison to the leading term of order unity.  

Replacing the expression obtained in Equations (27) and (33) into Equation 
(20) and neglecting the higher-order terms yields the following expression for 
the partition function:  

( ) ( ) ( )†0 0 0
1

1

1
2

1
TR

sp sp
k k

k
Z I θ

=

  = − − −   
∑ Qα α α α α .        (34) 

Taking the logarithm of Equation (34) yields the following expression for the 
“free energy”:  

( ) ( ) ( )†
1 2

1ln ln 2 ln
2 2 m

TR TPZ C h h+
− = + − + +π dθ θ θ ,       (35) 
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( ) ( )† † † † †
1

1
2

e e e
rr r rh α α αα

 − + + C C S SC SC Sθ θ θ θ θ θ θ ,       (36) 

( ) ( ) ( ) ( )
( )

†0 0 0
2

1

†

1

1
2

1
2

ln 1

ln 1 ,

TR
sp sp

k k
k

TR
k

k
k

h θ

θ

=

=

  − − −   
  = −   

∑

∑

Q

M

θ α α α α α

θ θ
       (37) 

( ) ( ) ( ) ( ) ( ) ( )0k k ke e
ij r k rTR TR

M α αα α αα
×

    − − =    M C C S Q C C S M  α
††† † . (38) 

The expression for ( )2h θ  presented in Equation (37) has been obtained by 
using Equation (26). As indicated in Equations (36) and (37), respectively, the 
quantity ( )1h θ  contains only first-order response sensitivities (with respect to 
the model’s parameters) and second-order bilinear terms in the components of 
θ , while the quantity ( )2h θ  comprises all second-order response sensitivities 
and terms higher than second-order in the components of θ . 

In view of Equations (35)-(37), the derivatives of the free energy with respect 
to the Lagrange multipliers kθ  are provided by the expression below: 

[ ] ( ) ( )1 2ln
, 1, ,k

k k k

h hZ
d k TR

θ θ θ
∂ ∂∂ −

= − + + =
∂ ∂ ∂



θ θ
.          (39) 

It follows from Equations (39) and (16) that the vector of Lagrange multipliers 
must be the solution of the following system of coupled nonlinear equations: 

( ) ( ) ( )1 2 0, 1, , ,k k
k k

h h
w d k TR

θ θ
∂ ∂

+ − = =
∂ ∂

 

θ θ
θ            (40) 

where:  

( )1 † †

1
; ;

TR
e e e

kj j kj rr r rTR TR
jk

h
D D αα α αθ

θ ×
=

∂
 = + − − ∂ ∑ D C SC S C S SC 

θ
   (41) 

( )
( )

( )

( ) ( ) ( )
†

12 †

† 1 1

1

1 1
12 2
2

.
1

TR
i

i TR TR
k iik

i kj j kTR
i i jk

i
i

h
M u

θ
θ

θ θ
θ θ

=

= =

=

∂  
 ∂ ∂

= − ≅ − −
∂  −  

∑
∑ ∑

∑

M
M

M


θ θ
θ

θ θ θ
θ θ

 (42) 

The approximation ( )†

1

1
2

1 1
TR

j
j

j
θ

=

 − ≅ ∑ Mθ θ  has been used to obtain the  

approximate expression on the right-side of Equation (42), which thus compris-
es just the bilinear terms in θ , neglecting the high-order terms involving the 
components of θ , which are expected to be comparatively small. 

Introducing the vectors ( ) ( ) ( ) ( ) †
1 , , , ,k TRw w w  w   θ θ θ θ  and  

( ) ( ) ( ) ( ) †
1 , , , ,k TRu u u  u   θ θ θ θ  enables the compact writing, in matrix- 

vector form, of Equation (40), as follows: 

( ) ( )− + + =w d D u 0θ θ θ .                  (43) 

If only the first-order sensitivities of the response with respect to the model 
parameters are considered (and thus the second- and higher-order sensitivities 
are neglected or are unavailable), the term ( )u θ  is neglected and the remain-
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ing first-order term in Equation (43) yields the following first-order solution, 
denoted as ( )1θ , for the vector of Lagrange multipliers: 

( )1 1 .−= D dθ                         (44) 

Notably, the matrix D  has dimensions TR TR× . Since TR TP  in prac-
tical situations, it follows that the computation of the coordinates of the saddle- 
point ( )†

,sp sp spz r α  involves the inversion of just the smallest-possible matrix 
(i.e., D ) that arises in the “predictive modeling” methodology. Replacing the 
result obtained for ( )1θ  in Equations (25) and (26) provides the corresponding 
expressions for the coordinates spr  and spα  of the saddle-point  

( )†
,sp sp spz r α . 

Using the results obtained for ( )1θ  in Equation 44) leads to the expressions 
already presented in the 1st-BERRU-PM methodology [14] for the saddle point 

( )†
,sp sp spz r α  and, subsequently for the best-estimate (calibrated) mean val-

ues for the parameters and responses, as well as for the best-estimate covariance 
matrices for the corresponding best-estimate parameters and responses. These 
expressions will not be reproduced here, since they will also be obtained as par-
ticular cases of the 2nd-BERRU-PM methodology to be presented in the re-
mainder of this Section. 

The goal of predictive modeling is to reduce, as much possible, the discrepan-
cies between the measured response values and the corresponding values pre-
dicted by the computational model But if the nominal values of the measured 
responses happen—by nature, design or accident—to coincide with the corres-
ponding computed values, the vector of deviations vanishes, i.e., =d 0 , in 
which case Equations (44), (25), (26) and (14) indicate that: 

( ) ( ) ( )1 0; ; , ; , .sp e sp e
e ep p= ⇒ = ⇒ = = ⇒ =d θ r r z z z C0 0 α α     (45) 

The results shown in Equation (45) indicate that if only first-order sensitivities 
are used and if the nominal values of the measured responses happen to coincide 
with the corresponding computed values, the model would have no impact on 
the initial (measured) distribution of responses and parameters, so there would 
be no calibration of either the predicted responses or parameters. Evidently this 
conclusion reveals a fundamental limitation of using just the first-order sensitiv-
ities for predictive modeling (and data assimilation and/or data adjustment me-
thods). But this conclusion also provides the fundamental motivation for using 
second-order sensitivities, in addition to the natural expectation that using the 
second-order sensitivities will produce more accurate results, in general. 

It is also important to note that if the response measurements were perfect 
and if they were uncorrelated to the model parameters, i.e., if e

rr =C 0  and 
e e
r rα α= =C C 0 , the matrix †

αα=D SC S  would nevertheless be non-singular 
since the matrix †

ααSC S  is nonsingular. This, the solution shown in Equation 
(44) would still exist; this is in contradistinction with the extant data assimilation 
schemes, which fail if the measurements are perfect. Notably, all extant data as-
similation schemes consider that the response measurements and model para-
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meters are uncorrelated.  
If the second-order sensitivities, which are included in the term ( )u θ , are 

retained in Equation (40), this equation becomes nonlinear in the components 
of ( )†

1, , , ,k TRθ θ θ  θ  and therefore requires an iterative method for solv-
ing. The structure of ( )u θ  indicates that the simplest (and probably the most 
efficient) method for solving Equation (43) would be Newton’s method, as can 
be surmised by the similarity between this equation and a simple quadratic alge-
braic equation. In this vein, consider the application of Newton’s method to the 
quadratic equation, as described below:  

( ) ( )
( ) ( ) ( ) ( )

2

11

0; 2 ;

; 0,1, .n n n n

q x ax bx d q x ax b

x x q x q x n
−+

′+ + = = +

 ′= − = 





             (46) 

If 0d ≠ , the usual initial-guess for starting the Newton iteration is ( )0x d b= − , 
which yields the first-iterate ( ) ( )1 21 2x ad b ad d b = − + −  . The correction 
term included in this first-iterate solution is of first order in the product ( ad ), 
so the subsequent iterates become increasingly more accurate when this product 
is small; even the first-iterate becomes exact in the limit as 0a → . On the other 
hand, if 0d = , the initial guess ( )0 0x d b= − =  would yield solely the trivial 
solution 0x = . Therefore, if 0d ≅ , the initial-guess for starting the Newton 
iteration would be ( )0x b a= − , which would yield the non-zero first-iterate so-
lution ( )1x b a d b= − + , and so on.  

Applying Newton’s method to solve Equation (43) yields the following itera-
tive equation for finding its solution(s) ( )†

1, , , ,k TRθ θ θ  θ :  

( ) ( ) ( )( ) ( )( )1
1 ; 0,1, ,n n n n n

−
+  = − =

 
A w θ θ θ θ            (47) 

where the Jacobian matrix ( )A θ  is defined as usual, namely: 

( ) ( )
( )

( ) ( )

( ) ( )

1 1 1
1

1
1

1,1 1,

,1 ,

, , , ,
, , , ,

.

TR
k TR

n TR
TR TR TR

TR

TR TR TR

w w
w w w

w w

A A

A A

θ θ

θ θ θ
θ θ

∂ ∂ ∂ ∂ 
∂  

 ∂
 ∂ ∂ ∂ ∂ 

 
 
 
  

A


 

    

 





   



θ

θ θ

θ θ

      (48) 

Using Equations (42) and (43) yields the following expression for the compo-
nents/elements ( ),k nA θ  of the Jacobian matrix ( )A θ : 

( ) ( ) ( )

( ) ( ) ( ) ( )

†

1 1 1

1 1 1

1
2

,

TR TR TR
k ik

kn kj j i kj j
j i jn n

TR TR TR
k n i

kn nj j kj j i kn kn kn
j j i

wA D M

D M M M D V

θ θ θ
θ θ

θ θ θ

= = =

= = =

 ∂ ∂
= = − − ∂ ∂  

= − − − = −

∑ ∑ ∑

∑ ∑ ∑

Mθ θ θ

θ
    (49) 

where:  

( ) ( ) ( ) ( ) ( ) ( )
1

,
TR

k n j
kn j nj kj kn kn TR TR

j
V M M M Vθ

×
=

   + +   ∑ V θ θ θ .     (50) 
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As indicated in Equation (49), if the initial guess ( )0 = 0θ  is used, the Jaco-
bian matrix would take on the value ( )= =A D0θ . Consequently, the resulting 
solution of Equation (47) would be obtained in a single iteration and would be 
the same as the first-order solution obtained in Equation (44), i.e., ( )1 1−= D dθ . 
Similarly, if the second-order response sensitivities to the model parameters are 
neglected, Equation (50) indicates that ( )( )k = =A M D0 . 

To obtain the nontrivial solution of Equation (47) when d  is very small or 
actually vanishes ( =d 0 ), a non-zero initial guess ( ( )0 ≠ 0θ ) must be used for 
starting the Newton iterations, as was discussed in the foregoing by analogy with 
the solution of a quadratic algebraic equation using Newton’s method. The non-
trivial solution of Equation (47) which would be valid even when =d 0  will be 
denoted as ( ), 1h n+θ , where the superscript “h” indicates that the expression of 

( ), 1h n+θ  will include higher-order terms, which will involve the second-order 
sensitivities of computed responses with respect to model parameters. The cor-
responding Newton iteration indicated by Equation (47) will thus take on the 
following form for finding the nontrivial root of Equation (43) when d  is very 
small or actually vanishes:  

( ) ( ) ( )( ) ( )( )1
, 1 , , , ; 0,1, .h n h n h n h n n

−
+  = − − = 

D V w θ θ θ θ        (51) 

As has been discussed in the foregoing in conjunction with the algebraic qua-
dratic equation, it would be advantageous to start the Newton iteration shown in 
Equation (51) with an initial guess ( ),0hθ  that would have components analog-
ous to the initial guess ( )0x b a= −  for the quadratic equations. It would be 
further advantageous if the computation of the initial guess ( ),0hθ  would not 
require inversion of matrices. An expression for ( ),0hθ  which satisfies these 
considerations can be derived by setting =d 0  in Equation (43) and by consi-
dering just the diagonal terms of the matrices involved in this equation, thus ob-
taining:  

( ) ( ) ( ) ( )( ) ( ) ( )†,0 ,0 ,0 ,0 ,0
1 , , , , ; 2 3 ; 1, , .h h h h h j

j TR j jj jjD M j TRθ θ θ θ = =   θ   (52) 

Using the initial guess provided in Equation (52) in Equation (50) yields the 
following starting expressions for components of the Jacobian matrix ( )A θ :  

( )( ) ( ) ( ) ( ) ( ),0 ,0

1
.

TR
h h k n j

kn kn j nj kj kn
j

A D M M Mθ
=

 = − + + ∑θ            (53) 

Furthermore, using the initial guess provided in Equation (52) in Equation 
(43) yields the following starting expressions for components ( )kw θ  of the 
vector ( ) ( ) ( ) ( ) †

1 , , , ,k TRw w w  w   θ θ θ θ : 

( )( ) ( )( ) ( ),0 ,0 ,0

1
, 1, , ;

TR
h h h

k k kj j k
j

w u D d k TRθ
=

= + − =∑ θ θ         (54) 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( )

,0 ,0 ,0 ,0 ,0

1 1 1 1

1 1

1
2

1
2

4 , 1, , .
9

TR TR TR TR
h h k h h i h

k i ij j i kj j
i j i j

TR TR
jj k iii

ij kji j
i j ii jj

u M M

DD M M k TR
M M

θ θ θ θ
= = = =

= =

= − −

     ≅ − + =         

∑∑ ∑ ∑

∑∑ 

θ

   (55) 
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The impact of the second-order sensitivities through the components ( )k
ijM  

of the matrices ( )kM  is evident in Equations (53)-(55). The first-iterate ( ),1hθ  
of the solution of Equation (51) has the following expression:  

( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

1,1 ,0 ,0 ,0 ,0

,0 ,0 ,0 ,0

;

; .

h h h h h

h h h h

−
= − − + −D V u D d

V V u u 

θ θ θ

θ θ
          (56) 

It is evident from the expressions provided in Equations (53)-(55) that even if 
=d 0  (i.e., if the vector of deviations between the nominally measured and 

computed values of the responses vanishes), the starting-values of the compo-
nents ( )( ),0 0h

kw ≠θ  are non-zero because of the impact of the second-order 
response sensitivities. In addition, the initial-Jacobian matrix ( )( ),0hA θ  is non-
singular (also because of the impact of the second-order response sensitivities), 
so the first-iterate ( ),1hθ  has a finite non-zero value. All subsequent iterates will 
also have non-zero values. Thus, using the second-order response sensitivities 
overcomes the limitation of the first-order predictive modeling methodology 
1st-BERRU-PM, as well as the limitation of extant data adjustment and data as-
similation procedures, which all fail when the measured response values coin-
cide with the computed response values. 

Replacing the solution of Equation (51) into Equations (25) and (26) yields 
the following expressions for the coordinates of the saddle point ( )†

,sp sp spz r α  
of the function ( ), ;h r α θ :  

( ) ( ), 1† h nsp e e e
rr rα

+= + −r r C C S θ ,                 (57) 

( ) ( ), 10 h nsp e
rα αα

+= + −C C Sα α θ† .                (58) 

The best-estimate (optimal) mean values (first-order moments) and correla-
tions (second-order moments) of the posterior distribution of the combined 
computational model with measured responses and parameters are obtained by 
using the saddle-point method to evaluate the integrals that define these first- 
and second-order moments. These best-estimate values will be denoted using 
the superscript “bed” to indicate that these “best-estimate” values arise from de-
terministically incorporated/assimilated computed responses.  

Thus, the predicted “best-estimated values with deterministically incorporated 
computed responses” for the predicted mean values of responses and parame-
ters, respectively, have the following expressions: 

( ) ( ) ( ), 1†d h nbed sp e e e
rr r

Dz

p α
+= = + −∫r r z z r r C C S θ ;          (59) 

( ) ( ) ( ), 10d h nbed sp e
r

Dz

p α αα
+= = + −∫ z z C C Sα α α α θ† .         (60) 

The expression of the “best-estimate with deterministically incorporated 
computed responses” covariance matrix for the responses, denoted as bed

rrC , is 
obtained from its definition in conjunction with Equation (59), which yields:  
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( )( ) ( )

( ) ( ) ( ) ( ) ( )

†

†, 1 , 1† †

d

d .

bed bed bed
rr

Dz

h n h ne e e e e e
rr r rr r

Dz

p

pα α
+ +

− −

   = − − − − − −   

∫

∫

C r r r r z z

r r C C S r r C C S z z



θ θ
(61) 

The expression of the “best-estimate with deterministically incorporated com-
puted responses” covariance matrix for the parameters, denoted as bed

ααC , is ob-
tained from its definition in conjunction with Equation (60), which yields:  

( )( ) ( )

( ) ( ) ( ) ( ) ( ), 1 , 10 0

d

d .

bed bed bed

Dz

h n h ne e
r r

Dz

p

p

αα

α αα α αα
+ +

− −

   = − − − − − −   

∫

∫

C z z

C C S C C S z z

 α α α α

α α θ α α θ

†

†
† †

(62) 

The expression of the “best-estimate with deterministically incorporated com-
puted responses” correlation matrix among parameters and responses, denoted 
as bed

rαC , is obtained by using its definition in conjunction with Equations (59) 
and (60), which yields:  

( )( ) ( )

( ) ( ) ( ) ( ) ( ), 1 , 10

d

d .

bed bed bed
r

Dz

h n h ne e e e
r rr r

Dz

p

p

α

α αα α
+ +

− −

   = − − − − − −   

∫

∫

C r r z z

C C S r r C C S z z

 α α

α α θ θ

†

†
† †

 

(63) 

The impact of the second-order response sensitivities on the mean values and 
correlation/covariance matrices can be assessed already by using the first iterate 
solution, ( ),1hθ , in Equations (59)-(63). Using the first-iterate, ( ),1hθ , in Equa-
tions (59) and (60), respectively, yields the following expressions for the “first- 
iterate best-estimate” values for the responses and parameters, respectively:  

( ) ( ) ( ) ( )( ) ( ) ( )( )11 ,0 ,0 ,0 ,0†bed h h h he e e
rr rα

− = + − − − + −  
r r C C S D V u D dθ θ ; (64) 

( ) ( ) ( ) ( )( ) ( ) ( )( )11 ,0 ,0 ,0 ,00bed h h h he
rα αα

− = + − − − + −  
C C S D V u D dα α θ θ† . (65) 

As the expressions obtained in Equations (64) and (65) indicate, combining 
experimental and computational information modifies the correlations among 
the parameters through couplings introduced by the sensitivities of the partici-
pating responses. The expressions obtained in Equations (64) and (65) possess 
the following new features by comparisons to their counterparts provided by ex-
tant data assimilation and data adjustment procedures:  

1) If the second-order sensitivities are neglected, then the expressions in (64) 
and (65) take on the following simplified forms: 

( ) ( )1nd 1no 2 -order sensitivities : bed e e e
rr rα

−= + −r r C C S D d† ;      (66) 

( ) ( )1nd 0 1no 2 -order sensitivities : bed e
rα αα

−= + −C C S D dα α † .      (67) 

As expected, the expressions in Equations (66) and (67) are identical to the 
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expressions provided by the 1st-BERRU-PM [14] methodology and therefore 
possess the same strengths (easy to implement) and weaknesses (trivial results, 
no calibration if =d 0 ) as the results produced by the 1st-BERRU-PM metho-
dology.  

2) If the vector of deviations between the nominally measured and computed 
values of the responses vanishes, i.e., if =d 0 , the expressions provided in Equ-
ations (64) and (65) take on the following simplified forms: 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )11 ,0 ,0 ,0 ,0†

if :
bed h h h he e e

rr rα

−

=

 = = + − − − + ≠  

0

0 0

d

r d r C C S D V u Dθ θ
 (68) 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )11 ,0 ,0 ,0 ,00

if :
bed h h h he

rα αα

−

=

 = = + − − − + ≠  

0

0 0

d

d C C S D V u Dα α θ θ†

(69) 

As evidenced by comparing Equations (68) and (69) with Equations (66) and 
(67), respectively, the contributions of the second-order sensitivities provide the 
fundamental difference when =d 0  between non-calibration [i.e.,  

( ) ( )1 bed e= =r d r0  and ( ) ( )1 0bed = =d 0α α ] in the case for data adjustment, data 
assimilation and 1st-BERRU-PM methodologies, cf. Equations (66) and (67), re-
spectively, versus the calibration ( ) ( )1 bed e= ≠r d r0  and ( ) ( )1 0bed = ≠d 0α α  pro-
vided by the 2nd-BERRU-PMD expressions obtained in Equations (68) and (69). 

3) The components of the matrix ( ),0hV  are usually smaller (since they con-
tain higher-order quantities) than the corresponding components of the matrix 
D , so the contributions provided by the term ( ),0hV  can be considered to be 
“corrections” to the components of the matrix D . If the contributions of the 
matrix ( ),0hV  are neglected by comparison to the corresponding components of 
the matrix D , the expressions provided in Equations (64) and (65) reduce to 
the following expressions:  

( ) ( ) ( )( ) ( ) ( )( ),0 1 ,0 ,0† 1if :h bed h he e e
rr rα

−= = = + − −V r V r C C S D d u0 0 ;   (70) 

( ) ( ) ( )( ) ( ) ( )( ),0 1 ,0 ,00 1if :h bed h he
rα αα

−= = = + − −V V C C S D d u0 0α α † .  (71) 

The above expressions underscore, through the term ( ),0hu , the fundamental 
importance of including second-order sensitivities, since they provide the basic 
contribution to maintaining the effects of calibration for both responses and pa-
rameters, even when =d 0 , i.e., when the values of the measured responses 
coincide with the corresponding values of the computed responses. This essen-
tial contribution stemming from the second-order responses sensitivities is clearly 
highlighted by comparing the expressions obtained in Equations (70) and (71) 
with the corresponding first-order (1st-BERRU-PM) expressions provided in 
Equations (66) and (67), respectively.  

Using the first-iterate, ( ),1hθ , in Equation (61) yields the following expression 
for the “first-iterate best-estimate” covariance matrix ( )1 bed

rrC  for the responses:  
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( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

11 ,0 ,0 ,0 ,0†

†1,0 ,0 ,0 ,0†

†,0 ,0 ,0 ,0

d

.

bed h h h he e e
rr rr r

Dz

h h h he e e
rr r

h h h he e
r r r r r r

p

α

α

−

−

  = − − − − − + −    

  × − − − − − + −    

   = − + − + − + − +   

∫C r r C C S D V u D d

r r C C S D V u D d z z

r r X Y d Y u r r X Y d Y u

θ θ

θ θ

θ θ

(72) 

The following definitions were used in Equation (72):  

( ) ( )d ,
Dz

p• •∫ z z                       (73) 

( ) ( ) ( ) ( ) ( )1 0 0

†

;

;

e e e
rd

e e
rr rα

 − = − − − − − 

≅ −

pC r r d r r r r S

C C S

 α α α α
†

†

    (74) 

( ) ( )( ) 11 ,0h
r rd

− − −  
X C D V D I ;                 (75) 

( ) ( )( ) 11 ,0h
r rd

−
−Y C D V .                    (76) 

Expanding the integrand in the second equality in Equation (72) yields the 
following expression for the “first-iterate best-estimate” response covariance 
matrix ( )1 bed

rrC :  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( )( ) ( )( ) ( )( )

( ) ( )( ) ( ) ( ) ( )( )

† †1 1 ,0 ,0 ,0 ,0 ,0† † † † †

† † †1 ,0 ,0† † †

† †,0 ,0 ,0 ,0 ,0† † † †.

bed h h h h he
rr rr rd r r r r r r r

h h
r rd r r r r r r

h h h h h
r r r r r r

= − + − +

− − + −

+ − +

C C C Y X X X d Y X u Y

Y C Y d X Y DY Y d u Y

Y u X Y u d Y Y u u Y

θ θ θ θ

θ

θ

(77) 

Using the first-iterate, ( ),1hθ , in Equation (62) and evaluating the resulting 
integrals yields the following expression for the “first-iterate best-estimate” co-
variance matrix ( )1 be

ααC  for the model parameters:  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )( )
( )( ) ( )( ) ( )( )

( ) ( )( ) ( ) ( ) ( )( )

†1 ,0 ,0 ,0 ,00 0

† †1 ,0 ,0 ,0 ,0 ,0† † † † †

† † †1 ,0 ,0† † †

† †,0 ,0 ,0 ,0 ,0† † † †.

bed h h h h

h h h h he
d

h h
d

h h h h h

αα α α α α α α

αα α α α α α α α α

α α α α α α α α

α α α α α α

   = − + − + − + − +   

= − + − +

− − + −

+ − +

C X Y d Y u X Y d Y u

C C Y X X X d Y X u Y

Y C Y d X Y DY Y d u Y

Y u X Y u d Y Y u u Y

α α θ α α θ

θ θ θ θ

θ

θ

(78) 

The following definitions were used in Equation (78): 

( ) ( ) ( ) ( ) ( )1 0 0 0 0

†

;

;

e
d

e e
r

α

α αα

 − = − − − − − 

≅ −

pC d r r S

C C S

 α α α α α α α α
†

†

   (79) 

( ) ( )( ) 11 ,0h
dα α

− − −  
X C D V D I ;                 (80) 
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( ) ( )( ) 11 ,0h
dα α

−
−Y C D V .                    (81) 

Using the first-iterate, ( ),1hθ , in Equation (63) and evaluating the resulting 
integrals yields the following expression for the “first-iterate best-estimate” cor-
relation matrix ( )1 bed

rαC  for the parameters and responses:  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )( )
( )( ) ( )( ) ( )( )

( ) ( )( ) ( ) ( ) ( )( )

†1 ,0 ,0 ,0 ,00

† †1 ,0 ,0 ,0 ,0 ,0† † † † †

† † †1 ,0 ,0† † †

† †,0 ,0 ,0 ,0 ,0† † † †.

bed h h h he
r r r r

h h h h he
r d r r r r

h h
rd r r r

h h h h h
r r r

α α α α

α α α α α

α α α α

α α α

   = − + − + − + − +   

= − + − +

− − + −

+ − +

C X Y d Y u r r X Y d Y u

C C Y X X X θ d Y X u Y

Y C Y d X Y DY Y d u Y

Y u X Y u d Y Y u u Y

α α θ θ

θ θ θ

θ

θ

(82) 

As the expressions obtained in Equations (77), (78) and (82) indicate, com-
bining experimental and computational information modifies the correlations 
among the parameters through couplings introduced by the sensitivities of the 
participating responses. 

The expression obtained in Equations (77), (78) and (82) for ( )1 bed
rrC , ( )1 bed

ααC  
and ( )1 bed

rαC , respectively, will now be analyzed below by considering the same 
simplifying conditions as were considered for the best-estimate response and 
parameter mean-values ( )1 bedr  and ( )1 bedα , respectively, as follows: 

1) If all of the second-order sensitivities are neglected, then the following sim-
plifications occur: r α= =X X 0 , ( )1 1

r rd
−=Y C D  and ( )1 1

dα α
−=Y C D . Therefore, 

the expressions in Equations (77), (78) and (82) take on the following simplified 
forms: 

( ) ( ) ( )1 1 1nd 1no 2 -order sensitivities : bed e
rr rr rd rd

−= −C C C D C † .         (83) 

( ) ( ) ( )1 1 1nd 1no 2 -order sensitivities : bed e
d dαα αα α α

−= −C C C D C † .         (84) 

( ) ( ) ( )1 1 1nd 1no 2 -order sensitivities : bed e
r r d rdα α α

−= −C C C D C † .         (85) 

As expected, the expressions obtained in Equation (83)-(85) are identical to 
the expressions provided by the first-order predictive modeling methodology 1st- 
BERRU-PM [14] and therefore possess the same strengths (easy to implement) 
and weaknesses (i.e., trivial results and no calibration if =d 0 ) as 1st-BERRU- 
PM.  

2) If the vector of deviations between the nominally measured and computed 
values of the responses vanishes, i.e., if =d 0 , the expressions obtained in Equa-
tions (77) for ( )1 bed

rrC , ( )1 bed
ααC  and ( )1 bed

rαC , respectively, will take on the follow-
ing simplified forms: 

( ) ( ) ( ) ( )( ) ( ) ( )( )
( )( ) ( ) ( )( ) ( ) ( )( )

† †1 1 ,0 ,0 ,0 ,0† † †

† † †1 ,0 ,0 ,0 ,0† † †

if :

;

bed h h h he
rr rr rd r r r r r

h h h h
r rd r r r r r r

= = − + +

− + + +

d C C C Y X X X u Y

Y C Y DY Y u X Y u u Y

0 θ θ θ

θ
 (86) 
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( ) ( ) ( ) ( )( ) ( ) ( )( )
( )( ) ( ) ( )( ) ( ) ( )( )

† †1 1 ,0 ,0 ,0 ,0† † †

† † †1 ,0 ,0 ,0 ,0† † †

if :

;

bed h h h he
d

h h h h
d

αα αα α α α α α α

α α α α α α α α

= = − + +

− + + +

d C C C Y X X X u Y

Y C Y DY Y u X Y u u Y

0 θ θ θ

θ
(87) 

( ) ( ) ( ) ( )( ) ( ) ( )( )
( )( ) ( ) ( )( ) ( ) ( )( )

† †1 1 ,0 ,0 ,0 ,0† † †

† † †1 ,0 ,0 ,0 ,0† † †

if :

.

bed h h h he
r r d r r r

h h h h
rd r r r

α α α α α

α α α α

= = − + +

− + + +

d C C C Y X X X u Y

Y C Y DY Y u X Y u u Y

0 θ θ θ

θ
(88) 

If the contributions of the second-order sensitivities are neglected in the ex-
pressions obtained in Equations (86)-(88), these expressions will reduce to the 
first-order expressions shown in Equations (83)-(85). 

3) If the contributions of the matrix ( ),0hV  are neglected by comparison to 
the corresponding components of the matrix D , then the following simplifica-
tions occur: r α= =X X 0 , ( )1 1

r rd
−=Y C D  and ( )1 1

dα α
−=Y C D . Consequently, the 

expressions provided in Equations (77), (78) and (82) will reduce to the follow-
ing forms:  

( ) ( ) ( )( ) ( ) ( )( )
( )( ) ( ) ( ) ( )( )

†,0 1 ,0 1 11

† †,0 ,0 ,0 ,0† † † †

if :

;

h bed h e
rr rr rd rd

h h h h
r r r r r r

−= = = −

− − +

V C V C C D C

Y d u Y Y u d Y Y u u Y

0 0
        (89) 

( ) ( ) ( )( ) ( ) ( )( )
( )( ) ( ) ( ) ( )( )

†,0 1 ,0 1 11

† †,0 ,0 ,0 ,0† † † †

if :

;

h bed h e
d d

h h h h

αα αα α α

α α α α α α

−= = = −

− − +

V C V C C D C

Y d u Y Y u d Y Y u u Y

0 0
        (90) 

( ) ( ) ( )( ) ( ) ( )( )
( )( ) ( ) ( ) ( )( )

†,0 1 ,0 1 11

† †,0 ,0 ,0 ,0† † † †

if :

.

h bed h e
r r d rd

h h h h
r r r

α α α

α α α

−= = = −

− − +

V C V C C D C

Y d u Y Y u d Y Y u u Y

0 0
        (91) 

The above expressions underscore, through the terms involving the vector 
( ),0hu , the fundamental importance of including second-order sensitivities, 

which provide non-zero contributions even when =d 0 .  
It is important to emphasize that the posterior distribution of responses and 

parameters is non-Gaussian since the “best estimate” triple correlations among 
the best-estimate responses and parameters are nonzero even if the experimen-
tally measured responses and parameters were normally distributed initially. 
This fact can readily be shown by considering Equations (64) and (65), which 
can be written as follows:  

( )

( ) ( ) ( ) ( )( ) ( ) ( )( )
1 (0)

10 ,0 ,0 ,0 ,0†

;

;

bed e

h h h he e
rr rα

−

= +

 − − − + −  

r r r

r C C S D V u D d θ θ
    (92) 

( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )( )
1 00

10 ,0 ,0 ,0 ,0†

;

.

bed

h h h he
rα αα

−

= +

 − − − + −  
C C S D V u D d

α α β

β θ θ
   (93) 

Using Equations (92) and (93) in conjunction with the definition of triple 
correlations for multivariate random quantities yields the following “lowest- 
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order estimate” for the best-estimate triple correlations among responses and 
parameters, which denoted below as ( )1

,
bed

rr ijkT  and ( )1
,
bed
ijkTαα , respectively: 

( ) ( )( ) ( )( ) ( )( )
( )( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 0 0 0
,

0 0

0 0 0 0

cov , cov ,

cov , ; , , 1, , ;

bed e e e
rr ijk i i i j j j k k k

e e e
i i j j k k i j k j i k

k i j i j k

T r r r r r r r r r

E r r r r r r r r r r r r

r r r r r r i j k TR

− − − − − −

 = − − − − − 

− − =





   (94) 

( ) ( )( ) ( )( ) ( )( )
( )( )( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

1 0 0 00 0
,

00 0 0

0 0 0 0 0

cov ,

cov , cov , ; , , 1, , .

bed e
ijk i i i j j j k k k

i i j j j j i j k

j i k k i j i j k

T

E

i j k TP

αα α α β α α β α α β

α α α α α α β α α

β α α β α α β β β

− − − − − −

 = − − − − 

− − − =





(95) 

If the responses are normally distributed initially, then the initial triple corre-
lations are all zero, i.e., ( )( )( )0 0 0

i i j j j jE α α α α α α − − −   for all , , 1, ,i j k TR=  . 
Nevertheless, as indicated in Equation (94), the “best-estimate response triple 
correlations” ( )1

, 0bed
rr ijkT ≠  are non-zero even in such a case, unless there is “no 

calibration,” i.e., if ( ) ( ) ( )0 0 0 0i j kr r r= = =  for all , , 1, ,i j k TR=  . Similarly, if the 
parameters are normally distributed initially, then the initial triple correlations 
are all zero, i.e., ( )( )( ) 0e e e

i i j j k kE r r r r r r − − − =   for all , , 1, ,i j k TP=  . Nev-
ertheless, as indicated in Equation (95), the “best-estimate parameter triple cor-
relations” ( )1

, 0bed
ijkTαα ≠  are non-zero even in such a case, unless there is “no cali-

bration,” i.e., if ( ) ( ) ( )0 0 0 0i j kα α α= = =  for all , , 1, ,i j k TP=  . 

4. Discussion and Conclusions 

This work has presented the 2nd-BERRU-PMD methodology, where: the attribute 
“2nd” indicates that this methodology incorporates second-order uncertainties 
(means and covariances) and second-order sensitivities of computed model res-
ponses to model parameters; the acronym BERRU stands for “best-estimate re-
sults with reduced uncertainties;” and the letter “D” indicates “deterministic,” 
referring to the deterministic inclusion of the computational model responses. 
The 2nd-BERRU-PMD methodology is fundamentally based on the maximum 
entropy (MaxEnt) principle. This principle is in contradistinction to the funda-
mental principle that underlies the extant data assimilation and/or adjustment 
procedures which minimize in a least-square sense a subjective user-defined 
functional which is meant to represent the discrepancies between measured and 
computed model responses. It has shown that the 2nd-BERRU-PMD methodol-
ogy includes all of the previous results produced by the first-order BERRU-PM 
methodology, generalizing and extending current data assimilation and/or data 
adjustment procedures while overcoming the fundamental limitations of these 
procedures. Since the framework of the 2nd-BERRU-PMD methodology com-
prises the combined phase-space of parameters and responses, the expressions 
obtained for the predicted best-estimate responses and calibrated parameters can 
be used for solving both forward/direct and inverse problems.  

The accompanying work [19] will present the alternative framework for de-
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veloping the “second-order MaxEnt predictive modelling methodology” by in-
corporating the computed model responses probabilistically (as opposed to “de-
terministically”). This alternative methodology [19] will be designated by the 
acronym 2nd-BERRU-PMP, where the last letter (“P”) in the acronym indicates 
“probabilistic” inclusion of the computational model responses. It will be shown 
that although both the 2nd-BERRU-PMD and the 2nd-BERRU-PMP frameworks 
predict analogous 2nd-order expressions for the best-estimate posterior first- and 
second-order moments, the respective expressions for the predicted responses, 
calibrated predicted parameters and their predicted uncertainties (covariances) 
are not identical to each other. The additional considerations that make the cor-
responding expressions predicted by the 2nd-BERRU-PMD and the 2nd-BERRU- 
PMP become identical will also be analyzed in the accompanying Part II [19].  
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Appendix A: Construction of the Second-Order Maximum  
Entropy Distribution for Responses and Parameters 

When an unknown distribution ( ),p rα , defined on a domain rD D Dα ∪  
(where Dα  denotes the domain of definition of the parameters and rD  de-
notes the domain of definition of the responses) needs to be reconstructed from 
a finite number of its known moments, the principle of maximum entropy 
(MaxEnt) originally formulated by Jaynes [15] provides the optimal compatibil-
ity with the available information, while simultaneously ensuring minimal spu-
rious information content. In particular, when only the first-order and second- 
order moments of the joint distribution of model parameters and responses 
( ),p rα  are known, the corresponding second-order MaxEnt distribution 
( ),p rα  is constructed by following the procedure outlined below. 
1) Known means and covariances for responses: 

( )0 , d d , 1, , ;i i
D

r r p i TR=∫ r r α α                 (96) 

( ) ( )( ) ( )0 0cov , , d d ; , 1, , .
e

i j i i j j
D

r r r r r r p i j TR− − =∫ r r α α      (97) 

2) Known means and covariances for parameters:  

( )0 , d d , 1, , ;
e

j j
D

p j TPα α =∫ r r α α                (98) 

( ) ( )( ) ( )0 0cov , , d d ; , 1, , ;
e

i j i i j j
D

p i j TPα α α α α α− − =∫ r r α α    (99) 

( ) ( )( ) ( )0 0cov , , d d ; 1, , ; 1, , .
e

i j i i j j
D

r r r p i TP j TRα α α− − = =∫ r r  α α  (100) 

According to the MaxEnt principle, the probability density ( ),p rα  would 
satisfy the “available information” provided in Equations (96)-(100), without 
implying any spurious information or hidden assumptions, if:  

1) ( ),p rα  maximizes the Shannon [21] information entropy, S, as defined 
below: 

( ) ( ), ln , d d
D

S p p = −  ∫ r r rα α α ,              (101) 

2) ( ),p rα  satisfies the “moments constraints” defined by Equations (96)- 
(100);  

3) ( ),p rα  satisfies the normalization condition:  

( ), d d 1.
D

p =∫ r rα α                     (102) 

The MaxEnt distribution ( ),p rα  is obtained as the solution of the con-
strained variational problem ( ) 0H p p∂ ∂ = , where the entropy (Lagrangian 
functional) ( )H p  is defined as follows: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

1 20 0

1 1

, ln , d d , d d 1

, d d , d d

D D

TR TP

k k k i i i
k iD D

H p p p p

r p r p

λ

λ λ α α
= =

 
= − − −    

 
   

− − − −   
   

∫ ∫

∑ ∑∫ ∫

r r r r r

r r r r

α α α α α

α α α α
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

11 0 0

1 1

12 0 0

1 1

22 0 0

1 1

1 , d d ,
2

, d d ,

1 , d d cov , .
2

TR TR

k k k k
k D

TR TP

ki k i k i k i
k i D

TP TP

ij i j i j i j
i j D

r r p cov r r r r

r p cov r r

p

λ

λ α α α

λ α α α α α α

= =

= =

= =

 
− − − 

 
 

− − − 
 
 

− − − 
 

∑∑ ∫

∑∑ ∫

∑∑ ∫

   



r r

r r

r r

α α

α α

α α

      (103) 

In Equation (103), the quantities ( )1
kλ , ( )2

kλ , ( )11
kλ 

, ( )12
kλ 

, and ( )22
kλ 

 denote 
the respective Lagrange multipliers, and the factors 1/2 have been introduced for 
subsequent computational convenience.  

Solving the equation ( ) 0H p p∂ ∂ =  yields the following expression for the 
resulting MaxEnt distribution ( )p z :  

( ) ( )
† †1 1exp

, 2cp
Z

 = − − 
 

z b z z z
b

Λ
Λ

,             (104) 

where the various vectors and matrices are defined as follows: 

( )

( )
( )

( )

( )

( )

( )

( )

1 2
1 1 1

1 2

2
1 1

; ; ; ;

TR TP

λ λ

λ λ

   
      
 =             

   

r
z b     

λ
λ λ

α λ
         (105) 

( ) ( )

( ) ( )
( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

11 11
11 12 11 1,

11 11
†12 22

11 11
,1 ,

12 12 22 22
11 1, 11 1,

12 12 22 22

12 12 22 22
,1 , ,1 ,

; ;

; .

TR

k

TR TR TR

TP TP

k k

TR TR TP TP TP TP

λ λ

λ

λ λ

λ λ λ λ

λ λ

λ λ λ λ

 
   
   
         

 
   
   
   
   
   
   



 



   



 

     

 

Λ Λ
Λ Λ

Λ Λ

Λ Λ

     (106) 

The normalization constant ( ),Z b Λ  in Equation (104) is defined as follows: 

( ) † †1, exp d ; d d d .
2D

Z  = − − ≡ 
 ∫b b z z z z z rαΛ Λ           (107) 

In statistical mechanics, the normalization constant Z is called the partition 
function (or sum over states) and carries all of the information available about 
the possible states of the system, while the MaxEnt distribution ( )p z  is called 
the canonical Boltzmann-Gibbs distribution. The integral in Equation (107) can 
be evaluated explicitly by conservatively extending the computational domain D 
to the entire multidimensional real vector space N

 , where N TR TP+ , to 
obtain the following expression: 

( ) ( )
( )

† 12 1
† † 221, exp d e .

2N

N

c cZ
Det

− 
 
  = − − = 



π

∫
b b

b b z z z z


Λ
Λ Λ

Λ
     (108) 

The Lagrange multipliers are determined in terms of the known information 
(means and covariances of parameters and responses) by differentiating the “free 
energy” ( ) ( ), ln ,F Z−b C b C  with respect to the components of the vector 
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( ) ( )( )†1 2,b  λ λ  to obtain the following expressions: 

( )
( ) ( )

† †1
02

1

, 1 e d , d ; 1, , ;
c

k k k
D Dk

F
r r p r k TR

Zλ

 − − 
 

∂
= = = =

∂ ∫ ∫
b z z zb C

z r z α
Λ

  (109) 

( )
( ) ( )

† †1
02

2

, 1 e d , d d ; 1, , .i i i
D Di

F
p i TP

Z
α α α

λ

 − − 
 

∂
= = = =

∂ ∫ ∫
b z z zb C

z r r α α
Λ

 (110) 

The results obtained in Equations (109) and (110) can be collectively written 
in vector-matrix form as follows:  

( ) ( ) ( )†0 0 0 0 0 0 0
1

,
; , ; , , .TR

F
r r

∂
=

∂
b C

z z r r
b

  α          (111) 

On the other hand, it follows from Equation (108) that:  

( ) ( ) 1ln ,,
.

ZF −
 ∂∂  = − = −

∂ ∂

b Cb C
b

b b
Λ               (112) 

The relations obtained in Equations (111) and (112) imply the following rela-
tion:  

0.= −b zΛ                          (113) 

Differentiating a second time the relation provided in Equation (109) or (110) 
yields the following relations: 

( )
( ) ( ) ( ) ( )

( )

† †12
0 2

21 1 1

, 1 1 e d

cov , ; , 1, , ;

k j k
Dj k j

j k

F Z r r r
ZZ

r r j k TR

λ λ λ

 − − 
 

∂ ∂
= − + −

∂ ∂ ∂

= − =

∫
b z z zb C

z



Λ

        (114) 

( )
( ) ( ) ( )

2

2 1

,
cov , ; 1, , ; 1, , ;i k

i k

F
r i TP k TRα

λ λ

∂
= − = =

∂ ∂

b C
          (115) 

( )
( ) ( ) ( )

2

2 2

,
cov , ; , 1, , .i j

i j

F
i j TPα α

λ λ

∂
= − =

∂ ∂

b C
             (116) 

The results obtained in Equations (114)-(116) can be collectively written in 
vector-matrix form as follows:  

( ) ( )

( ) ( ) ( )

2

†

,
; ; cov , ;

cov , ; cov , .

rr r
c rr

j kr TR TR

r r
k i i jTR TP TP TP

F
r r

r

α

α αα

α α ααα α α

×

× ×

∂    = −    ∂ ∂  

   =   

b C C CC C C
b b C C

C C C

 

 

    (117) 

On the other hand, it follows from Equation (112) that:  

( )2
1,
.

F −∂
= −

∂ ∂
b C

b b
Λ                      (118) 

The relations obtained in Equations (117) and (118) imply the following rela-
tion:  

1 .− =CΛ                          (119) 

Introducing the results obtained in Equations (113) and (119) into Equation 
(104) and (108) yields the following expression for the MaxEnt distribution 
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( ),p z z C : 

( ) ( )
( )

( ) ( )
2

†0 1 02 1, exp .
2

N

p
Det

−
−π  = − − −  

z z C z z C z z
C

        (120) 

Appendix B: Construction of the “Constrained Minimum  
Discrepancy Distribution with a Given Function” 

The aim is to obtain a mathematical expression for a distribution ( )p z , defined 
over a domain D∈z , which is normalized to unity and satisfies K independent 
constraints of the following form: 

( ) ( )d , 1, , ;k k
D

g p c k K= < ∞ =∫ z z z                (121) 

with 

( )d 1
D

p =∫ z z .                        (122) 

In addition, it is required that the normalized distribution ( )p z  be “mini-
mally discrepant from” (i.e., “fit as well as possible”) a known function ( )f z , 
which is also defined over the same domain D∈z .  

The discrepancy (i.e., “lack of fit”) between an approximate distribution 
( )f z  and a true distribution ( )p z , both defined over the same domain 

D∈z , is denoted below as ( )f pδ , and is defined [see, e.g., ] as follows:  

( ) ( ) ( )
( )

log d .
D

p
f p p

f
δ ∫

z
z z

z
                 (123) 

The discrepancy ( )f pδ  is also called, see e.g., [22], the “Kulback-Leibler 
divergence or relative entropy.” The normalized distribution ( )p z  which mi-
nimizes the discrepancy defined in Equation (123) while satisfying the con-
straints expressed by Equations (121) and (122) is obtained by minimizing the 
Lagrangian functional ( )F p  defined below:  

( ) ( ) ( )
( ) ( ) ( ) ( )

1
log d d d 1 .

TR

k k k
kD D D

p
F p p g p c c p

f
θ

=

   
+ − + −   

   
∑∫ ∫ ∫

z
z z z z z z z

z
  (124) 

In Equation (124), the quantities c and 1, , , ,k TRθ θ θ   are Lagrange multip-
liers which remain to be determined. The stationary value of ( )F p  is provided 
by the probability ( )p z  where the first variation of ( )F p  vanishes, i.e., 
( )p z  is the solution of the following equation  

( ) ( ) ( ){ }
( )
( ) ( ) ( ) ( )

0

1

d
d

log 1 d 0.
TR

k k
kD

F p F p

p
g c

f

ε
δ ετ

ε

θ τ

=

=

 + 

 
= + + + = 

  
∑∫

z z

z
z z z

z



     (125) 

The desired posterior distribution is the normalized solution of Equation 
(125), having the following expression:  

( ) ( ) ( ) ( ) ( )
1 1

1 exp ; exp d .
TR TR

k k k k
k kD

p f g Z f g
Z

θ θ
= =

   = − −      
∑ ∑∫z z z z z z  (126) 
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It is important to note that in the limiting case when the function ( )f z  is 
the uniform distribution ( ) constantf =z , the distribution ( )p z  becomes a 
MaxEnt-distribution. In other words, the distribution which is least discrepant 
from (i.e., “best-fits”) the uniform distribution is the MaxEnt distribution. 

 
 

https://doi.org/10.4236/ajcm.2023.132013

	Second-Order MaxEnt Predictive Modelling Methodology. I: Deterministically Incorporated Computational Model (2nd-BERRU-PMD)
	Abstract
	Keywords
	1. Introduction
	2. Mathematical Modeling of the Physical System
	3. 2nd-BERRU-PMD: Second Order MaxEnt Predictive Modeling Methodology with Deterministically Included Computed Responses
	3.1. MaxEnt Representation of Experimental Information for Responses and Parameters
	3.2. Construction of the Joint Posterior MaxEnt Probability Distribution 2nd-BERRU-PMD

	4. Discussion and Conclusions
	Conflicts of Interest
	References
	Appendix A: Construction of the Second-Order Maximum Entropy Distribution for Responses and Parameters
	Appendix B: Construction of the “Constrained Minimum Discrepancy Distribution with a Given Function”

