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Abstract 
The Chebyshev polynomials are harnessed as functions of the one parameter 
of the nondimensionalized differential equation for trinomial homogeneous 
linear differential equations of arbitrary order n that have constant coeffi-
cients and exhibit vibration. The use of the Chebyshev polynomials allows 
calculation of the analytic solutions for arbitrary n in terms of the orthogonal 
Chebyshev polynomials to provide a more stable solution form and natural 
sensitivity analysis in terms of one parameter and the initial conditions in 6n 
+ 7 arithmetic operations and one square root. 
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1. Introduction 

The basic homogeneous linear IVP (Initial Value Problem) with constant coeffi-
cients and negative discriminant 
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is easily solved by elementary methods, but when the problem is of a high order, 
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calculation of the coefficients and presentation of the solution through common 
means is prone to both computational and presentation instabilities. Some 
common applications involving higher order equations appear in control sys-
tems theory [1], the theory of vibrating beams [2], studies of consistency and 
stability [3], and theory of the behavior of electronic networks [4]. This paper 
addresses these issues for solving higher order problems in the special case of 
Equation (1) by using the simpler nondimensionalized form of the equation and 
efficiently giving its solution in terms of orthogonal polynomials. 

2. The Classic Problem 

Upon division of (1) by a and the change of coefficients 

aT
c

= , 
2

b
ac

ξ = −  (which is b/a = −2ξ/T, c/a = 1/T2)      (2) 

the problem becomes 
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with 1 1ξ− < < . The substitution t Tτ= , ( ) ( ) ( )y T y tψ τ τ= = , so that  
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provides initial values ( )0
oo yψ = , ( )1
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equivalent nondimensionalized IVP1 for ( 1 1ξ− < < ) 
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It is this form of the problem that suggests the utility of a Chebyshev poly-
nomial approach to solutions. 

3. Solution in Terms of Chebyshev Polynomials of the  
Second Kind 

The Laplace transform of (5), in terms of the Laplace transform ( ) ( )( )s tψΨ =  , 
is 
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  (6) 

and can be algebraically solved for Ψ(s) to get 

 

 

1Actually y(t) must be divided by its units to make ψ(τ) dimensionless, but this scaling can be ig-
nored since such scaling before solving the IVP only leads to corresponding rescaling after solving. 
IVP (2) is the n − 2 derivative of the universal oscillator problem when ξ is replaced by −ξ. It will be 
observed in (5) that the differential Equation (2) has the universal oscillator general solution plus an 
arbitrary polynomial of degree n − 2 and with ξ replaced by −ξ.  
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or in terms of 21ω ξ= −  
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By the method of partial fractions, there exist constants 0 1, , nc c −  such that 
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and the Laplace transform formulas 
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applied to (9) show that the form of the general solution of the DE in (5) is ex-
pressible as 
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This leaves the problem of determining the constants. By (8) and (9) they sa-
tisfy 
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and multiplication by ( )( )2 2 2ns sξ ω −− +  shows that 
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Since this holds for all sufficiently large Re(s) the coefficients of powers of s 
match as 

( )0
0 1 22 oc c cξ ψ− + =  
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To solve this, consider that the values U0(ξ) = 1, U1(ξ) = 2ξ of the Chebyshev 
polynomials of the second kind [5] Uk(ξ) ( 0,1,k =  ) imply that  

( ) ( )0 12 1U Uξ ξ ξ− + =                   (16) 

and the recurrence relation ( ) ( ) ( )1 12k k kU U Uξ ξ ξ ξ+ −= −  ( 1,2,k =  ) that de-
fines the polynomials for larger values of k is also 
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The coefficients ( )T1
oc U U ψ−=  in (11) are therefore 
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Let A = U(U−1)T denote the n × n matrix product in this expression (so that c 
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= Aψo). Then  
A has the following structure. The zeros in the matrices force ajk = 0 for j ≥ k + 

3. By multiplication ak+2,k = Uo(ξ) = 1 for 1 ≤ k ≤ n − 2, and ak+1,k = −2ξUo(ξ) + 
U1(ξ). = 0 (by (16)) for 1 ≤ k ≤ n − 1. By multiplication ajk = Uk+1(ξ) − 2ξUk(ξ) + 
Uk−1(ξ) = 0 (by (17)) for j ≤ k ≤ n − 2. This leaves only the last two columns of A. 
By multiplication and (17) column n − 1 contains aj,n−1 = Un−j−1(ξ) − 2ξUn−j(ξ) = 
−Un−j+1(ξ) for j ≤ n − 1 and an,n−1 = −2ξU0(ξ) = −2ξ = −U1(ξ). By multiplication 
column n contains aj,n = Un−j(ξ). Hence A is the n × n matrix 

( ) ( )
( ) ( )

( ) ( )
( ) ( )
( ) ( )

1

1 2

3 2

2 1

1 0

0 0 0
0 0 0
1 0
0 1 0

0
0 0 1

n n

n n

U U
U U

A
U U
U U
U U

ξ ξ
ξ ξ

ξ ξ
ξ ξ
ξ ξ

−

− −

 − 
 − 
 

=  
− 

 −
 

−  





   



  



            (20) 

Upon defining ( )1 0oψ − = , ( )2 0oψ − = , the coefficients c = Aψo can therefore be 
written as2 
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Theorem: The unique solution of IVP (5) for n ≥ 2 with 21ω ξ= − , 
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in which the coefficients ck are given by (21) and Uk(ξ) denotes the kth Cheby-
shev polynomial of the second kind.3 

For given values of ξ and initial conditions, the coefficients in the analytic so-
lution (9) of (5) can be calculated in O(n) time as follows.4 Computation of 

21ω ξ= −  uses two arithmetic operations and one square root. The Cheby-
shev polynomials of zeroth through nth degree can be evaluated at the given 
value of ξ with one multiplication to produce U1(ξ) and two operations each to 
compute the subsequent Uk(ξ) ( 2,3, ,k n=  ) by means of the recurrence rela-
tion (17) (with 2ξ available), for a total of 2n − 1 flops. The coefficients 

0 1, , nc c −  in (9) may each be computed by the four flops appearing in (8) for 4n 
total flops, or in 4n − 2 flops by omitting adds of ( )1 0oψ − = , ( )2 0oψ − = . The coef-

 

 

2The reader should recall that the elements ck, ψk of vectors c, ψ are indexed with k running from ze-
ro to n − 1. 
3In terms of Chebyshev polynomials of the first and second kinds Tk(ξ), Uk(ξ), Equation (9) is also: 
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4The operations count for symbolic representation in terms of arbitrary ξ is different. 
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ficients of ( )e sinξτ ωτ  and ( )e cosξτ ωτ  can then be completed in 8 flops 
since 2ξ, c0, c1 have already been evaluated. Hence, 21ω ξ= −  and the coeffi-
cients in expression (9) for given ξ and given initial conditions can be evaluated 
with one square root and 2 + (2n − 1) + (4n − 2) + 8 = 6n + 7 arithmetic opera-
tions. 

Corollary 1: The value of 21ω ξ= −  and the coefficients of the terms 
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−
 ( 2, , 1k n= − ), ( )e sinξτ ωτ  and ( )e cosξτ ωτ  in Formula (22) for  

the analytic solution (5) of (2) can be computed with 6n + 7 arithmetic opera-
tions and one square root.5 

Elementary example: By Formula (22) find the unique solution of 

( ) ( ) ( )
3 2

3 2

d d d6 25 0; 0 3, 0 3, 0 7
dd d

y y y y y y
tt t

′ ′′+ + = = = − = −         (23) 

Use 

1 1
25 5

aT
c

= = = , 6 3
52 2 25

b
ac

ξ = − = − = −            (24) 

with t = Tτ = τ/5 and the initial values for ψ(τ) = y(Tτ)  

( )0 3oo yψ = = , ( )1 3 5oo Tyψ ′= = − , ( ) 22 7 25oo T yψ ′′= = −         (25) 

Then, by (5) the given IVP has equivalent form 

( ) ( ) ( )
3 2

3 2

d 3 d d2 0; 0 3, 0 3 5, 0
5 d

2
d

7 5
d
ψ ψ ψ ψ ψ ψ

ττ τ
  ′ ′′− − + = = = − = − 
 

   (26) 

whose solution coefficients and ω are computable with one square root and 6 × 3 
+ 7 = 25 arithmetic operations. The Chebyshev values with 2ξ = −6/5 known are 
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By (8), the numerators of the coefficients of the sine, cosine and powers of τ 
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so in (11) with ( )221 1 3 5 4 5ω ξ= − = − − =  

 

 

5The factorials are not in this calculation since for high order problems their inclusion makes under-
flow likely. 
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Since τ = t/T = 5t the solution of the original IVP is 

( ) ( )35 e cos 4 2ty t tψ −= = +                  (30) 

Programming example: The parameters and coefficients of the analytic solu-
tion to (1) can be obtained in decimal form by the simplistic MATLAB/Octave 
function (not optimized and not set up to avoid underflow or overflow) below. 
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Execution of this program with the above IVP example uses the command 
[T,xi,omega,coefs] = IVP_Cheby(1,6,25,[3,−3,−7]) 

And the output is 
T = 0.20000 

xi = −0.60000 
omega = 0.80000 

coefs = 
1.00000 0.00000 2.00000 

4. Sensitivity Analysis 

The derivative of each coefficient (21) with respect to an initial value ( )j
oψ  in 

terms of the Kronecker delta function j
kδ  (augmented with 0j

kδ =  for j < 0 or 
k < 0) by inspection is 
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so the derivative of the solution (22) of (5) with respect to an initial value ( )j
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or, by (17) (that is, by ( ) ( ) ( )1 22n n nU U Uξ ξ ξ ξ− −− + =  and  
( ) ( )( ) ( )1 22n n nU U Uξ ξ ξ ξ ξ ξ− −− = − ) 

 

 

6The derivative of (9) with respect to parameter ξ is also possible, but is not presented here.  

https://doi.org/10.4236/ajcm.2022.124023


D. P. Stapleton 
 

 

DOI: 10.4236/ajcm.2022.124023 339 American Journal of Computational Mathematics 
 

( )

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 2
2

2 3
3

2
!

e cos e sin 2

e cos e sin 1

j

n n
nj

o

n n
n

j n
j

U U
U j n

U U
U j n

ξτ ξτ

ξτ ξτ

τ

ξ ξ ξψ ξ ωτ ωτ
ωψ

ξ ξ ξ
ξ ωτ ωτ

ω

− −
−

− −
−


< −


 −∂ = − = −

∂ 
 −
− + = −


 (34) 

From the Chebyshev relation ( ) ( ) ( )1k k kU U Tξ ξ ξ ξ−− = , in which Tk(ξ) de-
notes the kth Chebyshev polynomial of the first kind, therefore7 
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   (35) 

Equations (35) yield the partial derivatives of ψ with respect to ( )2n
oψ −  and 

( )1n
oψ −  (in particular) at τ = 0 in terms of Chebyshev polynomials. 
Corollary 2: The partial derivatives of the solution ψ(τ) with respect to initial 

values ( )2n
oψ − , ( )1n

oψ − , at τ = 0 are  

( )
( ) ( )21

0
nn

o

U
ψ

ξ
ψ

−−

∂
=

∂
, ( )

( ) ( )31

0
nn

o

U
ψ

ξ
ψ

−−

∂
−

∂
=              (36) 

Elementary example: Find the initial partial derivatives of the solution y(t) to  

( ) ( ) ( )
3 2

3 2

d d d6 25 0; 0 3, 0 3, 0 7
dd d

y y y y y y
tt t

′ ′′+ + = = = − = −        (37) 

(the last example) with respect to each of the initial values ( )0 3y = ,  
( )0 3y′ = − , ( )0 7y′′ = − . 
By (35) and (36) the partial derivatives of the solution y(t) = ψ(τ) at t = 0 with 

respect to the initial conditions are 

( ) ( )
( )

( )

( ) ( )
( )

( )
( )

( ) ( )
( )

( )
( )

0

0

1

11

22
2 2

02

0 0 d 1 1 1
d 0!

0 0 d 3 1 62
d 5 5 25

0 0 d 1 11 1

2

d 5 25

o

o oo

o

o oo

o

o oo

y
y y

y
U T

y y

y
U T T

y y

T

ψ ψ
ψ

ψ ψ
ξ

ψ
ξ

ψ ψ
ξ

ψ

∂ ∂
= ⋅ = ⋅ =

∂ ∂

∂ ∂  = ⋅ ⋅ ⋅ ⋅ − ⋅ = − ′ ′∂  ∂

∂ ∂  = ⋅ = − ⋅ = − ⋅ = − ⋅ = − ′′ ′′∂ 

=

∂

=



=    (38) 

5. Summary 

The unique analytic solution to a nondimensionalized nth order homogeneous 
IVP (5) whose differential equation has derivatives of orders n, n − 1, n − 2 only 
and constant coefficient −1 < ξ < 1 has been expressed using Chebyshev poly-
nomials of the second kind in 6n + 7 arithmetic operations and one square root. 

 

 

7The derivative ψ’(τ) of (9) has similarly derived partial derivatives that are not presented here. 
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This formulation of the solution provides natural Chebyshev polynomial formu-
las for the partial derivatives of the solution with respect to initial values. By 
substitution, the solution and its sensitivity analysis can be applied to the com-
mon problem of solving trinomial homogeneous linear differential equations 
with constant coefficients involving derivatives of orders n, n − 1, n − 2, negative 
discriminant and n initial values. 
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