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Abstract 
In this report, two nontraditional mechanical wave-related issues are addressed. 
1) Customary, for practical reasons the characteristics of the sinusoidal pulses 
progressing at a constant speed only is considered. And 2) the literature search 
shows that there has been no interest in exploring the characteristics of the 
pulses in a curvilinear two-dimensional space. By relaxing the first restriction 
we consider a scenario that which a mechanical pulse progresses with variable 
speed, specifically at a constant acceleration. We develop its equation of mo-
tion conducive to a homogenous linear partial differential equation with va-
riable coefficients then we apply it to a practical problem. To address the 2nd 
point we depict a circular orbital embodying two Gaussian pulses circulating 
in opposite directions. Utilizing a Computer Algebra System (CAS), Mathe-
matica, we develop animations visually easing the comprehension of the is-
sues on hand. 
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1. Introduction 

Generally speaking, most physics texts begin addressing the wave-related issues 
by considering transverse and longitudinal waves. For the former, waves in a 
string and for the latter sound in a gas are considered popular representative ex-
amples. This approach suppresses the fact that waves are composite entities. As 
such wave issues have the potential to be addressed by focusing on the properties 
of its constituents i.e. pluses. By confining the scope of the investigation to the 
mentioned special examples one leaves the “wave chapters” having the notion 
that waves always move at a constant speed. As such formulation developed quan-
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tifying their speeds.  
In this note, we wish to deviate from the traditional norm. We consider suita-

ble non-harmonic pulses. Specifically the localized Gaussian pulses. Then we con-
sider a practical scenario that which the pulse would propagate with a variable 
speed, specifically at a constant acceleration. To be transparent, we confine the 
scope of the investigation to a one-dimensional case and give a practical experi-
ment to its support.  

Following the laid objectives, in the second section of the report, we focus on 
the properties of the mobile signals in a two-dimensional curvilinear space. We 
choose a circle representing the curvilinear space, other shapes such as an ellipse 
or other shapes may be considered as well.  

This report is composed of three sections. In addition to the Introduction, the 
second section embodies a detailed description of our analysis. It contains also 
the needed Mathematica codes [1], the interested reader may duplicate the out-
put. This section also includes a 3D display of two mobile circulating pulses. The 
last section is the Conclusions, explaining what we have learned while developing 
this report.  

2. Procedure  

We begin with constructing a traveling pulse from the ground up. Any reasona-
ble one or multi-variable analytic function depending on the interest may be con-
sidered to represent a pulse. For one dimensional case replacing the argument of 
the function, f(x), by 0x x x→ −  translates the function without altering its shape 
along the positive x-axis by x0. The alternative is to replace 0x x x→ +  translat-
ing the function along the negative direction. The transformation is discrete as if 
the function is jumped by one step. Replacing the discrete parameter x0 with a 
continuous variable the function will slide along one of the mentioned directions 
continuously. In other words, the static function f(x) becomes mobile, i.e., the 
pulse would propagate.  

With this fundamental notion, the entire wave industry is funded, [2] [3] [4] 
[5] [6]. For instance sinusoidal, harmonic transverse waves are given by  
( ) ( )0; siny x t y k x vt= ±   , or longitudinal acoustic waves are  
( ) ( )0; sinS x t s k x vt= ±   , [2] [3] [4]. In these expressions vt with t being the 

continuous parameter, time is substituted for the x0. The linearity of the t para-
meter signifies the uniform motion of the signal. Phenomenons such as wave in-
terference, resonances, etc. are based on the applications of these waves. As pointed 
out in the abstract one leaves the “wave chapters” with the notion that wave mo-
tions are confined to uniform motions, i.e., constants speeds. One of the objec-
tives of our investigation is to extend the scope of the study to include cases that 
which the time variable is not linear. Although any power of time may be consi-
dered, here we focus only on the second order. This corresponds to a motion at a 
constant acceleration. By introducing a practical example we justify the reason 
for our interest.  
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Consider an accelerated pulse by replacing 2
0

1
2

x at→ − , i.e., a pulse that is 

sliding along the positive x-axis with constant acceleration a,  

( ) 21;
2

f x t f x at = − 
 

. To form its equation of motion we calculate its first or-

der partial declivities, 

( ) ( )
( ) ( )

; ;

; ;
x

t

f x t f x t

f x t atf x t

∂ = ′

′


∂ = −

                      (1) 

where the primes are the derivatives w/the argument i.e. x − 1/2at2. Dividing the 
terms of (1) yields, 

( )1 ; 0.x t f x t
at

 ∂ + ∂ = 
 

                     (2) 

Equation (2) is the equation of motion of a pulse that is progressive with a 
constant acceleration a along the positive x-axis. It is useful for the succinctness 
if one defines an operator, Ô , to referee (2), 

ˆ 1: ,x tO
at+ = ∂ + ∂                         (3) 

so that (2) reads, 

2ˆ 1 0.
2

O f x at+
 − = 
 

                      (4) 

For a signal that is sliding along the negative x-axis, one may easily show that 
its equation of motion is subject to an alike (4), 

2ˆ 1 0.
2

O f x at−
 + = 
 

                      (5) 

And for a practical situation when a pulse is set in simultaneous motion along 
both directions the corresponding equation of motion becomes,  

( ); 0,ˆ ˆO O f x t+ − =                        (6) 

where,    

( )
2 2

2 3 2
ˆ ˆ 1 1 1: ,x t tO O

a t at
+ −

 = ∂ + ∂ − ∂ 
 

               (7) 

noting, 0ˆ ˆ,O O+ −
  =  . The bracket is the commutator, meaning the operators 

permute. 
The general solution to (6) is, 

( ) 2 2
1 2

1 1; ;
2 2

f x t c g x at C h x at   = − + +   
   

           (8) 

with C1 and C2 are constants. The g and h represent the accelerated mobile sig-
nals along the mentioned directions.  

Noticing (7) distinguishing itself vs. the “standard” equation of motion. The 
“standard” refers to the motion with a constant speed, [4]. Note also (6) is a li-
near asymmetric homogeneous partial differential equation with variable coeffi-
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cients. It is noted the partial directives are not symmetric. Also note by replacing 
at v→ , (7) becomes closely comparable with the “standard” equation of mo-
tion.   

Here we consider a practical setting putting the developed equation of motion 
into action. Consider a rope, a line with no negligible mass that vertically hangs 
from a ceiling. Assume the line has a length ℓ and mass of m, see Figure 1. For 
sake of simplicity consider a case where the line has a constant mass density. The 
objective is to look into the kinematics of a transverse pulse that originates at the 
free end of the line progressing upward towards the pivot. Figure 1 depicts the 
setting. It is known [2] [3] [4] as the speed “wave” in a massive line with sus-
tained constant tension, T, is,  

,Tv
µ

=                              (9) 

where mµ =


 is the linear massdensity. Assuming this relationship is just for 

the scenario on hand we replace the tension with, 

( ) .T y ygµ=                          (10) 

As shown in Figure 1, y, is an arbitrary point along the line, and g is the grav-
ity acceleration. Substituting (10) in (9) and replacing d dv y t→  the solution 
of the corresponding equation yields, 

21 1 .
2 2

y gt =  
 

                       (11) 

I.e. the pulse crawls upward along the line accelerated with a half acceleration 
of a free fall. Two points: 1) the pulse is not progressing at a constant speed and 
2) its speed increasing at a constant rate, its acceleration is constant. We reason 
this is because, at the bottom of the line where the pulse originates the tension is 
at minimum, T = 0, and at the pivot, the tension is at maximum, T = mg. This is  
 

 
Figure 1. A rope of length L and mass m is hung from a pivot. The origin of the coordi-
nate system is set at the bottom.   
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exactly the opposite of what an upward project does. It is also interesting to note 
that theoretically increasing speed ultimately could reach the light speed. This 
would require a line one-quarter of a light-year long! Note also if the pulse ori-
ginates at the pivot on the way down the line it will decelerate with the men-
tioned characters.  

Based on mentioned theoretical and experimental development, we craft an 
animation. Its snapshot is depicted in Figure 2. Two scenarios are considered. 
The Gaussian pulses are set in upwards motion.  

Manipulate[Rotate[Plot[0.2e^(-5(x-t)^2),{x,-3,10},PlotRange->{0,0.5}, PlotS-
tyle->Thickness[0.008],GridLines→Automatic,PlotLabel→"Const 
Speed"],90Degree],{t,0,8,0.01},ControlPlacement->Top] 

Manipulate[Rotate[Plot[0.2e^(-5(x-t^2)^2),{x,-3,10},PlotRange->{0,0.5}, 
PlotStyle->{Red,Thickness[0.008]},GridLines→Automatic,PlotLabel→"Const 
Acc"],90Degree],{t,0,2.97,0.01},ControlPlacement->Top] 

The code includes two Gaussian signals; ( )25e x t− −  in blue and ( )225
e

x t− −
 in  

red. These two pulses are used because they are localized signals. Harmonic pulses 
are not localized they are not suitable for our honed objectives. The first one cor-
responds to a mobile pulse at a constant speed and the second one corresponds  
 

 
Figure 2. These are two Gaussian localized signals. The left and the right panels depict snap-shots of progressive 
pulses at a constant speed and a constant acceleration, respectively.  
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Figure 3. A 3D orbital housing two circulating pulses are the show. The Gaussian pulses 
are the rotating signals. The blue pulse rotates clockwise while the red one rotates coun-
ter-clockwise, respectively. The green signal is the superposed signal.  
 
to the accelerated case, respectfully. As shown these two signals by preserving 
their original shapes move at different rates distancing different distances. The 
time duration of these animations is 2.97 s. The left panel in blue is the constant 
speed, and the right panel in red is the constant acceleration. Clearly, these show 
their differences.  

We conclude this report by considering a pulse-related issue that is skipped 
attention in the literature [5] [6] [7]. Figure 3 depicts the case of interest. A cir-
cular orbital houses two localized Gaussian pulses circulating in opposite direc-
tions; clockwise and counterclockwise, respectively. The kinematics of the mo-
tions are optional. Meaning each pulse may rotate uniformly or at constant ac-
celeration. The question of interest would be to analyze the feature of their in-
terference pattern, resonances, etc. Figure 3 shows two such pulses; the blue pulse 
moves clockwise while the red rotates counter-clockwise. The green signal is the 
result of their superposition. The code conducive to the shown scenario and its 
corresponding analysis is left in the interest of the reader.   

3. Conclusions  

The main interest of this investigating report is to show that there are numerous 
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unattended issues in the wave-elated phenomena. The most common issues re-
lated to the progressive waves are discussed at the introductory level in physics 
textbooks. As pointed out one leaves the “wave chapters” thinking that waves 
only travel at a constant speed. And that the waves are only sinusoidal. Yet, if 
one views the localized pulses as massless marbles one may establish a compre-
hensive interchangeable feature amongst them. As such we develop a theoretical 
base describing accelerated progressive pulses and support the theory with a 
plausible experimental setting. Although we limited the theory to the pulsating 
motion at constant acceleration our view may be extended to include higher-order 
time dependencies; i.e., variable acceleration. It is left to the interest of the reader 
to explore the features such as super-positioning of the traveling pulses by adapt-
ing Gaussian signals. The kinematics of the signals might exhibit interesting fea-
tures.  

The graphs in this report are made with Mathematica. Interested readers may 
find [8] [9] resourceful.  
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