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Abstract 
In the experimental field, researchers need very often to select the best subset 
model as well as reach the best model estimation simultaneously. Selecting 
the best subset of variables will improve the prediction accuracy as nonin-
formative variables will be removed. Having a model with high prediction 
accuracy allows the researchers to use the model for future forecasting. In this 
paper, we investigate the differences between various variable selection me-
thods. The aim is to compare the analysis of the frequentist methodology (the 
backward elimination), penalised shrinkage method (the Adaptive LASSO) 
and the Least Angle Regression (LARS) for selecting the active variables for 
data produced by the blocked design experiment. The result of the compara-
tive study supports the utilization of the LARS method for statistical analysis 
of data from blocked experiments. 
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1. Introduction 

Variable selection and statistical modelling are extremely useful in two aspects: 
prediction accuracy and clear interpretation. Prediction accuracy can be im-
proved by removing the un-significant variables or shrinking them toward zero 
to have almost no effect on the response surface variable. This method reduces 
the variance of the predicted values and improves the overall prediction accuracy. 
Moreover, we often like to have a smaller and more meaningful model for good 
interpretation. Ensuring the selected model has the highest prediction accuracy 
will allow the model to be used for future predictions. Parallel to this, selecting 
the simplest model by avoiding uninformative variables, which often do not in-
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fluence the response variable, is also crucial to enhancing scientific analysis. By 
removing the noninformative or nonactive variables, the predictive ability of 
models can be improved and parsimoniously describe the relationship between 
the informative, or active variables and the response variable. Variable selection 
issue refers to obtaining an adequate subset of variables for the model. The sub-
ject of variable selection in linear regression analysis is a remarkable subject. The 
experimenter initially may be uncertain about the most influential structure of 
the model. It might be unclear whether all the variables should be included in 
the model or if only some of them have significant effects on the response varia-
ble. Therefore, the variable selection procedure builds a regression model with 
an appropriate subset of variables.  

As part of the former studies in this field, [1] and [2] proposed a shrinkage 
technique. They defined the regularisation methods by adding a penalty function 
to the residual sum of squares, and minimization or maximization of the pena-
lised function with respect to the coefficients yields penalised likelihood estima-
tors. Moreover, [3] discussed the penalised method for the linear mixed model. 
In their study, they dealt with supersaturated designs as they are very cost-effective 
with respect to the number of runs. This kind of design is very desirable in in-
dustrial experiments. They introduced a nonconvex penalised least squares ap-
proach. However, their study added the penalty function to the least square es-
timator while they deal with supersaturated experiments in which correlated da-
ta is expected. In [4] and [5], they overcome the problem of correlated data and 
selecting variables in a linear mixed model context by adding the penalty func-
tion to the generalised least square (GLS) estimator in which the two variance 
components will be estimated by the restricted maximum likelihood (REML) es-
timator. Furthermore, [6] developed the method of block deletion and block ad-
dition to fit high-dimensional data sets. They developed the threshold method. 
In their approach, they set a threshold value with the approximation error eva-
luated using the data. While the variable selection process is running, the error 
will be approximated and updated for the new model. The next step will use the 
updated threshold value and process the variable selection again. This updating 
prevents deleting useful variables. The aim of this paper is to compare the analy-
sis of the frequentist methodology (the backward elimination), penalised shrin-
kage method (the Adaptive LASSO) and the Least Angle Regression (LARS) for 
selecting the active variables for data produced by the blocked design experiment. 
A simulation study using the design of the blocked experiment was also applied 
to support the comparative study.  

The work by [4] differs from this work in which they did not apply the Adap-
tive LASSO to the pastry dough experiment. Also, the work by [5] has not stu-
died the blocked design and the pastry dough experiment. 

2. Linear Mixed Model and Analysis 

The model for the block experiments includes two types of errors: block error 

https://doi.org/10.4236/ajcm.2022.122013


S. M. Aljeddani 
 

 

DOI: 10.4236/ajcm.2022.122013 218 American Journal of Computational Mathematics 
 

and residual error. Hence, linear mixed models (LMMs) are used to analyse res-
ponses from the blocked experiments.  

Linear mixed-effects models (LMMs) introduce correlations between observa-
tions using random effects. This leads to the use of generalised least squares (GLS) 
estimation, combined with restricted maximum likelihood estimation (REML) of 
the variance components as will be discussed. This type of analysis is used by the 
most design of experiments textbooks that deal with blocked designs. In matrix 
notation, the model corresponding to a blocked design is written as  

 ,= + +Y X Zβ γ                           (1) 

where Y  is 1n×  vector of observations on the response of interest, X  is the 
n p×  model design matrix containing the polynomial expansions of the m fac-
tor levels at the n experimental runs, β  is the 1p×  vector of unknown fixed 
parameters, Z  is an n b×  random design matrix which represents the alloca-
tion of the runs to blocks, and whose ( ),i j th element is one where the ith ob-
servation belongs to the jth blocks, and zero otherwise. If the runs of the experi-
ment are grouped per block, then Z  is of the form  

 
1 2

diag , , , ,
bk k k =  Z 1 1 1                     (2) 

where k1  is a k vector of ones, and 1 2, , , bk k k  are the blocks sizes. The ran-
dom effects of the b blocks are contained within the 1b×  vector γ , and the 
random errors are contained within the 1n×  vector  . It is assumed that γ  
and   are independent and normally distributed, i.e. ( )Cov , b n×= 0γ  , where 

b n×0  is the b n×  matrix of zeros. Hence, ( )2~ N ,b bγσ I0γ , and  

( )2~ N ,n nσ I0 , where b0  and n0  are the b and n column vectors of zeros re-
spectively, and bI  and nI  are the b-dimensional and n-dimensional identity 
matrices respectively. 

Under these assumptions, Y  is a normally distributed random variable with 
mean ( ) =Y X β , and the variance-covariance matrix of the response Y  can 
be written as  

( ) ( )Var Var= = + +V Y X Zβ γ                (3) 

 ( ) ( )Var Var= +Zγ                        (4) 

 ( ) 2Var nσ′= +Z Z Iγ                       (5) 

 2 2 .nγσ σ′= +ZZ I                           (6) 

V  can be given as a block diagonal,  

1

2

0 0
0 0

,

0 0 b

 
 
 =
 
 
 

V
V

V

V





   



 

where  
2 2 ,

i i ii k k kγσ σ ′= +V I 1 1  
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and  
2 2 2 2

2 2 2 2

2 2 2 2

.i

ε γ γ γ

γ ε γ γ

γ γ ε γ

σ σ σ σ
σ σ σ σ

σ σ σ σ

 +
 

+ =  
 

+  

V





   



 

As a result, the variance-covariance matrix iV  of all observations within one 
block is compound symmetric: the main diagonal of the matrix contains the va-
riances of the observations, while the off-diagonal elements are covariances. How-
ever, iV  can be rewritten as  

 
2

2
2i i i ii k k k kV γσσ

σ×

 
′= +  

 
I



1 1                    (7) 

 ( )2 ,nσ η ′= +I ZZ                        (8) 

where 2 2
γη σ σ=   is a measure for the extent to which observations within the 

same block are correlated. The larger this variance ratio, the stronger observa-
tions within the same block are correlated. 

When the random error terms as well as the group effects are normally distri-
buted, the maximum likelihood estimate of the unknown model parameter β  
in Equation (1) is the generalised least squares (GLS) estimate. Detecting the es-
timator β̂  of β , requires to minimise  

 ( ) ( )1 1 1 12− − − −′ ′ ′ ′ ′ ′− − = − +y X V y X y V y X V y X V Xβ β β β β      (9) 

with respect to β , which is tantamount to detecting β̂ , so that  

 ( )1 1ˆ .− −′ ′=X V X X V yβ                     (10) 

Therefore, the generalised least squares (GLS) estimator of β  is 

( ) 11 1ˆ ,
−− −′ ′= X V X X V Yβ                   (11) 

and the variance-covariance matrix of the estimators is given by  

 

( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( )
( ) ( )( )
( )

11 1

1 11 1 1 1

1 11 1 1 1

1 11 1 1

11

ˆVar Var

Var

.

−− −

− −− − − −

− −− − − −

− −− − −

−−

′ ′=

′
′ ′ ′ ′=

′ ′ ′=

′ ′ ′=

′=

X V X X V Y

X V X X V Y X V X X V

X V X X V VV X X V X

X V X X V X X V X

X V X

β

       (12) 

Often, the variances 2
γσ  and 2σ   are not known and therefore, Equation (11) 

and Equation (12) cannot be used directly. Instead, the estimates of the variance 
components, 2ˆγσ  and 2σ̂  , are substituted in the GLS estimator as in Equation 
(11), yielding  

 ( ) 11 1ˆ ˆ ˆ ,
−− −′ ′= X V X X V Yβ                   (13) 
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where  

 2 2ˆ ˆ .n γσ σ ′= +V I ZZ                        (14) 

In that case, the variance-covariance matrix in Equation (12) can be approx-
imated by  

 ( ) ( ) 11ˆ ˆVar .
−−′= X V Xβ                     (15) 

The generalised least square (GLS) estimator is unbiased, meaning that  

( )ˆ = β β , and is equal to the maximum likelihood estimator (MLE). The like-
lihood function defined as it is the joint probability density function for the ob-
served data examined as a function of the parameters. Hence, the likelihood func-
tion for Y  in Equation (1) is 

( ) ( ) ( ) ( )1 22 11| 2 exp ,
2

nL −− − ′= − − − 
π


Y V Y X V Y Xβ β β    (16) 

where π is a constant which does not depend on β . The maximum likelihood 
estimator (MLE) is the estimator that maximises the likelihood function, which 
is tantamount to detecting the β̂  as  

 ( )ˆ | 0,L∂
=

∂
Yβ

β
                      (17) 

which is equal to  

 ( )ˆln | 0,L∂
=

∂
Yβ

β
                     (18) 

where ( )ˆln |L Yβ  is the log likelihood function. As Equation (9) is proportio-
nate to log of Equation (16), the GLS estimator in Equation (11) is the result of 
Equation (17) and Equation (18).  

Moreover, V  can be estimated when observed data is obtained. In this work, 
we used the Restricted Maximum Likelihood (REML) estimator to estimate V . 
According to [7], “REML requires the transformation of the response to remove 
the influence of the other model parameters followed by the maximisation of the 
likelihood for these transformed responses”. The likelihood in REML includes 
knowledge about the variance components yet does not include knowledge about 
the fixed effects [8]. 

The restricted maximum likelihood (REML) used to estimate 2σ   and 2
γσ  is  

 ( ) ( ) ( )2 2 1 1
REML

1 1 1 ˆ ˆ, ; ln ln ,
2 2 2

l γσ σ − −′′= − − − − −Y V X V X Y X V Y X β β  (19) 

where β̂  is defined in Equation (13). The restricted log-likelihood  

( )2 2
REML , ;l γσ σ Y  is minimised with respect to the variance components 2σ   and 

2
γσ  to obtain an unbiased estimate for the variance components. In this work, 

REML is minimised by using the function “fmincon” in Matlab. 

3. The Backward Elimination Method 

Backward elimination starts with the full model, and then the least significant 
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variable, which corresponds to the highest p-value above a significance level α, 
will be dropped. The reduced models in each step are re-fitted by following the 
rule of significance level until all remaining variables are statistically significant 
meaning the corresponding variable has a p-value ≤ α. 

We did the generalised least square estimator using the backward elimination 
to compare with other methods. The relative theory of the Backward elimina-
tion starts with the full model and eliminates one variable at a time based on the 
Wald (Wa) test statistic. The Wald test statistic is suitable to compare nested 
models when the variance-covariance matrix changes after each drop. We esti-
mate the variance components 2σ   and 2

γσ  by REML using the full model, so 
we deal with the Wald test statistic as the variance components are known. We 
used the Wald test statistic at the 5% significance level, and we compare nested 
models through the process of backward elimination. Assuming that y  is nor-
mally distributed and the variance components are known, we test the hypothe-
sis:  

0 1: 0 vs : 0i iH Hβ β= ≠  

The Wald (Wa) test statistic will follow an F distribution with 1 and r degrees 
of freedom.  

 ( )

2

1,2

ˆ
~i

r
ii

F
β
σ

=Wa                       (20) 

where 2
iiσ  is the ( ),i i th element of ( )ˆVar β . The degrees of freedom in a sta-

tistical calculation represents how many values are involved in a calculation that 
has the freedom to vary. The degrees of freedom can be defined as they are equal 
to the number of independent observations minus the number of parameters. 
The degrees of freedom could be calculated to guarantee the statistical accuracy 
of tests statistics such as chi-square tests, t-tests and F-tests. Often, these tests are 
utilized to make a comparison between the observed data with the data that could 
be expected to be achieved according to a particular hypothesis. 

4. Adaptive LASSO Shrinkage Method (ALASSO) 

To overcome the drawbacks in the classical approaches of variable selection, [1] 
and [2] proposed regression modelling by regularisation technique. This tech-
nique prevents overfitting by restricting the model, typically to reduce its com-
plexity. The regularisation methods are based on shrinkage penalties, where pe-
nalty functions are added to the residual sum of squares or subtracted from the 
log-likelihood, and minimisation or maximisation of penalised functions with 
respect to coefficients yields penalised likelihood estimators. The shrinkage pe-
nalty method can be explained as there is a penalty for any nonzero estimate of 
the model when we minimise the sum of the squared residuals. Thus, the penalty 
will shrink the size of the estimated coefficients toward zero. It places a con-
straint on the size of the regression coefficients [9] [10]. Shrinkage methods do 
not explicitly select variables, instead, they minimise the sum of the squared re-
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siduals by applying a penalty on the size of the estimated coefficients. They have 
the advantage of selecting variables and estimating the coefficients simultaneous-
ly. The advantage of shrinkage methods is that their use often improves the pre-
diction accuracy and helps with the selection of a more parsimonious model, 
though there is a trade-off between bias and the variance of the final model (see 
[11] [12]). 

Based on the size of the estimated coefficients, the penalised estimates might 
be only shrunk in the size while in the case of small estimated coefficients, it is 
more likely the penalised estimates will be set to zero. Hence, the choice of the 
shrinkage parameter λ  is sensitive and important. Unlike traditional subset se-
lection, penalised regression is a continuous process as it shrinks the size of the 
coefficients and yields stable models with low prediction errors. However, as 
some shrinkage penalty functions shrink the size of the coefficients towards zero 
and not explicitly zero in the case of large size of estimated coefficients or the 
case of a very small amount of shrinkage parameter λ , the resulting models in 
such case suffer from complexity and overfitting. 

For linear mixed models, the penalised generalised least squares estimates have 
been discussed by [3], it can be found by minimising  

 ( ) ( ) ( ) ( )1
PGLS

1

1 ,
2

d

j
j

p
n λ β−

=

′= − − +∑Q Y X V Y Xβ β β       (21) 

with respect to β , where 2 2ˆ ˆ ˆn γσ σ ′= +V I ZZ , and d is the number of the model 
coefficients β . The expression ( ).pλ  is a penalty function and the shrinkage 
parameters λ  is an unknown strictly positive thresholding parameter, which is 
often selected using information selection criteria after setting a grid for λ . In 
this work, we set a grid from 0 to 3. However, researchers can set any grid, this 
choice is suitable for the data that we used, and the effects size assumed in the 
simulation. It is assumed that 1 t cp v= + +K , such that tp  is the number of 
the active fixed parameters in the fitted penalised least squares model [13]. The 

tp  can then be computed as { } 11 1ˆ ˆ ˆtrtp
−− − ′ ′= +  

X X V X W X V , where Ŵ  is 
a penalty matrix [3]. The cv  is the number of variance components that are 
used in fitting the penalised model. The following information selection criteria 
can be used in selecting the shrinkage parameters λ . Akaike Information Crite-
rion (AIC) is given by,  

ˆAIC 2 2ln .L= −K  

We illustrate the algorithim of the PGLS as follows:  
1) Let ( )0β  be the generalised least squares estimator GLSβ̂  as in Equation 

(13), for the full model, a model fitted by all the variables in the experiment, and 
2σ̂  , 2ˆγσ  be the REML estimates of the variance components for this model. 
2) (a) Set a grid for λ  with l  values 1 2, , , lλ λ λ  for each grid.  
(b) For 1, 2, ,i l=   of the grid, use iλ  to estimate the model parameters of 

the corresponding tuning.  
(c) For 1, 2, ,i l=   of the grid, choose iλ  that minimises ( )AIC iλ  for λ .  
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(d) Return λ .  
3) (a) Set ( )0β  as the GLS estimator and λ  given from the previous loop.  
(b) We set the ( )SE β̂  as our proposed threshold to find out if the estimates 

are statistically significant or not, where ( ) ( )ˆ ˆV rSE aβ β=  in Equation (15) is 
the standard error of β̂ . Thus, we set values of ( )ˆ ˆSE≤β β  equal to zero.  

(c) All other (nonzero) coefficients are jointly updated using  

( ) ( ){ } 11 01 1ˆ ˆ ˆ ,
−

− −′ ′= +X V X W X V Yβ  

where ( )1β̂  is the vector of collecting all nonzero coefficients, and ( )0W  is a 
penalty matrix for the initial values ( )0β̂  which it can be defined as  

( )
( )( )

( )

( )( )
( )

*

*

00
10

0 0
1

ˆˆ
diag , , ,

ˆ ˆ
d

d

pp λλ ββ

β β

 ′′ =  
 
 

W   

where the *d  is the total number of nonzero model coefficients.  
(d) Any elements of ( )1β̂  that are ( )ˆ ˆSE≤β β  are set to zero and the non-

zero coefficients are jointly updated along with the matrix ( )0W .  
(e) Steps (c) to (d) are repeated until convergence takes place and no more 

factors can be removed.  
4) Denote β̂  the final estimates of the nonzero model coefficients and Ŵ  

the corresponding estimated W  penalty matrix.  
The covariance of the nonzero parameter estimates can then be obtained from 

the sandwich formula [3]:  

  ( ) ( ) ( )1 11 1 1ˆ ˆ ˆ ˆ ˆ ˆcov
− −− − −′ ′ ′= + +X V X W X V X X V X Wβ       (22) 

The nonsignificant variables will be removed from the model, however, their 
indices will be saved and replaced with zero indicating that the variables have 
been removed.  

[14] proposed the Adaptive LASSO (ALASSO) to obtain consistency in varia-
ble selection and prediction accuracy. ALASSO based on using a weighted (L1), 
the LASSO penalty with weight determined by an initial estimator. Recall the 
PGLS in Equation (21), the penalty term by ALASSO is,  

( ) 

1
,

d

jj
j

p wgλ β λ β
=

= ∑  

the vector of the weights    ( )1 2, , , dwg wg wg wg ′=   are the adaptive data-driven 
weights, where  jwg , 1, ,j d=   can be constructed by  ( )( )0ˆ

jjwg
ψ

β
−

= , where 
ψ  is a positive constant and ( )0β̂  is GLSβ̂  [14].  

To construct the adaptive weights wg , [14] suggested to pick a 0ψ > . We  

take a fixed ψ  such that 
2

1
µψ
µ

>
−

, where 0 1µ≤ < . In our numerical studies, 

we let 2 1
1
µψ
µ

 
= + − 

 as used by [15] to avoid the tuning of ψ . In their study,  

they concluded that for any 0 1µ≤ < , we can choose an appropriate ψ  to  
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construct the adaptive weights and the oracle property holds as long as 
2

1
µψ
µ

>
−

.  

These weights cause less shrinkage to more important predictors, which leads to 
consistent variable selection results. In this work, we set 0.8ψ =  as this choice 
was according our simulation study. We found that this choice provided the 
lowest Type I and II error rates among the choices that have been investigated 
during our research process. 

5. Least Angle Regression Method (LARS) 

Least Angle Regression (LARS) is a relative method proposed by [12], and can 
be viewed as a kind of “democratic” version of forward stepwise regression. The 
forward stepwise regression builds a model sequentially, adding one variable at a 
time. At each step, it identifies the best variable to include in a set which con-
tains only active variables which considered to be statistically significant, and 
then update the least squares fit to include all the active variables. 

The LARS algorithm has been described in [12]. Let X  is the n p×  design 
matrix for p factors. Let ˆˆ = Xµ β  be the LARS estimates of the response, and 
β̂  be the generalised least square estimate of the vector of coefficients. The 
LARS procedure works as follows:  

1) Begin at 0ˆ 0µ =  and set all coefficients to zero.  
2) Find the variable, say 1x , which is most correlated with the response.  
3) Fit the model using the generalised least square estimator in the direction 

of 1x  (or 1u , the unit vector along 1x ) until another variable, say 2x , has as 
much correlation with the current residual as 1x  does.  

4) At this point, the LARS estimate is updated to 1 0 1 1ˆˆ ˆ uµ µ γ= + , where 1̂γ  is 
chosen such that the current residual 1ˆy µ−  bisects the angle between 1x  and 

2x .  
5) Instead of continuing along 1x , LARS proceeds in the direction of 2u , the 

unit bisector of the two variables 1x  and 2x , until a third variable 3x  earns its 
way into the most correlated set.  

6) Now the LARS estimate is updated to 1 1 2 2ˆˆ ˆ uµ µ γ= + , where 2γ̂  is chosen 
such that the current residual 2ˆy µ−  has equal angles with 1 2,x x , and 3x .  

7) LARS then proceeds along 3u , the equiangular unit vector, i.e. along the 
least angle direction, until a fourth variable enters, etc. LARS builds up esti-
mates in successive steps, in each step adding one variable to the model, so only 
p steps are required for the full set of solutions, where p is the number of va-
riables.  

The LARS algorithm in [12] provides the ordinary least square estimates. AljS 
modifed the LARS to deal with mixed effect models as follows: researcher needs 
to either weight the data as * =X C X  and * =Y CY , where 1−=C V , and 
apply the lars function in the “lars” package in R. Othewise, researcher needs to 
modify the Gram matrix 1−′=G X V X  to calculate the generalised least square 
estimator (GLS) in the lars function in Matlab. 
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6. Real Data Application 

In this work, we demonstrate the differences of the variable selection methods 
which we studying on the nonorthogonally blocked response surface experiment. 
The real dataset for the pastry dough experiment has been used to apply the 
backward elimination, the Adaptive LASSO, and the LARS approaches. The es-
timated coefficients were obtained as well as the standard errors using all me-
thods. The estimated variance components using REML in Equation (19), have 
been reported as well. We apply the methods in Sections 3, 4, and 5 using equa-
tions (20), (21), and the LARS algorithm to estimate the coefficients and the va-
riance components. Also, we computed the GLS estimator using Equation (11). 
The standard errors are computed using the sandwich formula in Equation (22).  

7. Analysis of the Pastry Dough Experiment 

The design of the pastry dough experiment is nonorthoganally blocked response 
surface design. The design and the responses described in [16]. The factors in-
vistigated in the experiment were the feed flow rate (x1), the initial moisture 
content (x2), the screw speed of mixing process for pastry dough (x3). The pur-
pose of the experimenter was to understand how the various properties of the 
dough depend on these three factors and how to develop an overall control 
scheme based on the experimental results. It was decieded that seven days of ex-
perimentation were affordable, so that 28 runs could be performed. We will ap-
ply our three variable selection methods on the response of measure the light 
transmission in bands of spectrum. The data of the experiment are given in Ta-
ble 1. A full second order model in the three explonatory variables was used to 
explain the behavior of the response. The jth observation within the ith block 
can be expressed as  

3 3 3 3
2

0
1 1 1 1

ij i i ij i j ii i i ij
i i j i i

y x x x xβ β β β γ ε
= = = + =

= + + + + +∑ ∑ ∑ ∑  

The variance compenents were estimated using the GLS-REML in the work by 
[17] as the 2ˆ 0.09695σ =  and 2ˆ 0.9703γσ = . The estimates for the ten parame-
ters of the full quadratic model for the response are displayed in Table 2. The 
table contains the estimates obtained using the generlaised least square estimator, 
backward elimination, adaptive lasso, and least angle regression estimators. The 
REML has been used to estimate the variance components from the full quadratic 
model in this work. We found that both 2ˆ 0.09695σ =  and 2ˆ 0.9702γσ = , sim-
ilar to the reults given by [17]. We note that the LARS method yield in a simillar 
model subset to the GLS in the original work by [17]. 

8. Simulation Study 

To examine our methods, we need to run simulation studies in order to find out 
how the resulting model will be compared to the true model which used in the 
simulation. In the simulation, we set 2 2 10ε γσ σ+ = , and the variance components  
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Table 1. Data for the pastry dough mixing experiment. 

obs. Block x1 x2 x3 y 
1 1 −1 −1 −1 12.92 
2 1 −1 1 1 13.91 
3 1 1 −1 1 11.66 
4 1 1 1 −1 14.48 
5 2 −1 −1 1 10.76 
6 2 −1 1 −1 14.41 
7 2 1 −1 −1 12.27 
8 2 1 1 1 12.13 
9 3 −1 1 −1 14.22 
10 3 0 −1 0 12.35 
11 3 1 0 0 13.50 
12 3 0 0 1 12.54 
13 4 1 −1 1 10.55 
14 4 −1 0 0 13.33 
15 4 0 1 0 13.84 
16 4 0 0 −1 14.19 
17 5 −1 −1 −1 11.46 
18 5 1 1 1 11.32 
19 5 0 0 0 11.93 
20 5 0 0 0 11.63 
21 6 −1 −1 1 12.20 
22 6 1 1 −1 14.78 
23 6 0 0 0 14.94 
24 6 0 0 0 14.61 
25 7 −1 1 1 12.17 
26 7 1 −1 −1 11.28 
27 7 0 0 0 11.85 
28 7 0 0 0 11.64 

 
Table 2. Estimated coefficients and standard errors (in parentheses) for the pastry dough experiment for y1 by the Backward eli-
mination, Adaptive Lasso (ALASSO) and the LARS. The last row is the estimated coefficients and p-values (in parentheses) from 
[17]. 

Method intβ  
1x

β  
2xβ  

3xβ  
1 2x xβ  

1 3x xβ  
2 3x xβ  2

1x
β  2

2x
β  2

3x
β  

Backward 13.1263 −0.1894 0.8783 −0.7094 −0.1749 0 0 0 −0.5926 0 

 (0.3821) (0.0774) (0.0775) (0.0775) (0.0925) (−) (−) (−) (0.1463) (−) 

ALASSO 13.1183 −0.1894 0.8783 −0.7092 −0.1874 0 0.1795 0 −0.4754 0 

 (0.3633) (0.0824) (0.0746) (0.0737) (0.0875) (−) (0.0837) (−) (0.1598) (−) 

LARS 13.1249 −0.1894 0.8783 −0.7094 0 0 0 0 −0.5904 0 

 (0.3634) (0.0846) (0.0846) (0.0846) (−) (−) (−) (−) (0.1713) (−) 

GLS 13.1960 −0.1894 0.8783 −0.7094 0 0 0 0 −0.4303 0 

 (0.3910) (0.0734) (0.0734) (0.0734) (−) (−) (−) (−) (0.1877) (−) 
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ratio to two different levels, 1η =  and 10. Similar values for η  have been used 
for the analysis of data from many blocked and split-plot experiments (see, for 
instance, [18] and [16]). We generate 1000 datasets using the design structure 
from the motivating experiment in Table 1 for the pastry dough design. Given 
the assumed true model, we compare the performance of the backward elimina-
tion, ALASSO, and LARS. We focus on the properties of the estimated models 
by investigating the following properties:  

1) Consistency in variable selection (frequency in selecting the active/nonactive 
variable).  

2) Prediction performance.  
For point 1, at 5% significant level, we report Type I error rate (an effect that 

is truly not significant but the corresponding procedure estimate indicates that it 
is significant). We also report Type II error rate (an effect that is truly present 
but the corresponding procedure estimate indicates that it is not significant). 

For point 2, following [9] and [19], prediction accuracy is measured by com-
puting the mean-squared error for each penalised estimate ˆ

λβ  as,  

( ) ( ) ( )ˆ ˆ ˆ .λ λ λ
′= − −X X X XME β β β β β  

The relative model error (RME) is the ratio of the model error of the pena-
lised estimates to the model error for the GLS estimates of the fixed effects,  

( )
( )GLS

ˆ
,

ˆ
λ

=
ME

RME
ME

β

β
 

where GLSβ̂  in Equation (13) is the generalised least squares estimator of β . 
The median of the relative model error (MRME) over 1000 simulated data sets 
were reported. MRME values greater than one indicate that the methods esti-
mates perform worse than the GLS estimates, values near to one indicate that the 
the methods estimates performs in a similar way to the GLS estimates, values less 
than one indicate that the methods estimates performs better than the GLS esti-
mates.  

9. Simulation Study Using the Design of the Pastry Dough  
Experiment 

A simulation study was performed to examine the performance of the backward, 
ALASSO and LARS estimates. Using the design of the pastry dough experiment 
from Table 1, the response variable was generated given the true model  

( ) 2 2
1 2 1 2 1 24 2 4 4 2 .x x x x x x= + − + +Y  

In this experiment, five active variables 2
1 2 1 2 1, , ,x x x x x  and 2

2x  and four nonac-
tive variables 3 1 3 2 3, ,x x x x x  and 2

3x  were assumed. We assumed this model as 
we would like to check a model with variety of factor types. Type I and II error 
rates of the design for the pastry dough experiments obtained using the back-
ward, ALASSO, and LARS methods are given Table 3 and Table 4. Firstly, with  
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Table 3. Type I error rate for the pastry dough design. 

True nonactive variable η  3x  1 3x x  2 3x x  2
3x  

Method  0 0 0 0 

Backward 1 0.050 0.069 0.091 0.330 

 10 0.045 0.050 0.089 0.131 

ALASSO 1 0.050 0.066 0.077 0.265 

 10 0.049 0.051 0.070 0.202 

LARS 1 0.049 0.051 0.071 0.175 

 10 0.040 0.046 0.050 0.096 

 
Table 4. Type II error rate for the pastry dough design. 

True active variable η  1x  2x  1 2x x  2
1x  2

2x  

Method  4 2 −4 4 2 

Backward 1 0.012 0.333 0.020 0.323 0.807 

 10 0.011 0.301 0 0.005 0.774 

ALASSO 1 0 0.220 0 0.166 0.884 

 10 0 0.135 0 0.004 0.691 

LARS 1 0 0.136 0 0.077 0.489 

 10 0 0.098 0 0 0.409 

 
regard to Type I error rate, for the main effects lie between 0.040 to 0.050 at both 
levels of η  which is acceptable. The interaction effects are noticebly larger and 
run in the range of 0.046 to 0.091. The LARS method recorded the least Type I 
error rates at 1η =  and 10 for all effects. The quadratic effects yield in large 
Type I error rate in both levels 1η =  and 10 as this factor was hard to estimted 
as nonactive by all methods. However, the LARS yield in the lowest Type I error 
rate at 1η =  by rate of 0.175 and 10η =  by rate of 0.096. The quadratic ef-
fects are nearly not orthogonal to the blocks as the main effects and the two- 
factor interaction effects as made it difficult to estimate.  

Secondly, with respect to the Type II error rate, the larger size of main and in-
teraction effects was correctly estimated by almost no or few errors by all me-
thods. In contrast, smaller size main and quadratic effects were hard to detect. 
However, the LARS method yields smaller Type II errors than the other methods. 
We notice that by the increase of the η  value, the type error rates are reduced. 
This can be explained as the fact that the large value of η  correspond to small  

values of 2σ   as 
2

2
γση

σ
=



. This yields in smaller standard errors for each factor 

effect.  
We found that the block design with correlated data affects the performance 

of the methods as well as the trade-off between Type I and Type II error rates. 
The analysis from the simulation study which used the nonorthogonal design  
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Figure 1. Median relative model error (MRME) for the pastry dough design. 
 
from the pastry dough experiment showed that the LARS followed by ALASSO 
could control the Type II error rate at bot 1η =  and 10 better than the back-
ward elimination. Furthermore, the Type I error rate was hard to control by 
backward and ALASSO at 1η =  and almost at 10η =  for all nonactive va-
riables, especially for the quadratic effect 2

3x . The LARS at 10η =  performs 
better than the other methods with respect to controlling the Type I error rate. 

Finally, with regard to the median relative model error (MRME), from Figure 
1, we note that all methods have lower MRME than the GLS estimator method at 

10η = . However, the LARS method has the lowest MRME. This indicates to the 
LARS has better performance than the GLS estimates. We conclude that the 
LARS method has the best performance among all methods used in the simula-
tion. 

10. Conclusion 

This paper provided an analysis of data from blocked experiments using a moti-
vating example from the industrial environment. Specifically, we recommend 
the use of the modified LARS method for variable selection in the blocked expe-
riments. In our results, we observed that the LARS can identify the active va-
riables (linear, two-factor interaction and quadratic), much better than the tradi-
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tional used GLS method combined with backward elimination and the Adaptive 
LASSO shrinkage method. However, as expected this comes with the expense of 
slightly higher Type I error rates. We also observed a better prediction perfor-
mance for the models chosen by the LARS compared to the models chosen by 
the other two methods. 
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