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Abstract 
This work presents the application of the recently developed “Fifth-Order 
Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Sys-
tems (5th-CASAM-N)” to a simplified Bernoulli model. The 5th-CASAM-N 
builds upon and incorporates all of the lower-order (i.e., the first-, second-, 
third-, and fourth-order) adjoint sensitivities analysis methodologies. The 
Bernoulli model comprises a nonlinear model response, uncertain model pa-
rameters, uncertain model domain boundaries and uncertain model boun-
dary conditions, admitting closed-form explicit expressions for the response 
sensitivities of all orders. Illustrating the specific mechanisms and advantages 
of applying the 5th-CASAM-N for the computation of the response sensitivi-
ties with respect to the uncertain parameters and boundaries reveals that the 
5th-CASAM-N provides a fundamental step towards overcoming the curse of 
dimensionality in sensitivity and uncertainty analysis. 
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1. Introduction 

This work presents the application of the recently developed [1] “Fifth-Order 
Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Sys-
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tems (5th-CASAM-N)” to a simplified Bernoulli model [2] comprising a nonli-
near model response, uncertain model parameters, uncertain model domain 
boundaries and uncertain model boundary conditions. As is well known [2], the 
Bernoulli nonlinear differential equation admits exact solutions. The demonstra-
tion model selected for illustrating the application of the 5th-CASAM-N is a spe-
cial case of the Bernoulli equation with quadratic nonlinearity, which is also 
called [2] the logistic differential equation and is used in economics.  

This work is structured as follows: the illustrative Bernoulli model, including 
the paradigm nonlinear model response, is detailed in Section 2, which also 
presents the application of the 1st-CASAM-N illustrating the exact and efficient 
computation of the complete set of first-order response sensitivities with respect 
to the model parameters. These computations also include the illustrative computa-
tion of 1st-order sensitivities with respect to imprecisely known domain boundaries.  

Section 3 illustrates the application of the 2nd-CASAM-N to obtain the com-
plete set of 2nd-order sensitivities. It is shown that the complexity of the 2nd-Order 
Adjoint Sensitivity System used for computing efficiently and exactly the 2nd-order 
sensitivities is determined by the complexity of the 1st-order sensitivity used as 
the respective response and, hence, as the respective starting point. Thus, the 
2nd-LASS that corresponds to 1st-order sensitivities that involve solely the origi-
nal state function comprises only as many equations as the corresponding 
1st-LASS. On the other hand, if the 1st-order sensitivity under consideration in-
volves both the original state function(s) and the 1st-level adjoint sensitivity 
function(s), then the 2nd-LASS could comprise twice as many equations as the 
1st-LASS. The symmetries inherent to the mixed 2nd-order sensitivities make it 
possible to choose a priori, based on the expressions of the 1st-order sensitivities, 
the order of priority and the most advantageous path for computing the 2nd-order 
sensitivities. The primary consideration when computing 2nd-order sensitivities 
is the priority order indicated by the magnitudes of the relative 1st-order sensi-
tivities: the 2nd-order sensitivities stemming from the largest 1st-order relative 
sensitivity should be computed first. Once the priorities for computing the 
2nd-order sensitivities have been established, it is important to examine the ex-
pressions of the 1st-order sensitivities in order to establish the least expensive 
(computationally) path for computing the mixed 2nd-order sensitivities.  

Section 4 illustrates the application of the 3rd-CASAM-N to obtain representa-
tive 3rd-order sensitivities. It is shown that 2nd-order sensitivities that depend 
solely on the original function will require the solution of a 3rd-Level Adjoint 
Sensitivity System (3rd-LASS) of the same size as the original system or, equiva-
lently, the 1st-LASS. The 2nd-order sensitivities that depend solely on the original 
state function and the 1st-level adjoint sensitivity system will give rise to a 3rd-LASS 
of the same size as the corresponding 2nd-LASS. Finally, 2nd-order sensitivities 
that depend on all of the components of the 2nd-level adjoint function(s) will 
need the solution of a 3rd-LASS that will have twice the dimensions of the cor-
responding 2nd-LASS.  
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Section 5 discusses the important aspects of applying the 4th-CASAM-N to 
compute the 4th-order sensitivities and the 5th-CASAM-N to compute the 
fifth-order sensitivities. Concluding remarks are presented in Section 6.  

2. 1st-CASAM-N: Computation of First-Order Response  
Sensitivities  

The illustrative model considered in this work comprises a simplified second- 
order Bernoulli equation subject to an imprecisely known boundary/initial con-
dition inu  at the imprecisely known location λ , having the following standard 
form: 

( ) ( ) ( )2d
; , ;

d x

u x
qu x x

x
λ ω= ∈Ω                    (1) 

( ) ,inu x u x λ= = .                        (2) 

The model’s response, denoted as ( );R u x  α , is considered to be a nonli-
near functional of the state function and parameters and is defined as follows:  

( ) ( )
d; r xR u x

u x

ω

λ

   ∫α .                     (3) 

The scalar parameters q, inu , λ , ω , and r, which appear in Equations 
(1)-(3), are considered to be imprecisely known, subject to uncertainties. These 
parameters are representative of the type of parameters that can appear in the 
mathematical model of a physical, as follows: 1) the parameter q typifies uncer-
tain model parameters which appear in the equations underlying the model; 2) 
the parameter inu  typifies uncertain boundary or initial conditions; 3) the pa-
rameters λ  and ω  typify uncertain boundaries of the domain of definition of 
the independent variable(s); 4) the parameter r typifies uncertain quantities 
which may appear solely in the definition of the model’s response. 

For notational convenience, these imprecisely known model parameters are 
considered to be components of a vector of parameters α  defined as follows: 

( ) ( )††
1, , , , , ,TP inq u rα α λ ω  α ,               (4) 

where the subscript 5TP =  denotes the “total number of model parameters.” 
The dagger superscript “ † ” will be used in this work to denote “transposition.” 
The information customarily available about the model parameters comprises 
their nominal (expected/mean) values and, possibly, higher-order moments or 
cumulants (i.e., variance/covariances, skewness, kurtosis), which are usually de-
termined from evaluation processes external to the physical system under con-
sideration. Occasionally, only lower and upper bounds may be known for some 
model parameters. The nominal parameter values will be denoted as  

†0 0 0 0
1 , , , ,i TPα α α    α ; the superscript “0” will be used throughout this work 

to denote “nominal values.”  
The solution of Equations (1) and (2) is obtained by separation of variables 

and subsequent integration to obtain the following expression:  
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( ) ( )1
in

in

u
u x

qu x λ
=

− −
.                       (5) 

Inserting the result obtained in Equation (5) into Equation (3) yields the fol-
lowing expression for the model response: 

( ) ( ) 1;
2in

R u x r q
u

ω λω λ
 −

= − −    
 

α .               (6) 

The parameters q, inu  and λ  occur in the expression of the state function 
( )u x , which is the solution of Equations (1)-(3), but the parameter ω  occurs 

only in the expression of the response, thus illustrating the fact that model pa-
rameters may be introduced in the model solely through the definition of the 
model’s response. Although both the model and its response are nonlinear func-
tions of the state variables, the model has been chosen to be sufficiently simple to 
admit readily differentiable functions of the model parameters, so that the algebraic 
manipulations would not distract from following the application of the principles 
underlying the 5th-CASAM-N to obtain the various sensitivities (up to fifth-order) 
while enabling the analytical verification of the thus expressions obtained.  

The nominal (or mean) parameter vales 0α  will differ from their true, but 
unknown, values by quantities denoted as ( )1, , TPδ δα δα α , where  

0
i i iδα α α− . Since the forward state function ( )u x  is related to the model 

and boundary parameters α  through Equations (1) and (2), it follows that the 
variations δα  in the model and boundary parameters will cause corresponding 
variations ( ) ( ) ( )1v x u xδ  around the nominal solution ( )0u x  in the forward 
state functions. In turn, the variations δα  and ( ) ( )1v x  will induce variations 
in the model’s response.  

The 1st-order sensitivities of a model response ( );R u x  α  are obtained by 
determining the 1st-order Gateaux- (G-) variation ( ) ( ) ( )1; ; ;R u x v xδ δ 

 α α  of 
the response, which is given, by definition, by the following expression:  

( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

( ){ } ( ) ( ) ( ){ }

0

0

1

10 0
1

0 0

1

; ; ;

dd d;
d d

; ; ; ; ,

in
in

dir ind

R R R R RR u x v x q u r
q u r

r r x
R u x v x

u x v x

R u x R u x v x

ω εδω

ε λ εδλ ε

δ δ δ δ δλ δω δ
λ ω

εδ
ε εδ

ε ε ε

δ δ δ

+

= + =

∂ ∂ ∂ ∂ ∂  + + + +  ∂ ∂ ∂ ∂ ∂

 +   + + =      +  

 = +    

∫





α α

α α

α α α

 (7) 

where 

( ){ } ( ) ( ) ( )

( ) ( )

0 0 0

0 0

d; ;

1 1 ,
2

dir

in in in

x r rR u x r
u x u x u x

r q r q r
u u u

ω

λ

δω δλδ δ δ
ω λ

ω λ δλδ ω λ ω λ δω

          + −         = =          

      −   = − − + − − −      
         

∫

α α α

α α

α α

   (8) 

( ) ( ) ( ){ } ( )
( ) ( )

0

1 1
2

d; ;
ind

r xR u x v x v x
u x

ω

λ

δ
    −     
∫

α

α .            (9) 
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The direct-effect term can be computed once the nominal values ( )0 0,u α  
are available. The notation  α0  will be used in this work to indicate that the 
quantity enclosed within the bracket is to be evaluated at the nominal values of 
the respective parameters and state functions. On the other hand, the indi-
rect-effect term can be quantified only after having determined the variations 
( ) ( )1v x  in terms of the variations δα . The first-order relationship between the 

vectors ( ) ( )1v x  and δα  is determined by solving the following 1st-Level Vari-
ational Sensitivity System (1st-LVSS) obtained by applying the definition of the 
G-differential to Equations (1) and (2), which yields the following equations:  

( ) ( ) ( ) ( ) ( ) ( ) ( )
1

1 2d
2 ; ;

d x

v x
qu x v x q u x x

x
δ− = ∈Ω             (10) 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2d
, at

d in in
x

u x
v x v qu u x

x
λ

λ δλ λ δλ δ λ
=

  = + = + = = 
  

.  (11) 

The alternative to solving repeatedly the 1st-LVSS to obtain the 1st-level varia-
tional function ( ) ( )1v x , which depends on the various parameter variations, is 
to express the indirect-effect term defined in Equation (9) in terms of the solu-
tion of the 1st-Level Adjoint Sensitivity System (1st-LASS), which is constructed 
by applying the principles of the 5th-CASAM-N, as follows:  

1) Consider that the functions ( )u x  and ( ) ( )1v x  are elements of a Hilbert 
space denoted as ( )1 xΩH  which is endowed with an inner product of two 
vectors ( ) ( )1 1 xf x ∈ ΩH  and ( ) ( )2 1 xf x ∈ ΩH  denoted as 1 2 1,f f  and de-
fined as follows:  

( ) ( )
0

1 2 1 21, df f f x f x x
ω

λ

 
 
 
∫

α

.                   (12) 

2) Using the definition of provided in Equation (12), construct the inner 
product of Equation (10) with a yet undefined function ( ) ( ) ( )1

1 xa x ∈ ΩH  to 
obtain the following relation: 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

00

1
1 1 1 2d

2 d d
d

v x
a x qu x v x x q a x u x x

x

ω ω

λ λ

δ
     − =    

      
∫ ∫

αα

. (13) 

3) Integrate by parts the left-side of Equation (13) to obtain the following rela-
tion: 

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

0

0

1
1 1

1 1 1 1

1
1 1

d
2 d

d

d
2 d .

d

v x
a x qu x v x x

x

a v a v

a x
v x qu x a x x

x

ω

λ

ω

λ

ω ω λ λ

   −  
    

= −

   − +  
    

∫

∫

α

α

            (14) 

4) Use in Equation (14) the boundary condition given in Equation (11) to ob-
tain the following relation: 
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( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

0

0

1
1 1

1 1 12

1
1 1

d
2 d

d

d
2 d .

d

in in

a x
v x qu x a x x

x

a u qu a v

v x
a x qu x v x x

x

ω

λ

ω

λ

λ δ ω ω

   − +  
    

= − −

   + −  
    

∫

∫

α

α

            (15) 

5) Require the left-side of Equation (15) to represent the indirect-effect term 
defined in Equation (9) and eliminate the unknown value ( ) ( )1v ω  in Equation 
(15) by requiring the function ( ) ( ) ( )1

1 xa x ∈ ΩH  to be the solution of the fol-
lowing 1st-Level Adjoint Sensitivity System (1st-LASS): 

( ) ( ) ( ) ( ) ( ) ( ){ } 0

0

1
1 2d

2 ; ;
d x

a x
qu x a x ru x x

x
−

  + = ∈Ω 
  

α
α

         (16) 

( ) ( )1 0, ata x x ω= = .                      (17) 

6) Use Equations (15)-(17) together with Equation (13) in Equation (9) to ob-
tain the following alternative expression for the indirect-effect term:  

( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0

1

1 12 2

; ;

d ,

ind

in in

R u x v x

a u qu q a x u x x
ω

λ

δ

λ δ δλ δ

 
 

 
 = − +   

 
∫

α

α

      (18) 

7) Adding the expressions for the indirect-effect and direct-effect terms ob-
tained in Equations (18) and (8), respectively, and identifying the expressions 
that multiply the respective parameter variations, as indicated in Equation (7), 
yields the following expressions for the first-order response sensitivities with re-
spect to the model parameters:  

( ) ( ) ( )1 2 dR a x u x x
q

ω

λ

∂
=

∂ ∫ ,                      (19) 

( ) ( )1

in

R a
u

λ∂
=

∂
,                         (20) 

( )
( ) ( )12

in
R r qu a

u x
λ

λ λ
∂

= − −
∂ =

,                  (21) 

( ) ( )1

in

R r r q
u x u

ω λ
ω ω

 ∂
= = − − ∂ =  

,               (22) 

( ) ( )d 1
2in

R x q
r u x u

ω

λ

ω λω λ
 ∂ −

= = − − ∂  
∫ .              (23) 

The expressions of the sensitivities provided in Equations (19)-(23) are to be 
evaluated at the nominal values of the respective parameters and state functions 
but the respective indication  α0  has been omitted, for simplicity. The ex-
pressions of the sensitivities stemming from the indirect-effect term can be eva-
luated after solving the 1st-LASS to obtain the 1st-level adjoint sensitivity function 
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( ) ( )1a x . The 1st-LASS is linear in ( ) ( )1a x  and is independent of parameter vari-
ations, so it only needs to be solved once. The expression of ( ) ( )1a x  obtained 
by solving the 1st-LASS by the standard integrating-factor method is as follows:  

( ) ( ) ( ) ( ) ( )
( )

2
1

2

1

in

r x
a x r x q x

u u x
ω

ω λ
− 

= − − − = 
 

.            (24) 

Inserting the result obtained in Equation (24) into in Equations (19)-(21) and 
evaluating the respective expressions yields the following closed-form results for 
the respective sensitivities:  

( )2

2
R r
q

ω λ−∂
= −

∂
,                         (25) 

( )
2

in in

rR
u u

λ ω−∂
=

∂
,                         (26) 

( )
in

R r rq
u

ω λ
λ
∂

= − + −
∂

.                      (27) 

The closed-form expressions provided in Equations (22), (23), (25)-(27) have 
been derived for verification purposes, as they can be compared directly with the 
respective results which would be obtained by differentiating the closed-form 
expression of model response provided in Equation (6). In practice, however, the 
model’ equations and the 1st-LASS must be solved numerically. Consequently, 
the sensitivities expressed by Equations (19)-(23) must be evaluated numerically; 
closed-from expressions for these sensitivities are not available in practice. 

3. 2nd-CASAM-N: Computation of Second-Order Response  
Sensitivities  

Since there are five 1st-order sensitivities, it follows that there will be twenty five 
2nd-order sensitivities, of which 15 will be distinct. The 2nd-order sensitivities 
could be computed directly by differentiating the expression of the G-differential 
of the response provided in Equation (7), to obtain the expression of the 2nd-order 
G-differential, ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 12 2; ; ; ; ; ;R u x v x v x v xδ δ δ δ δ 

 α α α α , which would 
require the computation of the 2nd-order differential ( ) ( ) ( )1 2v x u xδ δ≡ . The 
second-order G-differential ( ) ( ) ( )1 2v x u xδ δ≡  would need to be determined by 
solving the G-differential of the 1st-LVSS, which would involve 2nd-order diffe-
rential equations, which would depend on first- and second-order parameter 
variations. Furthermore, this set of 2nd-order differential equations would de-
pend on the solution of the 1st-LVSS and would need to be solved at least 25 
times, to account for all combinations of 1st- and 2nd-order variations in the pa-
rameters and state function ( )u x . 

Alternatively, the 2nd-order sensitivities can be defined as the “1st-order sensi-
tivities of the 1st-order sensitivities.” This definition stems from the inductive de-
finition of the 2nd-order total G-differential of correspondingly differentiable 
function, which is also defined inductively as “the total 1st-order differential of 
the 1st-order total differential.” As a general principle, the 2nd-order sensitivities 
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should be computed in a priority order that should follow the ranking of the 
1st-order sensitivities: the 2nd-order sensitivities that correspond to the largest 
relative 1st-order sensitivity should be computed first, the 2nd-order sensitivities 
that correspond to the second largest relative 1st-order sensitivity should be 
computed next, and so on. Based on a user-selected a-apriori cut-off criterion, 
2nd-order sensitivities that stem from very small relative 1st-order sensitivities 
might be neglected without actually computing them.  

Another criterion for prioritizing the computation of the 2nd-order sensitivi-
ties may be based on the difficulty involved in computing them. Examining Eq-
uations (19)-(23), it becomes apparent that the expressions of R r∂ ∂  and 

R ω∂ ∂  involve only the state function ( )u x . Therefore, the 2nd-level adjoint 
sensitivity functions which will be used to compute the sensitivities stemming 
from R r∂ ∂  and R ω∂ ∂  will comprise a single component, having the gener-
al form ( ) ( )2

11; ;a j x , 1 1, 2j = . Furthermore, the procedure for computing these 
2nd-level sensitivities will be the same as the procedure followed for computing 
the 1st-order sensitivities, as will be shown in subsections 3.1.1 and 3.1.2, respec-
tively.  

On the other hand, the expressions of inR u∂ ∂ , R q∂ ∂  and R λ∂ ∂  involve 
the adjoint sensitivity function ( ) ( )1a x , which means that the 2nd-level adjoint 
sensitivity functions that will be needed for computing these sensitivities will 
comprise two-components, having the general form  

( ) ( ) ( ) ( ) ( ) ( )
†2 2 2

1 1 12; ; 1; ; , 2; ;j x a j x a j x 
 A  , 1 3, 4,5j = . Thus, the computation 

of the 2nd-order sensitivities stemming from inR u∂ ∂ , R q∂ ∂  and/or R λ∂ ∂  
will require at least twice as many computations as are required for the compu-
tation of the 2nd-order sensitivities stemming from R r∂ ∂  and/or R ω∂ ∂ . This 
is because solving a 2nd-Level Adjoint Sensitivity System to compute a two- 
component 2nd-level adjoint sensitivity function of the form  

( ) ( ) ( ) ( ) ( ) ( )
†2 2 2

1 1 12; ; 1; ; , 2; ;j x a j x a j x 
 A   will be at least twice as expensive 

computationally as solving a 2nd-Level Adjoint Sensitivity System that involves a 
one-component 2nd-level adjoint sensitivity function of the form ( ) ( )2

12; ;a j x . 
The application of the principles underlying the 5th-CASAM-N to compute the 
2nd-order sensitivities stemming from inR u∂ ∂ , R q∂ ∂  and R λ∂ ∂  will be il-
lustrated in the subsections 3.2.1, 3.2.2 and 3.2.3, respectively.  

3.1. Second-Order Sensitivities Stemming from 1st-Order  
Sensitivities Involving Just the Original State Function 

Examining Equations (19)-(23), it becomes apparent that the expressions of 
R r∂ ∂  and R ω∂ ∂  involve only the state function ( )u x . Therefore, the 2nd- 

level adjoint sensitivity functions which will be used to compute the sensitivities 
stemming from R r∂ ∂  and R ω∂ ∂  will comprise a single component, having 
the general form ( ) ( )2

11; ;a j x , 1 1, 2j = . Furthermore, the procedure for com-
puting these 2nd-level sensitivities will be the same as the procedure followed for 
computing the 1st-order sensitivities, as will be shown in subsections 3.1 and 3.2, 
respectively.  
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3.1.1. Second-Order Sensitivities Stemming from R r∂ ∂  

The 2nd-order sensitivities which arise from R r∂ ∂  are obtained from the 
G-differential [ ]R rδ ∂ ∂  of R r∂ ∂ , which is obtained by applying the defini-
tion of the G-differential to the expression provided in Equation (23). This yields 
the following expression: 

( ) ( ) ( )
[ ]{ } [ ]{ }

0

0

2 2 2 2 2

10
0

d d ,
d

in
in

dir ind

R R R R R Rq u r
r q r u r r r r r

x R r R r
u x v x

ω εδω

λ εδλ ε

δ δ δ δλ δω δ
λ ω

δ δ
ε ε

+

+ =

∂ ∂ ∂ ∂ ∂ ∂  + + + + 
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

   ∂ ∂ + ∂ ∂ 
+  

∫



 

   (28) 

where: 

[ ]{ } ( ) ( ) ( ) ( )0 0

1 1
dir

R r
u u

δ δω δλ
ω λ

      ∂ ∂ −   
      



α α

,          (29) 

[ ]{ }
( ) ( )
( ) 0

1

2 d
ind

v x
R r x

u x

ω

λ

δ
  ∂ ∂ − 
  
∫

α

.                (30) 

The direct-effect term has been evaluated at this stage since the function 
( )u x  is already available. The indirect-effect term, however, can be evaluated 

only after having determined the variational function ( ) ( )1v x , which is the solu-
tion of the 1st-LVSS. Solving the 1st-LVSS, which depends on parameter varia-
tions, can be avoided by expressing the indirect-effect term defined in Equation 
(30) in terms of the solution of a 2nd-Level Adjoint Sensitivity System (2nd-LASS), 
which is constructed by applying the same principles as outlined in Section 3.1, 
as follows:  

1) Consider that the functions ( )u x  and ( ) ( )1v x  are elements the Hilbert 
space denoted as ( )1 xΩH  which is endowed with the inner defined in Equa-
tion (12). Using the definition of provided in Equation (12), construct the inner 
product of Equation (10) with a yet undefined function ( ) ( ) ( )2

11;1; xa x ∈ ΩH  
to obtain the following relation: 

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

0

1
2 1

2 2

d
1;1; 2 d

d

1;1; d .

v x
a x qu x v x x

x

q a x u x x

ω

λ

ω

λ

δ

   −  
    

 
=  

 

∫

∫

α

α

            (31) 

2) Integrate by parts the left-side of Equation (31) to obtain the following rela-
tion: 

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

0

0

1
2 1

2 1 2 1

2
1 2

d
1;1; 2 d

d

1;1; 1;1;

d 1;1;
2 1;1; d .

d

v x
a x qu x v x x

x

a v a v

a x
v x qu x a x x

x

ω

λ

ω

λ

ω ω λ λ

   −  
    

= −

   − +  
    

∫

∫

α

α

         (32) 
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3) Use in Equation (32) the boundary condition given in Equation (11) to ob-
tain the following relation: 

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

0

0

2
1 2

2 2 12

1
2 1

d 1;1;
2 1;1; d

d

1;1; 1;1;

d
1;1; 2 d .

d

in in

a x
v x qu x a x x

x

a u qu a v

v x
a x qu x v x x

x

ω

λ

ω

λ

λ δ ω ω

   − +  
    

= − −

   + −  
    

∫

∫

α

α

          (33) 

4) Require the left-side of Equation (33) to represent the indirect-effect term 
defined in Equation (30) and eliminate the unknown value ( ) ( )1v ω  in Equation 
(33) by requiring the function ( ) ( )2 1;1;a x  to be the solution of the following 
2nd-Level Adjoint Sensitivity System (2nd-LASS): 

( ) ( ) ( ) ( ) ( ) ( ){ } 0

0

2
2 2d 1;1;

2 1;1; ; ;
d x

a x
qu x a x u x x

x
−

  + = ∈Ω 
  

α
α

     (34) 

( ) ( )2 1;1; 0, ata x x ω= = .                   (35) 

5) Use Equations (33)-(35) together with Equation (31) in Equation (30) to 
obtain the following alternative expression for the indirect-effect term:  

[ ]{ } ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0

2 22 21;1; 1;1; din inind
R r a u qu q a x u x x

ω

λ

δ λ δ δλ δ
 

 ∂ ∂ = − +   
 
∫

α

.(36) 

6) Adding the expressions for the indirect-effect and direct-effect terms ob-
tained in Equations (36) and (29), respectively, and identifying the expressions 
that multiply the respective parameter variations, as indicated in Equation (28), 
yields the following expressions for the 2nd-order response sensitivities which 
stem from the first-order sensitivity R r∂ ∂ :  

( ) ( ) ( )
2

2 21;1; dR a x u x x
q r

ω

λ

∂
=

∂ ∂ ∫ ,                 (37) 

( ) ( )
2

2 1;1;
in

R a
u r

λ∂
=

∂ ∂
,                     (38) 

( )
( ) ( )

2
221 1;1;in

R qu a
r u

λ
λ λ
∂

= − −
∂ ∂

,                (39) 

( ) ( )
2 1 1

in

R q
r u u

ω λ
ω ω
∂

= = − −
∂ ∂

,                (40) 

2

0R
r r
∂

=
∂ ∂

.                         (41) 

The expressions of the sensitivities provided in Equations (37)-(40) are to be 
evaluated at the nominal values of the respective parameters and state functions 
but the respective indication {} 0α

 has been omitted, for simplicity. The expres-
sions of the sensitivities stemming from the indirect-effect term can be evaluated 
after solving the 2nd-LASS using the standard integrating-factor method to ob-
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tain the following expression for the 2nd-level adjoint sensitivity function 
( ) ( )2 1;1;a x :  

( ) ( ) ( ) ( )
( )

2
2

2

11;1;
in

xa x x q x
u u x

ωω λ
  −

= − − − = 
 

.            (42) 

Inserting the result obtained in Equation (42) into in Equations (37)-(39) and 
evaluating the respective expressions yields the following closed-form results for 
the respective sensitivities:  

( )22

2
R

q r
ω λ−∂

= −
∂ ∂

,                        (43) 

( )2

2
in in

R
u r u

λ ω−∂
= −

∂ ∂
,                        (44) 

( )
2 1

in

R q
r u

ω λ
λ
∂

= − + −
∂ ∂

.                     (45) 

3.1.2. Second-Order Sensitivities Stemming from R ω∂ ∂  

In preparation for determining the 2nd-order sensitivities that correspond to 
R ω∂ ∂ , the expression provided in Equation (22) is written in the following 

integral form: 

( )
( )

d
xR r x

u x

ω

λ

δ ω
ω

−∂
=

∂ ∫ .                      (46) 

The 2nd-order sensitivities which arise from R ω∂ ∂  are obtained by applying 
the definition of the G-differential to Equation (22), which yields the following 
expression: 

( ) ( )
( ) ( ) ( )

0

0

2 2 2 2 2

0
0

10

0

d d
d

,

in
in

dir ind

R R R R R Rq u r
q u r

x
r r x

u x v x

R R

ω εδω

λ εδλ ε

δ δ δ δλ δω δ
ω ω ω λ ω ω ω ω

δ ω εδω
εδ

ε ε

δ δ
ω ω

+

+ =

∂ ∂ ∂ ∂ ∂ ∂  + + + + 
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 − − + 
+  

 ∂   ∂    +      ∂ ∂      

∫







   (47) 

where: 

[ ]{ } ( ) ( )
( ) ( ) ( )

( )0 0

d d
dir

x x
R r x r x

u x u x

ω ω

λ λ

δ ω δ ω
δ ω δ δω

′   − −   ∂ ∂ −   
      

∫ ∫

α α

,  (48) 

[ ]{ } ( ) ( ) ( )
( ) 0

1

2 d
ind

x v x
R r x

u x

ω

λ

δ ω
δ ω

 − ∂ ∂ − 
  
∫

α

.            (49) 

The direct-effect term can be evaluated at this stage since the function ( )u x  
is already available. The indirect-effect term, however, can be evaluated only af-
ter having determined the variational function ( ) ( )1v x , which is the solution of 
the 1st-LVSS. Solving the 1st-LVSS, which depends on parameter variations, can 
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be avoided by expressing the indirect-effect term defined in Equation (49) in 
terms of the solution of a 2nd-Level Adjoint Sensitivity System (2nd-LASS), which 
is constructed by applying the same principles as outlined in Section 3.1, as fol-
lows:  

1) Using the definition of provided in Equation (12), construct the inner 
product of Equation (10) with a yet undefined function ( ) ( ) ( )2

11;2; xa x ∈ ΩH  
to obtain the following relation: 

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

0

1
2 1

2 2

d
1;2; 2 d

d

1;2; d .

v x
a x qu x v x x

x

q a x u x x

ω

λ

ω

λ

δ

   −  
    

 
=  

 

∫

∫

α

α

             (50) 

2) Integrate by parts the left-side of Equation (50) to obtain the following rela-
tion: 

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

0

0

1
2 1

2 1 2 1

2
1 2

d
1;2; 2 d

d

1;2; 1;2;

d 1;2;
2 1;2; d .

d

v x
a x qu x v x x

x

a v a v

a x
v x qu x a x x

x

ω

λ

ω

λ

ω ω λ λ

   −  
    

= −

   − +  
    

∫

∫

α

α

          (51) 

3) Use in Equation (51) the boundary condition given in Equation (11) to ob-
tain the following relation: 

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

0

0

2
1 2

2 2 12

1
2 1

d 1;2;
2 1;2; d

d

1;2; 1;2;

d
1;2; 2 d .

d

in in

a x
v x qu x a x x

x

a u qu a v

v x
a x qu x v x x

x

ω

λ

ω

λ

λ δ ω ω

   − +  
    

= − −

   + −  
    

∫

∫

α

α

          (52) 

4) Require the left-side of Equation (52) to represent the indirect-effect term 
defined in Equation (49) and eliminate the unknown value ( ) ( )1v ω  in Equation 
(52) by requiring the function ( ) ( )2 1;2;a x  to be the solution of the following 
2nd-Level Adjoint Sensitivity System (2nd-LASS): 

( ) ( ) ( ) ( ) ( ) ( )
( ) 00

2
2

2

d 1;2;
2 1;2; ; ;

d x

a x r x
qu x a x x

x u x
δ ω   −   + = ∈Ω   

      αα

     (53) 

( ) ( )2 1;2; 0, ata x x ω= = .                     (54) 

5) Use Equations (52)-(54) together with Equation (50) in Equation (49) to 
obtain the following alternative expression for the indirect-effect term:  

[ ]{ } ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0

2 22 21;2; 1;2; din inind
R a u qu q a x u x x

ω

λ

δ ω λ δ δλ δ
 

 ∂ ∂ = − +   
 
∫

α

. (55) 
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6) Adding the expressions for the indirect-effect and direct-effect terms ob-
tained in Equations (55) and (48), respectively, and identifying the expressions 
that multiply the respective parameter variations, as indicated in Equation (47), 
yields the following expressions for the 2nd-order response sensitivities which 
stem from the first-order sensitivity R r∂ ∂ :  

( ) ( ) ( )
2

2 21;2; dR a x u x x
q

ω

λω
∂

=
∂ ∂ ∫ ,                    (56) 

( ) ( )
2

2 1;2;
in

R a
u

λ
ω

∂
=

∂ ∂
,                       (57) 

( ) ( )
2

22 1;2;in
R qu a λ

λ ω
∂

= −
∂ ∂

,                      (58) 

( )
( )

2

d
xR r x qr

u x

ω

λ

δ ω
ω ω

′ −∂
= − = −

∂ ∂ ∫ ,                  (59) 

( )
( ) ( )

2 1d
in

xR x q
r u x u

ω

λ

δ ω
ω λ

ω
−∂

= = − −
∂ ∂ ∫ .                (60) 

The expressions of the sensitivities provided in Equations (37)-(40) are to be 
evaluated at the nominal values of the respective parameters and state functions 
but the respective indication {} 0α

 has been omitted, for simplicity. The expres-
sions of the sensitivities stemming from the indirect-effect term can be evaluated 
after solving the 2nd-LASS using the standard integrating-factor method to obtain 
the following expression for the 2nd-level adjoint sensitivity function ( ) ( )2 1;2;a x :  

( ) ( ) ( ) ( )
( )

( )22
2 21;2; 1 1 1in
in

r ra x qu x H x H x
u u x

λ ω ω= − − − − − = − − −           .(61) 

Inserting the result obtained in Equation (61) into in Equations (56)-(58) and 
evaluating the respective expressions yields the following closed-form results for 
the respective sensitivities:  

( )
2R r

q
ω λ

ω
∂

= − −
∂ ∂

,                      (62) 

2

2
in in

R r
u uω
∂

= −
∂ ∂

,                       (63) 

2R qr
λ ω
∂

=
∂ ∂

.                        (64) 

Evidently, the identity of the expressions obtained in Equations (60) and (40) 
confirms the correct determination of the mixed 2nd-order sensitivity 2R rω∂ ∂ ∂ .  

3.2. Second-Order Sensitivities Stemming from 1st-Order  
Sensitivities Involving the 1st-Level Adjoint Sensitivity  
Function 

The expressions of inR u∂ ∂ , R q∂ ∂  and R λ∂ ∂  involve the adjoint sensitiv-
ity function ( ) ( )1a x , which means that the 2nd-level adjoint sensitivity functions 
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that will be needed for computing these sensitivities will comprise two-components, 
having the general form ( ) ( ) ( ) ( ) ( ) ( )

†2 2 2
1 1 12; ; 1; ; , 2; ;j x a j x a j x 

 A  , 1 3, 4,5j = . 
Thus, the computation of the 2nd-order sensitivities stemming from inR u∂ ∂ , 

R q∂ ∂  and/or R λ∂ ∂  will require at least twice as many computations as are 
required for the computation of the 2nd-order sensitivities stemming from R r∂ ∂  
and/or R ω∂ ∂ . This is because solving a 2nd-Level Adjoint Sensitivity System to 
compute a two-component 2nd-level adjoint sensitivity function of the form 

( ) ( ) ( ) ( ) ( ) ( )
†2 2 2

1 1 12; ; 1; ; , 2; ;j x a j x a j x 
 A  .  

3.2.1. Second-Order Sensitivities Stemming from inR u∂ ∂  

In preparation for determining the 2nd-order sensitivities that correspond to 

inR u∂ ∂ , the expression provided in Equation (20) is written in the following 
integral form: 

( ) ( ) ( )1 d
in

R a x x x
u

ω

λ

δ λ∂
= −

∂ ∫ .                    (65) 

By definition, the G-differential [ ]inR uδ ∂ ∂  of inR u∂ ∂  is obtained as fol-
lows: 

( ) ( ) ( ) ( ) ( )

[ ]{ } [ ]{ }

0

0

2 2 2 2 2

1 ,0 1

0

d d
d

,

in
in in in in in in in

in indir ind

R R R R R Rq u r
u q u u u u u r u

a x a x x x

R u R u

ω εδω

λ εδλ ε

δ δ δ δλ δω δ
λ ω

εδ δ λ εδλ
ε

δ δ

+

+ =

 ∂ ∂ ∂ ∂ ∂ ∂
+ + + + 

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
   + − −    

∂ ∂ + ∂ ∂

∫







 (66) 

where: 

[ ]{ } ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

0

1

1

d

d
2 ,

d

in dir

in inx

R u a x x x

a x r rq
x u u

ω

λ

λ

δ δλ δ λ

δλ
δλ λ ω

=

 
′∂ ∂ − − 

 

    = = − −   
   

∫

α
         (67) 

[ ]{ } ( ) ( ) ( )
0

1 din ind
R u a x x x

ω

λ

δ δ δ λ
 

∂ ∂ − 
 
∫

α

.          (68) 

The direct-effect term has been evaluated at this stage since the function 
( ) ( )1a x  is already available. The indirect-effect term, however, can be evaluated 

only after having determined the variational function ( ) ( )1a xδ , which is the 
solution of the 2nd-Level Variational Sensitivity System (2nd-LVSS) obtained by 
G-differentiating the 1st-LASS. The G-differentiation of the 1st-LASS represented 
by Equations (16) and (17) yields the following system:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ){ }
0

0

1 1 1 1 13

1 2

d 2 2 2
d

2 ; ;x

a x qu x a x qa x v x ru x v x
x

q u x a x r u x x

δ δ

δ δ

−

−

 + + + 
 

= − + ∈Ω

α

α

 (69) 
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( ) ( )
( ) ( )

( ) ( ) ( )

1
1

2
1

d
d

1 0, at .

x

in

a x
a

x

a r q x
u

ω

δ ω δω

δ ω ω λ δω ω

=

  +  
  

 
= + − − = = 

 

          (70) 

Equation (69) also involves the variational function ( ) ( )1v x , which is the so-
lution of the 1st-LVSS comprising Equations (10) and (11). Therefore, Equations 
(69) and (70) are to be concatenated with the 1st-LVSS to obtain the following 
2nd-Level Variational Sensitivity System (2nd-LVSS) which is satisfied by the 
2nd-level variational function ( ) ( ) ( ) ( ) ( ) ( )

†2 1 1,x v x a xδ 
 V  : 

( ) ( ) ( ) ( ){ } ( ) ( ){ }0 0

2 2 22 2 2; 2; , ,V xx x x× = ∈ΩVM V Q
α α

        (71) 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2

2 2
1

0
2; ;1 0

in in

V

in

v qu u
x

a r q
u

λ δλ δ

δ ω ω λ δω

 + −
   

=    
+ − −       

B         (72) 

where 

( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )

2 1
2

2 1

1;
2; ;

2;

v x v x
x

v x a xδ

   
   
   
   

V                (73) 

( ) ( )
( )

( ) ( ) ( ) ( )
2

1 3

d 2 0
d2 2 ;

d2 2 2
d

qu x
x

qa x ru x qu x
x

−

 − 
 ×
 + + 
 

VM        (74) 

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2
2

1 2
2;

2V

q u x
x

q u x a x r u x

δ

δ δ −

 
 
 − + 

Q  .       (75) 

The need for solving repeatedly the 2nd-LVSS to obtain the 2nd-level variational 
function ( ) ( )2 xV  for every parameter variations is circumvented by expressing 
the indirect-effect term defined in Equation (68) in terms of the solution of a 
2nd-Level Adjoint Sensitivity System (2nd-LASS), which is constructed specifically 
for the indirect-effect term defined in Equation (68), by applying the principles 
of the 5th-CASAM-N, as follows:  

1) Consider that the function ( ) ( )2 xV  is an element of a Hilbert space de-
noted as ( )2 xΩH . This Hilbert space is considered to be endowed with an in-
ner product of two vectors ( ) ( ) ( ) ( ) ( ) ( ) ( )

†2 2 2
22; 1; , 2; xx x xψ ψ  ∈ Ω  HΨ  and 

( ) ( ) ( ) ( ) ( ) ( ) ( )
†2 2 2

22; 1; , 2; xx x xψ ψ  ∈ Ω  HΦ  defined as follows:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0

2
2 2 2 2

2 11

2
2 2

1

2; , 2; ; , ;

; , ; d .

i

i

x x i x i x

i x i x x
ω

λ

ψ ϕ

ψ ϕ

=

=

 
 
 

∑

∑∫





α

Ψ Φ

       (76) 

2) Using the definition of provided in Equation (76), construct the inner 
product of Equation (71) with a yet undefined function  
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( ) ( ) ( ) ( ) ( ) ( ) ( )
†2 2 2

22;3; 1;3; , 2;3; xx a x a x  ∈ Ω A  H  to obtain the following re-
lation: 

( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

0

0

2 2 2

2

2 2

2

2;3; , 2 2 2;

2;3; , 2; , ,V x

x x

x x x

×

= ∈Ω

A VM V

A Q

α

α

            (77) 

which in component form reads as follows:  

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0

0

0

0

1
2 1 2

1 1 1 1 13

2 2

2 1 2

d
1;3; 2 d 2;3;

d

d 2 2 2 d
d

1;3; d

2;3; 2 d .

v x
a x qu x v x x a x

x

a x qu x a x qa x v x ru x v x x
x

q a x u x x

a x q u x a x r u x x

ω ω

λ λ

ω

λ

ω

λ

δ δ

δ

δ δ

−

−

    − +   
     

 × + + +    

 
=  

 

  + − +   

∫ ∫

∫

∫

α

α

α

α

(78) 

3) Integrate by parts the left-side of Equation (78) to obtain the following rela-
tion: 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

0

0

0

1
2 1 2

1 1 1 1 13

2 1 2 1

2
1 2

d
1;3; 2 d 2;3;

d

d 2 2 2 d
d

1;3; 1;3;

d 1;3;
2 1;3; d

d

v x
a x qu x v x x a x

x

a x qu x a x qa x v x ru x v x x
x

a v a v

a x
v x qu x a x x

x

ω ω

λ λ

ω

λ

δ δ

ω ω λ λ

−

    − +   
     

 × + + +    

= −

   + − −  
    

∫ ∫

∫

α

α

α

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0

0

2 1 2 1

1 2 2

1 1 2 23

2;3; 2;3;

d 2;3; 2 2;3; d
d

2 2;3; 2;3; d

a a a a

a x a x qu x a x x
x

v x qa x a x ru x a x x

ω

λ

ω

λ

ω δ ω λ δ λ

δ

−

+ −

  + − +    

  + +    

∫

∫

α

α

          (79) 

4) Use in Equation (79) the boundary condition given in Equations (11) and 
(70) to obtain the following relation: 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

0

0

1
2 1 2

1 1 1 1 13

2 1 2 2

2
2 2 1

d
1;3; 2 d 2;3;

d

d 2 2 2 d
d

1;3; 1;3;

12;3; 2;3;

in in

in

v x
a x qu x v x x a x

x

a x qu x a x qa x v x ru x v x x
x

a v a u qu

a r q a a
u

ω ω

λ λ

δ δ

ω ω λ δ δλ

ω ω λ δω λ δ λ

−

    − +   
     

 × + + +    

 − + − 

 
+ − − + 

 

∫ ∫
α

α  
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( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

0

0

2
1 2

1 2 23

1 2 2

d 1;3;
2 1;3;

d

2 2;3; 2 2;3; d

d 2;3; 2 2;3; d
d

a x
v x qu x a x

x

qa x a x ru x a x x

a x a x qu x a x x
x

ω

λ

ω

λ

δ

−

 = − −
 

 + +  
  

  + − +    

∫

∫

α

α

            (80) 

5) Require the right-side of Equation (80) to represent the indirect-effect term 
defined in Equation (68) and eliminate the unknown values of the components 
of ( ) ( )2 xV  in Equation (80) by requiring the function  

( ) ( ) ( ) ( ) ( ) ( )
†2 2 22;3; 1;3; , 2;3;x a x a x 

 A   to be the solution of the following 
2nd-Level Adjoint Sensitivity System (2nd-LASS): 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ } 0
0

2
2 2 1 3d 1;3;

2 1;3; 2 2;3; ;
d

a x
qu x a x a x qa x ru x

x
−

    + = +      α
α

(81) 

( ) ( ){ } 0

2 1;3; 0, at ;a xω ω= =
α

                   (82) 

( ) ( ) ( ) ( ) ( ) ( ){ } 0
0

2 2d 2;3; 2 2;3; ; ;
d xa x qu x a x x x
x

δ λ − + = − ∈Ω 
  α

α

  (83) 

( ) ( ){ } 0

2 2;3; 0, ata xλ λ= =
α

.                  (84) 

6) Use Equations (80)-(84) together with Equation (78) in Equation (68) to 
obtain the following alternative expression for the indirect-effect term:  

[ ]{ } ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

0

0

2 2

2 1 2

2
2 22

1;3; d

2;3; 2 d

11;3; 2;3; .

in ind

in in
in

R u q a x u x x

a x q u x a x r u x x

u qu a r q a
u

ω

λ

ω

λ

δ δ

δ δ

δ δλ λ δω ω λ ω

−

 
∂ ∂ =  

 

  + − +   

 
 + − + − −  

 

∫

∫

α

α

 (85) 

7) Adding the expressions for the indirect-effect and direct-effect terms ob-
tained in Equations (85) and (67), respectively, and identifying the expressions 
that multiply the respective parameter variations, as indicated in Equation (66), 
yields the following expressions for the first-order response sensitivities with re-
spect to the model parameters:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

2 2 121;3; d 2 2;3; d
in

R a x u x x a x u x a x x
q u

ω ω

λ λ

∂
= −

∂ ∂ ∫ ∫ ,     (86) 

( ) ( )
2

2 1;3;
in in

R a
u u

λ∂
=

∂ ∂
,                      (87) 

( ) ( ) ( )
2

22
21;3; 2in

in inin

R r qqu a r
u uu

λ λ ω
λ
∂

= − + − −
∂ ∂

,            (88) 
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( ) ( ) ( )
22

21 2;3;
in in

R r q a
u u

ω λ ω
ω

 ∂
= − − ∂ ∂  

,              (89) 

( ) ( ) ( )
2

2 22;3; d
in

R a x u x x
r u

ω

λ

−∂
=

∂ ∂ ∫ .                 (90) 

The expressions of the sensitivities provided in Equations (86)-(90) are to be 
evaluated at the nominal values of the respective parameters and state functions 
but the respective indication {} 0α

 has been omitted, for simplicity. The expres-
sions of the sensitivities stemming from the indirect-effect term can be evaluated 
after solving the 2nd-LASS to obtain the 2nd-level adjoint sensitivity function  

( ) ( ) ( ) ( ) ( ) ( )
†2 2 22;3; 1;3; , 2;3;x a x a x 

 A  . The 2nd-LASS is linear in  
( ) ( ) ( ) ( ) ( ) ( )

†2 2 22;3; 1;3; , 2;3;x a x a x 
 A   and is independent of parameter varia-

tions, so it only needs to be solved once. Furthermore, the 2nd-LASS is an up-
per-triangular system which can be solved in a decoupled manner, by first ob-
taining the expression of the function ( ) ( )2 2;3;a x  and subsequently obtaining 
the expression of the function ( ) ( )2 1;3;a x . Solving the 2nd-LASS comprising 
Equations (81)-(84) yields the following expressions: 

( ) ( ) ( )
( ) ( ) ( )2

2 3

1 21;3; 2 1 in
in in

r x ra x x qu x
u x u u

ω
ω λ

−
= − = − − − −   ,     (91) 

( ) ( ) ( ) ( ) ( ) ( )
2

22 2;3; 1in
in

u x
a x qu x H x H x

u
λ λ λ

−  
= − − − − = − −    

 
.  (92) 

Inserting into Equations (86)-(90) the expressions obtained in Equations (91) 
and (92) yields the following closed form expressions: 

2

0
in

R
q u
∂

=
∂ ∂

,                          (93) 

( )
2

3

2

in in in

R r
u u u

λ ω∂
= − −

∂ ∂
,                     (94) 

2

2
in in

R r
u uλ

∂
=

∂ ∂
,                        (95) 

2

2
in in

R r
u uω

∂
= −

∂ ∂
,                       (96) 

( )2

2
in in

R
r u u

λ ω−∂
=

∂ ∂
.                     (97) 

Since the expression in Equation (90) must be identical to the expression pro-
vided in Equation (38), i.e.,  

( ) ( ) ( ) ( ) ( )
2 2

2 222;3; d 1;1;
in in

R Ra x u x x a
r u u r

ω

λ

λ−∂ ∂
= ≡ =

∂ ∂ ∂ ∂∫ ,       (98) 

it follows that the above identity provides a stringent test in practice for verifying 
the accuracy of the numerical computation of the functions ( ) ( )2 2;3;a x , ( )u x  
and ( ) ( )2 1;1;a x .  
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Similarly, since the expression in Equation (89) must be identical to the ex-
pression provided in Equation (57), i.e.,  

( ) ( ) ( ) ( ) ( )
22 2

2 21 2;3; 1;2;
in in in

R Rr q a a
u u u

ω λ ω λ
ω ω

 ∂ ∂
= − − ≡ = ∂ ∂ ∂ ∂ 

,   (99) 

it follows that the above identity provides a stringent test in practice for verifying 
the accuracy of the numerical computation of the functions ( ) ( )2 2;3;a x  and 

( ) ( )2 1;2;a x .  

3.2.2. Second-Order Sensitivities Stemming from R λ∂ ∂  

In preparation for determining the 2nd-order sensitivities that correspond to 
R λ∂ ∂ , the expression provided in Equation (21) is written in the following 

integral form: 

( )
( )

( ) ( ) ( )12d din

xR r x qu a x x x
u x

ω ω

λ λ

δ λ
δ λ

λ
−∂

= − − −
∂ ∫ ∫ .           (100) 

By definition, the G-differential [ ]Rδ λ∂ ∂  of R λ∂ ∂  is obtained as follows: 

( ) ( )
( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( )

[ ]{ }

0

0

0

0

2 2 2 2 2

0
0

0

0

2 1 ,0 10 0 0

0

d d
d

d d
d

in
in

in in

R R R R R Rq u r
q u r

x
r r x

u x u x

q q u u a x a x x x

R

ω εδω

λ εδλ ε

ω εδω

λ εδλ ε

δ δ δ δλ δω δ
λ λ λ λ λ ω λ λ

δ λ εδλ
εδ

ε εδ

εδ εδ εδ δ λ εδλ
ε

δ λ

+

+ =

+

+ =

∂ ∂ ∂ ∂ ∂ ∂  + + + + 
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 − − − + 
+  

   − + + + − −    

∂ ∂

∫

∫





 [ ]{ } ,
dir ind

Rδ λ+ ∂ ∂

(101) 

where: 

[ ]{ } ( ) ( )
( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ){ } ( ) ( ) ( )

( ) ( )

0 0

0

0

0
0

12

12

2
2

d d

2 d

d

1 2

1 2

dir

in in in

in

in in in
in in

in

x x
R r x r x

u x u x

q u qu u a x x x

qu a x x x

r
r rq q u qu u

u u

qr qu

ω ω

λ λ

ω

λ

ω

λ

δ λ δ λ
δ λ δ δλ

δ δ δ λ

δλ δ λ

λ ω
δ δλ δ δ

δλ λ ω

′   − −   ∂ ∂ − +   
      

 
 − + −  
 

 
′+ − 

 

− 
 = − + − +   

 

− − −

∫ ∫

∫

∫



α α

α

α

α
α

{ } 0 ,   α

    (102) 

[ ]{ } ( )
( )

( ) ( ) ( ) ( ) ( )
00

1 12
2 d dinind

x
R r v x x qu a x x x

u x

ω ω

λ λ

δ λ
δ λ δ δ λ

 −   ∂ ∂ − −   
    
∫ ∫

αα

. (103) 

The direct-effect term has been evaluated at this stage since the functions 
( )u x  and ( ) ( )1a x  are already available. The indirect-effect term, however, can 

be evaluated only after having determined the variational vector  
( ) ( ) ( ) ( ) ( ) ( )

†2 1 1,x v x a xδ 
 V  , which is the solution of the 2nd-LVSS obtained in 
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Equations (71)-(75). The need for solving repeatedly the 2nd-LVSS to obtain the 
2nd-level variational function ( ) ( )2 xV  for every parameter variations is cir-
cumvented by expressing the indirect-effect term defined in Equation (103) in 
terms of the solution of a 2nd-LASS, which is constructed specifically for this in-
direct-effect term, by applying the principles of the 5th-CASAM-N, as follows:  

1) Using the definition of provided in Equation (76), construct in the Hilbert 
( )2 xΩH  the inner product of Equation (71) with a yet undefined function 

( ) ( ) ( ) ( ) ( ) ( ) ( )
†2 2 2

22;4; 1;4; , 2;4; xx a x a x  ∈ Ω A  H  to obtain the following re-
lation: 

( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( ){ }0 0

2 2 2 2 2

2 2
2;4; , 2;4; , , ,V xx x x x= ∈ΩA VM V A Q

α α
 (104) 

which in component form reads as follows:  

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0

0

0

0

1
2 1 2

1 1 1 1 13

2 2

2 1 2

d
1;4; 2 d 2;4;

d

d 2 2 2 d
d

1;4; d

2;4; 2 d .

v x
a x qu x v x x a x

x

a x qu x a x qa x v x ru x v x x
x

q a x u x x

a x q u x a x r u x x

ω ω

λ λ

ω

λ

ω

λ

δ δ

δ

δ δ

−

−

    − +   
     

 × + + +    

 
=  

 

  + − +   

∫ ∫

∫

∫

α

α

α

α

(105) 

2) Integrate by parts the left-side of Equation (105) to obtain the following re-
lation: 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

0

0

0

1
2 1 2

1 1 1 1 13

2 1 2 1

2
1 2

d
1;4; 2 d 2;4;

d

d 2 2 2 d
d

1;4; 1;4;

d 1;4;
2 1;4; d

d

v x
a x qu x v x x a x

x

a x qu x a x qa x v x ru x v x x
x

a v a v

a x
v x qu x a x x

x

ω ω

λ λ

ω

λ

δ δ

ω ω λ λ

−

    − +   
     

 × + + +    

= −

   + − −  
    

∫ ∫

∫

α

α

α

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0

0

2 1 2 1

1 2 2

1 1 2 23

2;4; 2;4;

d 2;4; 2 2;4; d
d

2 2;4; 2;4; d

a a a a

a x a x qu x a x x
x

v x qa x a x ru x a x x

ω

λ

ω

λ

ω δ ω λ δ λ

δ

−

+ −

  + − +    

  + +    

∫

∫

α

α

         (106) 

3) Use in Equation (106) the boundary condition given in Equations (11) and 
(70) to obtain the following relation: 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

0

1
2 1 2d

1;4; 2 d 2;4;
d

v x
a x qu x v x x a x

x

ω ω

λ λ

    − +   
     

∫ ∫
α
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0

1 1 1 1 13

2 1 2 2

2
2 2 1

d 2 2 2 d
d

1;4; 1;4;

12;4; 2;4;

in in

in

a x qu x a x qa x v x ru x v x x
x

a v a u qu

a r q a a
u

δ δ

ω ω λ δ δλ

ω ω λ δω λ δ λ

−  × + + +    

 − + − 

 
+ − − + 

 

α

 

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

0

0

2
1 2

1 2 23

1 2 2

d 1;4;
2 1;4;

d

2 2;4; 2 2;4; d

d 2;4; 2 2;4; d
d

a x
v x qu x a x

x

qa x a x ru x a x x

a x a x qu x a x x
x

ω

λ

ω

λ

δ

−

 = − −
 

 + +  
  

  + − +    

∫

∫

α

α

           (107) 

4) Require the right-side of Equation (107) to represent the indirect-effect 
term defined in Equation (103) and eliminate the unknown values of the com-
ponents of ( ) ( )2 xV  in Equation (107) by requiring the function  

( ) ( ) ( ) ( ) ( ) ( )
†2 2 22;4; 1;4; , 2;4;x a x a x 

 A   to be the solution of the following 2nd- 
LASS: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2
2

2 1 3
2

d 1;4;
2 1;4;

d

2 2;4; 2 ;
in

a x
qu x a x

x
r x

a x qa x ru x
u

δ λ −

+

−  = − + + 

        (108) 

( ) ( ){ } 0

2 1;4; 0, at ;a xω ω= =
α

                  (109) 

 

( ) ( ) ( ) ( ) ( ) ( ){ } 0
0

2 2 2d 2;4; 2 2;4; ; ;
d in xa x qu x a x qu x x

x
δ λ − + = − − ∈Ω 

  α
α

 (110) 

( ) ( ){ } 0

2 2;4; 0, ata xλ λ= =
α

.                 (111) 

5) Use Equations (107)-(111) together with Equation (105) in Equation (103) 
to obtain the following alternative expression for the indirect-effect term:  

[ ]{ } ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

0

0

2 2

2 1 2

2
2 22

1;4; d

2;4; 2 d .

11;4; 2;4;

ind

in in
in

R q a x u x x

a x q u x a x r u x x

u qu a r q a
u

ω

λ

ω

λ

δ λ δ

δ δ

δ δλ λ δω ω λ ω

−

 
∂ ∂ =  

 

  + − +   

 
 + − + − −  

 

∫

∫

α

α

 (112) 

6) Adding the expressions for the indirect-effect and direct-effect terms ob-
tained in Equations (112) and (102), respectively, and identifying the expressions 
that multiply the respective parameter variations, as indicated in Equation (101), 
yields the following expressions for the first-order response sensitivities with re-
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spect to the model parameters:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

2 2 121;4; d 2 2;4; dR a x u x x a x u x a x x r
q

ω ω

λ λ

ω λ
λ

∂
= − + −

∂ ∂ ∫ ∫ , (113) 

( ) ( ) ( )2
2 1;4; 2

in in

rR a q
u u

λ ω
λ

λ
−∂

= −
∂ ∂

,                (114) 

( ) ( ) ( )
2

22 21;4; 2in in
R qu a rq uλ λ ω

λ λ
∂

= − + −
∂ ∂

,            (115) 

( ) ( ) ( )
22

21 2;4;
in

R r q a
u

ω λ ω
ω λ

 ∂
= − − ∂ ∂  

,            (116) 

( ) ( ) ( )
2

2 2 12;4; d
in

R a x u x x
r u

ω

λλ
−∂

= −
∂ ∂ ∫ .              (117) 

The expressions of the sensitivities provided in Equations (113)-(117) are to 
be evaluated at the nominal values of the respective parameters and state func-
tions but the respective indication {} 0α

 has been omitted, for simplicity. The 
expressions of the sensitivities stemming from the indirect-effect term can be 
evaluated after solving the 2nd-LASS defined by Equations (108)-(111) to obtain 
the 2nd-level adjoint sensitivity function ( ) ( ) ( ) ( ) ( ) ( )

†2 2 22;4; 1;4; , 2;4;x a x a x 
 A  . 

This 2nd-LASS is linear in ( ) ( ) ( ) ( ) ( ) ( )
†2 2 22;4; 1;4; , 2;4;x a x a x 

 A   and is in-
dependent of parameter variations, so it only needs to be solved once. Further-
more, this 2nd-LASS is an upper-triangular system which can be solved in a de-
coupled manner, by first obtaining the expression of the function ( ) ( )2 2;4;a x  
and subsequently obtaining the expression of the function ( ) ( )2 1;4;a x . Solving 
thus the 2nd-LASS comprising Equations (108)-(111) yields the following expres-
sions: 

( ) ( ) ( ) ( )
( )
( )

22
2 2 2

2 1
1;4; 1

1
in

in
in in in in

r qur ra x qu x H x
u u u qu x

λ ω
λ λ

λ

 + −   = − − − − − +     + −    
,(118) 

( ) ( ) ( ) ( ) ( ) ( )22 2 22;4; 1in ina x qu qu x H x qu x H xλ λ λ
−

= − − − = −   .   (119) 

Inserting into Equations (113)-(117) the expressions obtained in Equations 
(118) and (119) yields the following closed form expressions: 

( )
2 R r

q
ω λ

λ
∂

= −
∂ ∂

,                       (120) 

2

2
in in

R r
u uλ
∂

=
∂ ∂

,                         (121) 

2R rq
λ λ
∂

= −
∂ ∂

,                         (122) 

2R rq
ω λ
∂

=
∂ ∂

,                         (123) 

( )
2 1

in

R q
r u

ω λ
λ

∂
= − −

∂ ∂
.                    (124) 
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Since the expression in Equation (117) must be identical to the expression 
provided in Equation (39), i.e.,  

( ) ( ) ( ) ( )
( ) ( )

2 2
2 22 21 12;4; d 1;1;in

in

R Ra x u x x qu a
r u r u

ω

λ

λ
λ λ λ

−∂ ∂
= − ≡ = − −

∂ ∂ ∂ ∂∫ , (125) 

it follows that the above identity provides a stringent test in practice for verifying 
the accuracy of the numerical computation of the functions ( ) ( )2 2;4;a x , ( )u x  
and ( ) ( )2 1;1;a x .  

Similarly, since the expression in Equation (116) must be identical to the ex-
pression provided in Equation (58), i.e.,  

( ) ( ) ( ) ( ) ( )
22 2

2 221 2;4; 1;2;in
in

R Rr q a qu a
u

ω λ ω λ
ω λ λ ω

 ∂ ∂
= − − ≡ = − ∂ ∂ ∂ ∂ 

,  (126) 

it follows that the above identity provides a stringent test in practice for verifying 
the accuracy of the numerical computation of the functions ( ) ( )2 2;4;a x  and 

( ) ( )2 1;2;a x .  
Furthermore, since the expression in Equation (114) must be identical to the 

expression provided in Equation (88), i.e.,  

( ) ( ) ( )

( ) ( ) ( )

2
2

2
22

2

1;4; 2

1;3; 2 ,

in in

in
in inin

rR a q
u u

R r qqu a r
u uu

λ ω
λ

λ

λ λ ω
λ

−∂
= −

∂ ∂

∂
≡ = − + − −
∂ ∂

           (127) 

it follows that the above identity provides a stringent test in practice for verifying 
the accuracy of the numerical computation of the functions ( ) ( )2 1;4;a x  and 

( ) ( )2 1;3;a x .  

3.2.3. Second-Order Sensitivities Stemming from R q∂ ∂  

The 2nd-order sensitivities stemming from the 1st-order sensitivity R q∂ ∂  are 
obtained, by definition, from by determining the G-differential, [ ]R qδ ∂ ∂ , of 
the expression provided in Equation (19) for R q∂ ∂ , which yields: 

( ) ( ) ( ) ( ) ( ) ( ) ( )

[ ]{ } [ ]{ }

0

0

2 2 2 2 2

21 ,0 1 10

0

d d
d

,

in
in

dir ind

R R R R R Rq u r
q q q u q q q r q

a x a x u x v x x

R q R q

ω εδω

λ εδλ ε

δ δ δ δλ δω δ
λ ω

εδ ε
ε

δ δ

+

+ =

 ∂ ∂ ∂ ∂ ∂ ∂
+ + + + 

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
     + +      

∂ ∂ + ∂ ∂

∫







  (128) 

where: 

[ ]{ } ( ) ( ) ( )( ){ } ( ) ( ){ } 00

1 2
dir

R q a u rδ λ λ δλ δλ ω λ∂ ∂ − = −

αα
,   (129) 

[ ]{ } ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0

1 1 12 d 2 d
ind

R q a x u x x a x u x v x x
ω ω

λ λ

δ δ
   

∂ ∂ +   
   
∫ ∫

α α

. (130) 

The direct-effect term can be evaluated at this stage since the values of the 
functions ( ) ( )1a x  and ( )u x  are already available. The indirect-effect term, 
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however, can be evaluated only after having determined the vector-valued varia-
tional function ( ) ( ) ( ) ( ) ( ) ( )

†2 1 1,x v x a xδ 
 V  , which is the solution of the 2nd- 

LVSS obtained in Equations (71)-(75). The need for solving repeatedly the 2nd- 
LVSS to obtain the 2nd-level variational function ( ) ( )2 xV  for every parameter 
variations is circumvented by expressing the indirect-effect term defined in Equ-
ation (130) in terms of the solution of a 2nd-LASS, which is constructed specifically 
for this indirect-effect term, by applying the principles of the 5th-CASAM-N, as 
follows:  

1) Using the definition of provided in Equation (76), construct in the Hilbert 
( )2 xΩH  the inner product of Equation (71) with a yet undefined function 

( ) ( ) ( ) ( ) ( ) ( ) ( )
†2 2 2

22;5; 1;5; , 2;5; xx a x a x  ∈ Ω A  H  to obtain the following re-
lation: 

( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( ){ }0 0

2 2 2 2 2

2 2
2;5; , 2;5; , , ,V xx x x x= ∈ΩA VM V A Q

α α
  (131) 

which in component form reads as follows:  

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0

0

0

0

1
2 1 2

1 1 1 1 13

2 2

2 1 2

d
1;5; 2 d 2;5;

d

d 2 2 2 d
d

1;5; d

2;5; 2 d .

v x
a x qu x v x x a x

x

a x qu x a x qa x v x ru x v x x
x

q a x u x x

a x q u x a x r u x x

ω ω

λ λ

ω

λ

ω

λ

δ δ

δ

δ δ

−

−

    − +   
     

 × + + +    

 
=  

 

  + − +   

∫ ∫

∫

∫

α

α

α

α

(132) 

2) Integrate by parts the left-side of Equation (132) to obtain the following re-
lation: 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

0

0

0

1
2 1 2

1 1 1 1 13

2 1 2 1

2
1 2

d
1;5; 2 d 2;5;

d

d 2 2 2 d
d

1;5; 1;5;

d 1;5;
2 1;5; d

d

v x
a x qu x v x x a x

x

a x qu x a x qa x v x ru x v x x
x

a v a v

a x
v x qu x a x x

x

ω ω

λ λ

ω

λ

δ δ

ω ω λ λ

−

    − +   
     

 × + + +    

= −

   + − −  
    

∫ ∫

∫

α

α

α

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0

0

2 1 2 1

1 2 2

1 1 2 23

2;5; 2;5;

d 2;5; 2 2;5; d
d

2 2;5; 2;5; d

a a a a

a x a x qu x a x x
x

v x qa x a x ru x a x x

ω

λ

ω

λ

ω δ ω λ δ λ

δ

−

+ −

  + − +    

  + +    

∫

∫

α

α

         (133) 

3) Use in Equation (133) the boundary condition given in Equations (11) and 
(70) to obtain the following relation: 
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( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0

0

1
2 1 2

1 1 1 1 13

2 1 2 2

2
2 2 1

d
1;5; 2 d 2;5;

d

d 2 2 2 d
d

1;5; 1;5;

12;5; 2;5;

in in

in

v x
a x qu x v x x a x

x

a x qu x a x qa x v x ru x v x x
x

a v a u qu

a r q a a
u

ω ω

λ λ

δ δ

ω ω λ δ δλ

ω ω λ δω λ δ λ

−

    − +   
     

 × + + +    

 − + − 

 
+ − − + 

 

∫ ∫
α

α  

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

0

0

2
1 2

1 2 23

1 2 2

d 1;5;
2 1;1;

d

2 2;5; 2 2;5; d

d 2;5; 2 2;5; d
d

a x
v x qu x a x

x

qa x a x ru x a x x

a x a x qu x a x x
x

ω

λ

ω

λ

δ

−

 = − −
 

 + + 
 

  + − +    

∫

∫

α

α

            (134) 

4) Require the right-side of Equation (134) to represent the indirect-effect 
term defined in Equation (130) and eliminate the unknown values of the com-
ponents of ( ) ( )2 xV  in Equation (134) by requiring the function  

( ) ( ) ( ) ( ) ( ) ( )
†2 2 22;5; 1;5; , 2;5;x a x a x 

 A   to be the solution of the following 
2nd-Level Adjoint Sensitivity System (2nd-LASS): 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
0

0

2
2

1 2 1 3

d 1;5;
2 1;5;

d

2 2 2;5; ; ;x

a
qu x a

x

a x u x a x qa x ru x x

ω
ω

−

  + 
  

 = − + + ∈Ω 

α

α

    (135) 

( ) ( ){ } 0

2 1;5; 0, at ;a xω ω= =
α

                   (136) 

( ) ( ) ( ) ( ) ( ) ( ){ } 0
0

2 2 2d 2;5; 2 2;5; ; ;
d xa x qu x a x u x x

x
 − = − ∈Ω 
  α

α

     (137) 

( ) ( ){ } 0

2 2;5; 0, ata xλ λ= =
α

.                  (138) 

5) Use Equations (134)-(138) together with Equation (132) in Equation (130) 
to obtain the following alternative expression for the indirect-effect term:  

[ ]{ } ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

0

0

2 2

2 1 2

2
2 22

1;5; d

2;5; 2 d

11;5; 2;5; .

ind

in in
in

R q q a x u x x

a x q u x a x r u x x

a u qu a r q
u

ω

λ

ω

λ

δ δ

δ δ

λ δ δλ ω ω λ δω

−

 
∂ ∂ =  

 

  + − +   

 
 + − + − −  

 

∫

∫

α

α

 (139) 

6) Adding the expressions for the indirect-effect and direct-effect terms ob-
tained in Equations (139) and (129), respectively, and identifying the expressions 
that multiply the respective parameter variations, as indicated in Equation (7), 
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yields the following expressions for the first-order response sensitivities with re-
spect to the model parameters:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

2 2 121;5; d 2 2;5; dR a x u x x a x u x a x x
q q

ω ω

λ λ

∂
= −

∂ ∂ ∫ ∫ ,     (140) 

( ) ( )
2

2 1;5;
in

R a
u q

λ∂
=

∂ ∂
,                       (141) 

( ) ( ) ( )
2

22 1;5;in
R qu a r
q

λ ω λ
λ
∂

= − + −
∂ ∂

,                (142) 

( ) ( ) ( )
22

2 12;5;
in

R a r q
q u

ω ω λ
ω

 ∂
= − − ∂ ∂  

,               (143) 

( ) ( ) ( )
2

2 22;5; dR a x u x x
r q

ω

λ

−∂
=

∂ ∂ ∫ .                  (144) 

The expressions of the sensitivities provided in Equations (140)-(144) are to 
be evaluated at the nominal values of the respective parameters and state func-
tions but the respective indication {} 0α

 has been omitted, for simplicity. The 
expressions of the sensitivities stemming from the indirect-effect term can be 
evaluated after solving the 2nd-LASS to obtain the 2nd-level adjoint sensitivity 
function ( ) ( ) ( ) ( ) ( ) ( )

†2 2 22;5; 1;5; , 2;5;x a x a x 
 A  , which yields:  

( ) ( ) ( )( )
( )

2 1;5; 2
x x

a x r
u x

λ ω− −
= ,                 (145) 

( ) ( ) ( ) ( ) ( ) ( )
2

2 212;5;
in

a x x q x x u x
u

λ λ λ
−

 
= − − − = − 

 
.      (146) 

Inserting the results obtained in Equations (145) and (146) into in Equations 
(140)-(144) and evaluating the respective expressions yields the following closed- 
form results for the respective sensitivities:  

2

0R
q q
∂

=
∂ ∂

,                        (147) 

2

0
in

R
u q
∂

=
∂ ∂

,                       (148) 

( )
2R r

q
ω λ

λ
∂

= −
∂ ∂

,                    (149) 

( )
2 R r

q
λ ω

ω
∂

= −
∂ ∂

,                    (150) 

( )22

2
R

r q
ω λ−∂

= −
∂ ∂

.                   (151) 

Since the expression in Equation (144) must be identical to the expression 
provided in Equation (37), i.e.,  
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( ) ( ) ( ) ( ) ( ) ( )
2 2

2 22 22;5; d 1;1; dR Ra x u x x a x u x x
r q q r

ω ω

λ λ

−∂ ∂
= ≡ =

∂ ∂ ∂ ∂∫ ∫ ,     (152) 

it follows that the above identity provides a stringent test in practice for verifying 
the accuracy of the numerical computation of the functions ( ) ( )2 2;5;a x , ( )u x  
and ( ) ( )2 1;1;a x .  

Similarly, since the expression in Equation (143) must be identical to the ex-
pression provided in Equation (56), i.e.,  

( ) ( ) ( ) ( ) ( ) ( )
22 2

2 2 212;5; 1;2; d
in

R Ra r q a x u x x
q u q

ω

λ

ω ω λ
ω ω

 ∂ ∂
= − − ≡ = ∂ ∂ ∂ ∂ 

∫ , (153) 

it follows that the above identity provides a stringent test in practice for verifying 
the accuracy of the numerical computation of the functions ( ) ( )2 2;5;a x ,  

( ) ( )2 1;2;a x  and ( )u x . Furthermore, since the expression in Equation (142) 
must be identical to the expression provided in Equation (113), i.e.,  

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2
22

2 2 12

1;5;

1;4; d 2 2;4; d ,

in
R Rqu a r
q q

a x u x x a x u x a x x r
ω ω

λ λ

λ ω λ
λ λ

ω λ

∂ ∂
= − + − ≡

∂ ∂ ∂ ∂

= − + −∫ ∫
   (154) 

it follows that the above identity provides a stringent test in practice for verifying 
the accuracy of the numerical computation of the functions ( ) ( )2 1;5;a x ,  

( ) ( )2 1;4;a x , ( ) ( )2 2;4;a x , ( ) ( )1a x  and ( )u x . 
Finally, since the expression in Equation (141) must be identical to the ex-

pression provided in Equation (86), i.e.,  

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2
2

2 2 12

1;5;

1;3; d 2 2;3; d ,

in in

R Ra
u q q u

a x u x x a x u x a x x
ω ω

λ λ

λ∂ ∂
= ≡

∂ ∂ ∂ ∂

= −∫ ∫
      (155) 

it follows that the above identity provides a stringent test in practice for verifying 
the accuracy of the numerical computation of the functions ( ) ( )2 1;5;a x ,  

( ) ( )2 1;3;a x , ( ) ( )2 2;3;a x , ( ) ( )1a x , ( )u x . 

3.3. Remarks on the Computation of Second-Order Sensitivities 

Each of the 1st-order sensitivities give rise to as many 2nd-order sensitivities as 
there are model parameters: 5TP =  denotes the “total number of model para-
meters.” Each of the 1st-order sensitivity is considered to be a model response for 
constructing a 2nd-LASS which is independent of parameter variations and 
therefore needs to be solved just once in order to obtain all (i.e., TP) of the 
2nd-order sensitivities that stem from the specific 1st-order sensitivity considered 
as a model response. The 2nd-LASS may comprise just as many equations as the 
1st-LASS, in which case the computational effort required for solving the 
2nd-LASS is comparable to that for solving the 1st-LASS. This was the case for 
determining the 2nd-order sensitivities stemming from the 1st-order sensitivities 
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R r∂ ∂  and R ω∂ ∂ . On the other hand, the 2nd-LASS could comprise twice as 
many equations as the 1st-LASS, as was the case for determining the 2nd-order 
sensitivities stemming from the 1st-order sensitivities inR u∂ ∂ , R q∂ ∂  and 

R λ∂ ∂ . In such cases, solving the 2nd-LASS would be twice as expensive compu-
tationally as solving the 1st-LASS, and requires the prior availability of the state 
function ( )u x , which is obtained by solving the original system of nonlinear 
equations that underly the model under consideration, and the prior availability 
of the 1st-level adjoint sensitivity function ( ) ( )1a x , which is obtained by solving 
the 1st-LASS. The primary consideration when computing 2nd-order sensitivities 
is the priority order indicated by the magnitudes of the relative 1st-order sensi-
tivities: the 2nd-order sensitivities stemming from the largest 1st-order relative 
sensitivity should be computed first. Once the priorities for computing the 
2nd-order sensitivities have been established, it is important to examine the ex-
pressions of the 1st-order sensitivities in order to establish the least expensive 
(computationally) path for computing the mixed 2nd-order sensitivities. For ex-
ample, it is more advantageous computationally to compute most advantageous 
it is more advantageous to compute those stemming from the 1st-order sensitivi-
ties as starting points R r∂ ∂  and R ω∂ ∂ . For example, it is computationally 
more advantageous to compute 2

inR u r∂ ∂ ∂  by using Equation (38), which is 
obtained by using R r∂ ∂  as the starting point, rather than using Equation (90), 
which is obtained by using inR u∂ ∂  as the starting point.  

4. 3rd-CASAM-N: Computation of Third-Order Response  
Sensitivities  

Each of the 2nd-order sensitivities would give rise to five 3rd-order sensitivities, 
for a total of 125 third-order sensitivities. The 3rd-order sensitivities could be com-
puted directly by differentiating the expression of the 2nd-order G-differential, 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 12 2; ; ; ; ; ;R u x v x v x v xδ δ δ δ δ 
 α α α α , of the response, to obtain the 

3rd-order G-differential which would require the computation of the G-differentials 
( )nu xδ , 1,2,3n = . In this case, the G-differentials ( )nu xδ , 1,2,3n =  would 

need to be determined by solving nth-LVSS, the differentials ( )nu xδ , 1,2,3n = , 
which would involve 3rd-order differential equations, which would depend on 
1st-, 2nd- and 3rd-order parameter variations. Furthermore, this set of 3rd-order 
differential equations would need to be solved at least 125 times, to account for 
all combinations of 1st- and 2nd-order variations in the parameters and state 
function ( )u x . Alternatively, the 3rd-order sensitivities can be defined as the 
“1st-order sensitivities of the 2nd-order sensitivities,” which enables the 3rd-order 
sensitivities to be computed by using 3rd-level adjoint sensitivity functions de-
termined as will be illustrated in the remainder of this Section.  

4.1. Third-Order Sensitivities Stemming from 2nd-Order  
Sensitivities Involving One-Component of the State Functions 

Examining the expressions of the 2nd-order sensitivities reveals that the sensitivi-
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ties 2R rω∂ ∂ ∂  and 2 R ω ω∂ ∂ ∂  depend solely on the original function ( )u x . 
Therefore, the 3rd-order sensitivities stemming from these 2nd-order sensitivities 
will involve a one-component 3rd-level adjoint sensitivity function, as will be il-
lustrated on this Section by determining the 3rd-order sensitivities arising from 

2 2R r R rω ω∂ ∂ ∂ = ∂ ∂ ∂ . The expression of 2R rω∂ ∂ ∂  is provided by Equation 
(40), which is identical to Equation (60). The 3rd-order sensitivities stemming 
from 2R rω∂ ∂ ∂  are obtained from by G-differentiating Equation (60), which 
by definition yields the following expression:  

( )
( ) ( ) ( )

{ } { }

0

0

2 3 3

3 3 3

0

10

0

2 2

d d
d

,

in
in

dir ind

R R Rq u
r q r u r

R R R r
r r r r

x
x

u x v x

R r R r

ω εδω

λ εδλ ε

δ δ δ
ω ω ω

δλ δω δ
λ ω ω ω ω

δ ω εδω

ε ε

δ ω δ ω

+

+ =

 ∂ ∂ ∂
+ 

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

∂ ∂ ∂
+ + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 − − 
 

+  

   ∂ ∂ ∂ + ∂ ∂ ∂   

∫







           (156) 

where: 

{ } ( ) ( )
( ) 0

2 d
dir

x
R r x

u x

ω

λ

δ ω
δ ω δω

′ −  ∂ ∂ ∂ −     
∫

α

,         (157) 

{ } ( ) ( ) ( ) ( )
0

12 2 d
ind

R r x u x v x x
ω

λ

δ λ δ ω − 
 ∂ ∂ ∂ − −  

 
∫

α

.      (158) 

The direct-effect term defined in Equation (157) has been evaluated at this 
stage by using the already available value expression of ( )u x  from Equation (5). 
On the other hand, the indirect-effect term defined in Equation (158) can be 
evaluated only after having determined the variational function ( ) ( )1v x , which 
is the solution of the 1st-LVSS provided in Equations (10) and (11), which is 
computationally expensive to solve in practice for systems comprising many pa-
rameter variations. The alternative to solving repeatedly the 1st-LVSS to obtain 
the 1st-level variational function ( ) ( )1v x , which depends on the various parame-
ter variations, is to express the indirect-effect term defined in Equation (158) in 
terms of the solution of a 3rd-Level Adjoint Sensitivity System (3rd-LASS), which 
is constructed by following the same steps as outlined in subsection 3.1.1. Thus, 
the definition of provided in Equation (12) is used to construct the inner prod-
uct of Equation (10) with a yet undefined function ( ) ( ) ( )3

1 xa x ∈ ΩH  to obtain 
the following relation: 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

00

1
3 1 3 2d

2 d d
d

v x
a x qu x v x x q a x u x x

x

ω ω

λ λ

δ
     − =    

      
∫ ∫

αα

. (159) 

Integrating by parts the left-side of Equation (159) yields the following rela-
tion: 
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( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

0

0

1
3 1

3 3 3 3

3
1 3

d
2 d

d

d
2 d .

d

v x
a x qu x v x x

x

a v a v

a x
v x qu x a x x

x

ω

λ

ω

λ

ω ω λ λ

   −  
    

= −

   − +  
    

∫

∫

α

α

          (160) 

Using in Equation (160) the boundary condition given in Equation (11) yields 
the following relation: 

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

0

0

3
1 3

3 3 12

1
3 1

d
2 d

d

d
2 d .

d

in in

a x
v x qu x a x x

x

a u qu a v

v x
a x qu x v x x

x

ω

λ

ω

λ

λ δ ω ω

   − +  
    

= − −

   + −  
    

∫

∫

α

α

          (161) 

The left-side of Equation (161) is required to represent the indirect-effect term 
defined in Equation (158) and the unknown value ( ) ( )1v ω  in Equation (160) is 
eliminated by requiring the function ( ) ( ) ( )3

1 xa x ∈ ΩH  to be the solution of 
the following 3rd-Level Adjoint Sensitivity System (3rd-LASS): 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ } 0

0

3
3 2d

2 ; ;
d x

a x
qu x a x x u x x

x
δ ω −

  + = − − ∈Ω 
  

α
α

   (162) 

( ) ( )3 0, ata x x ω= = .                      (163) 

Using Equations (162), (163), (161), and (159) in Equation (158) yields the 
following alternative expression for the indirect-effect term:  

{ } ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0

3 32 2 2 d ,in inind
R r a u qu q a x u x x

ω

λ

δ λ λ δ δλ δ
 

   ∂ ∂ ∂ = − +     
 
∫

α

(164) 

Adding the expressions for the indirect-effect and direct-effect terms obtained 
in Equations (164) and (157), respectively, and identifying the expressions that 
multiply the respective parameter variations, as indicated in Equation (156), 
yields the following expressions for the third-order response sensitivities which 
stem from ωR r  2 :  

( ) ( ) ( )
3

3 2 dR a x u x x
q r

ω

λω
∂

=
∂ ∂ ∂ ∫ ,                 (165) 

( ) ( )
3

3

in

R a
u r

λ
ω

∂
=

∂ ∂ ∂
,                     (166) 

( ) ( )
3

32
in

R qu a
r

λ
λ ω
∂

= −
∂ ∂ ∂

,                   (167) 

3R q
rω ω

∂
= −

∂ ∂ ∂
,                       (168) 
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3

0R
r r ω
∂

=
∂ ∂ ∂

.                         (169) 

The expressions of the sensitivities provided in Equations (165)-(168) are to 
be evaluated at the nominal values of the respective parameters and state func-
tions but the respective indication  α0  has been omitted, for simplicity. 
These expressions can be evaluated after solving the 3rd-LASS to obtain the 
3rd-level adjoint sensitivity function ( ) ( )3a x .  

Solving 3rd-LASS by the standard integrating-factor method yields the follow-
ing expression for the 3rd-level adjoint sensitivity function ( ) ( )3a x :  

( ) ( ) ( ) ( )3 2a x u x H x ω−= − − .                 (170) 

Inserting the result obtained in Equation (170) into in Equations (165)-(167) 
and evaluating the respective expressions yields the following closed-form re-
sults for the respective sensitivities:  

3R
q r

λ ω
ω

∂
= −

∂ ∂ ∂
,                     (171) 

3
2

in
in

R u
u r ω

−∂
= −

∂ ∂ ∂
,                     (172) 

3R q
rλ ω

∂
=

∂ ∂ ∂
.                       (173) 

4.2. Third-Order Sensitivities Stemming from 2nd-Order  
Sensitivities Involving Two Components of the State  
Functions  

The 2nd-order sensitivities 2R q r∂ ∂ ∂  and 2
inR u r∂ ∂ ∂  depend only on the func-

tions ( ) ( )2 1;1;a x  and ( )u x . Similarly, the 2nd-order sensitivities 2
inR uω∂ ∂ ∂  

and 2
inR r u∂ ∂ ∂  depend only on the functions ( ) ( )2 2;3;a x  and ( )u x . Fur-

thermore, the 2nd-order sensitivities 2R ω λ∂ ∂ ∂  and 2R r λ∂ ∂ ∂  depend only 
on the functions ( ) ( )2 2;4;a x  and ( )u x . Finally, the 2nd-order sensitivities 

2R qω∂ ∂ ∂  and 2R r q∂ ∂ ∂  depend only on the functions ( ) ( )2 2;5;a x  and 
( )u x . Consequently, the 3rd-order sensitivities that stem from these 2nd-order 

sensitivities can be expressed in terms of a 3rd-level adjoint sensitivity function 
which will comprise only two components, as will be illustrated by determining 
the 3rd-order sensitivities that stem from 2R r λ∂ ∂ ∂ . These 3rd-order sensitivi-
ties are obtained from the G-differential of Equation (117), which has, by defini-
tion, the following expression: 

2 3 3

3 3 3

0
0

d 1
d

in
in

in in

R R Rq u
r q r u r

R R R r
r r r r

u u
ε

δ δ δ
λ λ λ

δλ δω δ
λ λ ω λ λ

ε εδ
=

 ∂ ∂ ∂
+ 

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
∂ ∂ ∂

+ + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
   −  +   




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( ) ( ) ( ) ( ) ( ) ( ) ( )

{ } { }

0

0

22 ,0 2 10

0
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d 2;4; 2;4; d
d

,
dir ind

a x a x u x v x x
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ω εδω

λ εδλ ε

εδ ε
ε

δ λ δ λ

+ −

+ =

     + + +      

   ∂ ∂ ∂ + ∂ ∂ ∂   

∫



  (174) 

where: 
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0 0
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dir

in in

in in
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u u a u

a u

u u q q

δ λ

δ δω ω ω

δλ λ λ

δ δω δλ

− −

−

−

 ∂ ∂ ∂ 

 +  

 −  

= + −



α α

α

α

         (175) 

{ }
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0

2

2 2 12 32;4; d 2 2;4; d .

ind
R r

a x u x x a x u x v x x
ω ω

λ λ

δ λ

δ − −

 ∂ ∂ ∂ 

   
−   

   
∫ ∫

α α

  (176) 

The direct-effect term defined in Equation (175) has been evaluated at this 
stage by using the already available values of the 2nd-level adjoint sensitivity func-
tion ( ) ( )2 2;4;a x , cf. Equation (119), and ( )u x , cf. Equation (5). On the other 
hand, the indirect-effect term defined in Equation (176) can be evaluated only 
after having determined the variational function ( ) ( )2 2;4;a xδ , which is the so-
lution of the G-differentiated system of Equations (110) and (111), which has the 
following form:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
0

0

2 2 2 1

2 2

d 2;4; 2 2;4; 2 2;4;
d

2 2;4; 2 ;in in in

a x qu x a x qa x v x
x

q u x a x q u x u qu x

δ δ

δ δ δ λ δ δ λ

 − + + 
 

= − + − + −

α

α

(177) 

( ) ( )
( ) ( ) ( )

( ) ( ) ( ){ } 0

2
2

2 2 3

d 2;4;
2;4;

d

2;4; 2 0, at .
x

in

a x
a

x

a q u x
λ

δ λ δλ

δ λ δλ λ
=

  +  
  

= + = =
α

          (178) 

Equation (177) also involves the variational function ( ) ( )1v x , which is the 
solution of the 1st-LVSS comprising Equations (10) and (11). Therefore, Equations 
(177) and (178) are to be concatenated with the 1st-LVSS to obtain a 3rd-Level 
Variational Sensitivity System (3rd-LVSS) which is satisfied by a two-component 
3rd-level variational function of the form ( ) ( ) ( ) ( ) ( ) ( )

†3 1 22; , 2;4;x v x a xδ 
 V  . 

This 3rd-LVSS will therefore have a structure similar to the 2nd-LVSS derived in 
Sections 3.3-3.5, namely: 

( ) ( ) ( ) ( ){ } ( ) ( ){ }0 0

3 3 32 2 2; 2; , ,V xx x x× = ∈ΩVM V Q
α α

      (179) 

( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 2
3

2 2 3

0
2; ;

02;4; 2
in in

V
in

v qu u
x

a q u

λ δλ δ

δ λ δλ

 + −    =   +   
B          (180) 

where 
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( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )

3 1
3

3 2

1;
2; ;

2; 2;4;

v x v x
x

v x a xδ

   
   
   
   

V                (181) 

( ) ( )
( )

( ) ( ) ( )
3

2

d 2 0
d2 2 ;

d2 2;4; 2
d

qu x
x

qa x qu x
x

 − 
 ×
 − + 
 

VM            (182) 

( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

3
3 3 2

3

3 2 2

1;
2; ; 1; ;

2;

2; 2 2;4; 2 ;

V
V V

V

V in in in

x
x x q u x

x

x q u x a x q u x u qu x

δ

δ δ δ λ δ δ λ

 
 
 
 

− − − − −

q
Q q

q

q

 



(183) 

The need for solving repeatedly the 3rd-LVSS to obtain the 3rd-level variational 
function ( ) ( )3 2; xV  for every parameter variations is circumvented by express-
ing the indirect-effect term defined in Equation (176) in terms of the solution of 
a 3rd-Level Adjoint Sensitivity System (3rd-LASS), which is constructed specifi-
cally for the indirect-effect term defined in Equation (176), by applying the prin-
ciples of the 5th-CASAM-N, as follows:  

1) Using the definition of provided in Equation (76), construct the inner 
product of Equation (179) with a yet undefined function  

( ) ( ) ( ) ( ) ( ) ( ) ( )
†3 3 3

22; 1; , 2; xx f x f x  ∈ Ω F  H  to obtain the following relation: 
( ) ( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ){ }
0

0

3 3 3

2

3 3

2

2; , 2 2 2;

2; , 2; , ,V x

x x

x x x

×

= ∈Ω

F VM V

F Q

α

α

                (184) 

which in component form reads as follows:  

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

0

0

0

1
3 1 3

2 2 2 1

3 3 22

2

d
1; 2 d 2;

d

d 2;4; 2 2;4; 2 2;4; d
d

1; d 2; 2 2;4;

2 d ;in in in

v x
f x qu x v x x f x

x

a x qu x a x qa x v x x
x

q f x u x x f x q u x a x

q u x u qu x x

ω ω

λ λ

ω ω

λ λ

δ δ

δ δ

δ δ λ δ δ λ

    − +   
     

 × − + +    

   = −     

+ − + −  

∫ ∫

∫ ∫

α

α

α

α

 (185) 

2) Integrate by parts the left-side of Equation (185) to obtain the following re-
lation: 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

0

0

0

1
3 1 3

2 2 2 1

3 1 3 1

3
1 3

d
1; 2 d 2;

d

d 2;4; 2 2;4; 2 2;4; d
d

1; 1;

d 1;
2 1; d

d

v x
f x qu x v x x f x

x

a x qu x a x qa x v x x
x

f v f v

f x
v x qu x f x x

x

ω ω

λ λ

ω

λ

δ δ

ω ω λ λ

    − +   
     

 × − + +    

= −

   + − −  
    

∫ ∫

∫

α

α

α
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0

0

3 2 3 2

2 3 3

1 2 3

2; 2;4; 2; 2;4;

d2;4; 2; 2 2; d
d

2 2;4; 2; d .

f a f a

a x f x qu x f x x
x

q v x a x f x x

ω

λ

ω

λ

ω δ ω λ δ λ

δ

− +

  + +    

 +  
 

∫

∫

α

α

           (186) 

3) Use in Equation (186) the boundary condition given in Equation (180) to 
obtain the following relation: 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

0

0

0

1
3 1 3

2 2 2 1

3 1 3 2

3
1 3

d
1; 2 d 2;

d

d 2;4; 2 2;4; 2 2;4; d
d

1; 1;

d 1;
2 1; d

d

in in

v x
f x qu x v x x f x

x

a x qu x a x qa x v x x
x

f v f u qu

f x
v x qu x f x x

x

ω ω

λ λ

ω

λ

δ δ

ω ω λ δ δλ

    − +   
     

 × − + +    

 = − − 
   + − −  

    

∫ ∫

∫

α

α

α

 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0

0

3 2 32 3

2 3 3

1 2 3

2; 2;4; 2 2;

d2;4; 2; 2 2; d
d

2 2;4; 2; d .

inf a q u a

a x f x qu x f x x
x

q v x a x f x x

ω

λ

ω

λ

ω δ ω δλ λ

δ

− −

  + +    

 +  
 

∫

∫

α

α

           (187) 

4) Require the right-side of Equation (187) to represent the indirect-effect 
term defined in Equation (176) and eliminate the unknown values of the com-
ponents of ( ) ( ) ( ) ( ) ( ) ( )

†3 1 22; , 2;4;x v x a xδ 
 V   in Equation (187) by requiring 

the function ( ) ( ) ( ) ( ) ( ) ( )
†3 3 32; 1; , 2;x f x f x 

 F   to be the solution of the fol-
lowing 3rd-Level Adjoint Sensitivity System (3rd-LASS): 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ){ } ( )

0

0

3
3

2 33

d 1;
2 1;

d

22 2;4; 2; 1 ;in
in

f x
qu x f x

x

qa x u x qf x qu
u

λ ω−

  + 
  

 = + = + −   

α

α

   (188) 

( ) ( ){ } 0

3 1; 0, at ;f xω ω= =
α

                  (189) 

( ) ( ) ( ) ( ) ( ) ( ){ } 0
0

3 3 2d 2; 2 2; ; ;
d xf x qu x f x u x x

x
− + = ∈Ω 

  α
α

    (190) 

( ) ( ){ } 0

3 2; 0, atf xω ω= =
α

.                 (191) 

5) Use Equations (188)-(191) together with Equations (187) and (185) in Equ-
ation (176) to obtain the following alternative expression for the indirect-effect 
term:  

{ } ( ) ( ) ( ) ( ) ( ) ( )3 32 2 2 31; 2 2;in in inind
R r f u qu q u fδ λ λ δ δλ δλ λ   ∂ ∂ ∂ = − +     
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

0

3 3 22

2

1; d 2; 2 2;4;

2 d .in in in

q f x u x x f x q u x a x

q u x u qu x x

ω ω

λ λ

δ δ

δ δ λ δ δ λ

   + −     

+ − + −  

∫ ∫
α

α

 (192) 

6) Adding the expressions for the indirect-effect and direct-effect terms ob-
tained in Equations (192) and (175), respectively, and identifying the expressions 
that multiply the respective parameter variations, as indicated in Equation (174), 
yields the following expressions for the first-order response sensitivities with re-
spect to the model parameters:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
3

3 3 22 21; ( ) 2; 2 2;4; din
R f x u x f x u x a x u x x

q r

ω

λ

δ λ
λ

∂  = − + − ∂ ∂ ∂ ∫ ;(193) 

( ) ( ) ( ) ( ) ( ) ( )
3

23 31; 2 2; din in
in

R f qu f x x x u
u r

ω

λ

λ δ λ
λ

−∂
= − − +

∂ ∂ ∂ ∫ ;     (194) 

( ) ( ) ( ) ( )
3

3 32 2 31; 2 2;in in
R qu f q u f q
r

λ λ
λ λ
∂

= − + −
∂ ∂ ∂

;          (195) 

3R q
rω λ

∂
=

∂ ∂ ∂
;                         (196) 

3

0R
r r λ
∂

=
∂ ∂ ∂

.                         (197) 

The expressions of the sensitivities provided in Equations (193)-(196) are to 
be evaluated at the nominal values of the respective parameters and state func-
tions. The expressions of the sensitivities stemming from the indirect-effect term 
can be evaluated after solving the 3rd-LASS comprising Equations (188)-(191) in 
order to obtain the 3rd-level adjoint sensitivity function  

( ) ( ) ( ) ( ) ( ) ( )
†3 3 32; 1; , 2;x f x f x 

 F  . The 3rd-LASS is independent of parameter 
variations, so it only needs to be solved once, to obtain the following expres-
sions: 

( ) ( ) ( )
( )

3 2
1;

q x
f x

u x
ω−

= ,                   (198) 

( ) ( ) ( )
( )

3
22;

x
f x

u x
ω−

= .                    (199) 

Inserting into Equations (193)-(195) the expressions obtained in Equations 
(198) and (199) yields the following closed form expressions: 

3R
q r

ω λ
λ

∂
= −

∂ ∂ ∂
;                     (200) 

( )
3

2
in

in

R u
u r λ

−∂
=

∂ ∂ ∂
;                    (201) 

3R q
rλ λ

∂
= −

∂ ∂ ∂
.                      (202) 
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4.3. Third-Order Sensitivities Stemming from 2nd-Order  
Sensitivities Involving Four Components of the State  
Functions  

The 2nd-order sensitivities mentioned in Sections 4.1 and 4.2, above, involve one 
or two components of the original or adjoint sensitivity functions. The expres-
sions of the remaining 2nd-order sensitivities involve as many as four distinct 
functions, as follows: 1) the two components of respective 2nd-level adjoint sensi-
tivity functions; 2) the one-component 1st-level adjoint sensitivity function 

( ) ( )1a x ; and 3) the original forward function ( )u x . Consequently, the 3rd-order 
sensitivities that stem from such 2nd-order sensitivities will need to be expressed 
in terms of a 3rd-level adjoint sensitivity function which will comprise four 
components, as will be illustrated in this Section by determining the 3rd-order 
sensitivities stemming from of a typical such 2nd-order sensitivity, namely the 
unmixed 2nd-order sensitivity 2

in inR u u∂ ∂ ∂ . Notably, there is a single expression 
for the unmixed 2nd-order sensitivity 2

in inR u u∂ ∂ ∂ , namely the expression pro-
vided in Equation (87), in contradistinction to the expressions for the unmixed 
2nd-order sensitivities, for which two alternative expressions are available, as 
discussed and illustrated in Section 3. This, the expression provided in Equation 
(87) must be used as the starting point for computing the higher-order unmixed 
sensitivities of the response ( );R u x  α  with respect to the parameter inu . 

In preparation for determining the expressions of the 3rd-order sensitivities 
which stem from 2

in inR u u∂ ∂ ∂ , Equation (87) is written in the following integral 
form:  

( ) ( ) ( )
2

2 1;3; d
in in

R a x x x
u u

ω

λ

δ λ∂
= −

∂ ∂ ∫ .                 (203) 

Performing the G-differentiation of the expression provided in Equation (203) 
yields the following relation:  

( ) ( ) ( ) ( ) ( )

{ }

0

0

2 3 3 3

3 3

2 ,0 2 0

0

2 2

d 1;3; 1;3; d
d

in
in in in in in in in in in

in in in in

in in in indir

R R R Rq u
u u q u u u u u u u

R R r
u u r u u

a x a x x x

R u u R u u

ω εδω

λ εδλ ε

δ δ δ δλ
λ

δω δ
ω

εδ δ λ εδλ
ε

δ δ

+

+ =

 ∂ ∂ ∂ ∂
+ + 

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
∂ ∂

+ +
∂ ∂ ∂ ∂ ∂ ∂

   + − −    

  ∂ ∂ ∂ + ∂ ∂ ∂ 

∫





 { }
ind

 

   (204) 

where: 

{ }
( ) ( ) ( ){ } ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

0

2

2 2

3 3 2

1;3; 1;3; d

2 2 2 ,

in in dir

in in in

R u u

a a x x x

r r r q
u u u

ω

λ

δ

δλ λ δλ δ λ

δλ λ ω δλ λ ω

 ∂ ∂ ∂ 

′− − −

    = − + − + −   
    

∫

α

α

        (205) 

https://doi.org/10.4236/ajcm.2022.121008


D. G. Cacuci 
 

 

DOI: 10.4236/ajcm.2022.121008 155 American Journal of Computational Mathematics 
 

{ } ( ) ( ) ( )
0

22 1;3; din in ind
R u u a x x x

ω

λ

δ δ δ λ
 

 ∂ ∂ ∂ −  
 
∫

α

.        (206) 

The direct-effect term defined in Equation (205) has been evaluated at this 
stage since the values of the 2nd-level adjoint sensitivity function ( ) ( )2 1;3;a x  is 
already available. However, the indirect-effect term defined in Equation (206) 
depends on the variational function ( ) ( )2 1;3;a xδ , which is the solution of the 
system of equations obtained by G-differentiating the 2nd-LASS provided in Eq-
uations (81)-(84), namely: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )}
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }

0

0

2 2 1 23

2 2 1 2 14

2 2 1 3

d 1;3; 2 1;3; 2 2;3;
d

2 1;3; 6 2;3; 2 2;3;

2 1;3; 2 2;3; ;

a x qu x a x qa x ru x a x
x

qa x a x ru x v x qa x a x

q a x u x a x q a x r u x

δ δ δ

δ

δ δ δ

−

−

−

  + − +  
 + + − 

 = − + + 

α

α

(207) 

( ) ( )
( ) ( ) ( )
2

2 d 1;3;
1;3; 0, at ;

d
x

a x
a x

x
ω

δ ω δω ω
=

  + = = 
  

         (208) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ){ }
0

0

2 2 2 1

2

d 2;3; 2 2;3; 2 2;3;
d

2 2;3; ; ;x

a x qu x a x qa x v x
x

q u x a x x x

δ δ

δ δλ δ λ

 − + + 
 

′= − + − ∈Ω

α

α

  (209) 

( ) ( )
( ) ( ) ( )
2

2 d 2;3;
2;3; 0, at

d
x

a x
a x

x
λ

δ λ δλ λ
=

  + = = 
  

.         (210) 

Evidently, Equations (207)-(210) involve not only the vector-valued function 
( ) ( ) ( ) ( ) ( ) ( )

†2 2 22;3; 1;3; , 2;3;x a x a xδ δ δ 
 A   but also involve the variational vec-

tor function ( ) ( ) ( ) ( ) ( ) ( )
†2 1 1,x v x a xδ 

 V  , which is the solution of the 2nd-LVSS. 
Therefore, Equations (207)-(210) must be concatenated with the 2nd-LVSS, namely 
Equations (71) and (72), to obtain the following 3rd-Level Variational Sensitivity 
System (3rd-LVSS) to be satisfied by the four-component 3rd-level variational func-  

tion 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

†3 2 2

†1 1 2 2

4; 2; , 2;3;

, , 1;3; , 2;3;

x x

v x a x a x a x

δ

δ δ δ

 
 

 ≡  

V x V A

: 

( ) ( ) ( ) ( ){ } ( ){ }0 0

3 3 34 4 4; , ,V xx x× = ∈ΩVM V Q
α α

             (211) 

( ) [ ]†3 0,0,0,0 , ,V xx= ∈∂ΩB                      (212) 

where: 

( ) ( )
( ) ( ) [ ]
( ) ( ) ( ) ( )

[ ]
2

3
3 3

21 22

2 2 2 2 0 0
4 4 ; 2 2 ;

0 02 2 2 2

 × ×   × ×   × ×   

VM
VM

VM VM
 

0
0    (213) 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2 2 24
3

21 2

2 1;3; 6 2;3; 2 2;3;
2 2

2 2;3; 0

qa x a x ru x qa x

qa x

− + −
 ×
 
 

VM  ; (214) 
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( ) ( )
( ) ( ) ( ) ( )

( )

( ) ( )
( ) ( )
( ) ( )

1 3

3
22

2
3

3
2

d 2 2
d2 2 ;

d0 2
d

2;
4; ;

2;
V

V

qu x qa x ru x
x

qu x
x

x
x

x

−  + − +  
 ×
 − + 
 

 
 
 
 

VM

Q
Q

Q





       (215) 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 1 3
3

2
2

2 1;3; 2 2;3;
2; ;

2 2;3;

q a x u x a x q a x r u x
x

q u x a x x

δ δ δ

δ δλ δ λ

−  − + +  
 ′− − − 

Q  (216) 

The need for solving repeatedly the 3rd-LVSS to obtain the 3rd-level variational 
function ( ) ( )3 4; xV  for every parameter variations is circumvented by recasting 
the indirect-effect term defined in Equation (206) using the solution of a 3rd- 
Level Adjoint Sensitivity System (3rd-LASS), which will be independent of para-
meter variations and is constructed specifically for this indirect-effect term. The 
requisite 3rd-LASS is constructed by applying the principles of the 5th-CASAM-N, 
as follows:  

1) Consider that the function ( ) ( ) ( )3
34; xx ∈ ΩV H  is an element in a Hilbert 

space ( )3 xΩH  endowed with an inner product between two elements  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 3 3 3 3

34; 1; , 2; , 3; , 4; xx x x x xψ ψ ψ ψ ∈ Ω  HΨ  and  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 3 3 3 3

34; 1; , 2; , 3; , 4; xx x x x xϕ ϕ ϕ ϕ ∈ Ω  HΦ  defined as 
follows:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0

4
3 3 3 3

3 11

4
3 3

1

4; , 4; ; , ;

; , ; d .

i

i

x x i x i x

i x i x x
ω

λ

ψ ϕ

ψ ϕ

=

=

 
 
 

∑

∑∫





α

Ψ Φ

          (217) 

2) Using the definition of provided in Equation (217), construct the inner 
product of Equation (211) with a yet undefined function  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 3 3 3 3
34; 1; , 2; , 3; , 4; xx a x a x a x a x  ∈ Ω A  H  to obtain the 

following relation: 
( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( ){ }0 0

3 3 3 3 3

2 2
4; , 4 4 4; 4; , ,Vx x x× =A VM V A Q

α α
   (218) 

3) Integrate by parts the left-side of Equation (218) to obtain the following re-
lation: 

( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ){ }

0 0

0

3 3 3 3 3 3

3

3 3 3

3

4; , 4 4 4; ; ; ;

4; , 4 4 4; ,

x

x x P

x x

δ
∂Ω

  × −    

= ×

A VM V A V

V AM A

α α

α

α α
 (219) 

where  

( ) ( ) ( ) ( )
( ) ( ){ } ( ) ( ){ }
[ ] ( ) ( ){ }

† †* *2 3
21*3 3

†*3
22

2 2 2 2
4 4 4 4 ,

2 2 2 2

    × ×      × × =   
 × ×   

VM VM
AM VM

VM


0
(220) 
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( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

3 3 3 3 1 3 1

3 1 3 1 3 2

3 2 3 2 3 2

; ; ; 1; 1;

2; 2; 3; 1;3;

3; 1;3; 4; 2;3; 4; 2;3; .

x

P a v a v

a a a a a a

a a a a a a

δ ω ω λ λ

ω δ ω λ δ λ ω δ ω

λ δ λ ω δ ω λ δ λ

∂Ω

  − 

+ − +

− − +

A V α α

 (221) 

4) Use in Equation (221) the boundary condition given in Equations (11), (70), 
(208) and (210) to obtain the following relation: 

( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

3 3 3 3 3 3

3 1 3 2

2
3 3 1

3 3 2
3

3 2

ˆ; ; ; ; ; ;
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23; 1 3; 1;3;
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x x

in in

in

in
in

P P

a v a u qu

a r q a a
u

ra qu a a
u

a a

δ δ

ω ω λ δ δλ

ω ω λ δω λ δ λ

ω ω λ δω λ δ λ

ω δ ω

∂Ω ∂Ω

   
   

 = − − 

 
− − − − 

 

+ − − −  

−

A V A Vα α α α

      (222) 

5) The right-side of Equation (219) is now required to represent the indirect- 
effect term defined in Equation (206) and the unknown values of the compo-
nents of ( ) ( )3 4; xV  are eliminated in Equation (222) by requiring the function 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 3 3 3 34; 1; , 2; , 3; , 4;x a x a x a x a x 
 A   to be the solution of the 

following 3rd-Level Adjoint Sensitivity System (3rd-LASS): 
( ) ( ) ( ) ( ) ( ) †3 34 4 4; 0,0, ,0 ,x xδ λ× = −  AM A               (223) 

( ) ( ){ } 0

3 1; 0, at ;a xω ω= =
α

                    (224) 

( ) ( ){ } 0

3 2; 0, ata xλ λ= =
α

;                    (225) 

( ) ( ){ } 0

3 3; 0, ata xλ λ= =
α

;                    (226) 

( ) ( ){ } 0

3 4; 0, ata xω ω= =
α

.                    (227) 

In component form, Equation (223) comprises the following equations: 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

3
3 3 1 3

3 2 2 4

2 3

d 1;
2 1; 2 2;

d
2 3; 1;3; 3 2;3;

2 2;3; 4; 0;

a x
qu x a x a x qa x ru x

x
a x qa a x ru x

qa x a x

ω

−

−

 − − + + 

 + + 

+ =

     (228) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 3 2 3d 2; 2 2; 2 2;3; 3; 0
d

a x qu x a x qa x a x
x

− + − = ;      (229) 

( ) ( ) ( ) ( ) ( ) ( )3 3d 3; 2 3;
d

a x qu x a x x
x

δ λ− + = − ;            (230) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 3 3 1 3d 4; 2 4; 2 3; 0
d

a x qu x a x a x qa x ru x
x

− − + − + =  .  (231) 

6) Using Equations (223)-(227), (219) and (211) in Equation (206) yields the 
following alternative expression for the indirect-effect term:  
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       (232) 

7) Adding the expressions for the indirect-effect and direct-effect terms ob-
tained in Equations (232) and (205), respectively, and identifying the expressions 
that multiply the respective parameter variations, as indicated in Equation (204), 
yields the following expressions for the first-order response sensitivities with re-
spect to the model parameters:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

3
3 3 12

3 2 1 3 2

3 2

1; d 2 2; d

2 3; 2;3; d 2 3; 1;3; d
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in in

R a x u x x a x u x a x x
q u u

a x a x a x x a x a x u x x

a x u x a x x

ω ω

λ λ

ω ω

λ λ

ω

λ

∂
= −

∂ ∂ ∂

+ −

−

∫ ∫

∫ ∫

∫

   (233) 

( ) ( )
3

3 1;
in in in

R a
u u u

λ∂
=

∂ ∂ ∂
;                      (234) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
3

3 3 22 1; 4; 2;3; din
in in

R qu a x a x u x a x x
u u

ω

λ

λ δ λ
λ
∂ ′= − − −

∂ ∂ ∂ ∫ ;  (235) 

( ) ( ) ( ) ( ) ( ) ( )
23

3 3
3

1 22; 3; 1 in
in in in in

R ra r q a qu
u u u u

ω ω λ ω ω λ
ω

 ∂
= − − − + − −    ∂ ∂ ∂  

;(236) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
3

3 3 22 32; 2 3; 2;3; d
in in

R a x u x a x a x u x x
r u u

ω

λ

− −∂  = + ∂ ∂ ∂ ∫   (237) 

The expressions of the sensitivities provided in Equations (233)-(237) are to 
be evaluated at the nominal values of the respective parameters and state func-
tions but the respective indication {} 0α

 has been omitted, for simplicity. The 
expressions of the sensitivities stemming from the indirect-effect term can be 
evaluated after solving the 3rd-LASS comprising Equations (223)-(227) to obtain 
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the 3rd-level adjoint sensitivity function ( ) ( )3 4; xA , the components of which 
are determined in the following order: 1) ( ) ( )3 3;a x ; 2) ( ) ( )3 4;a x ; 3) ( ) ( )3 2;a x ; 
4) ( ) ( )3 1;a x . It is evident that determining the components of ( ) ( )3 4; xA  in-
volves a considerable amount of straightforward, albeit tedious, algebraic opera-
tions, which will not be reproduced here because they do not involve any new 
concepts. 

4.4. Remarks on the Application of the 3rd-CASAM-N for  
Computing Third-Order Sensitivities  

The 3rd-order sensitivities are computed by using the 2nd-order sensitivities as 
“model responses”. For each 2nd-order sensitivity, a single computation of the 
corresponding 3rd-Level Adjoint Sensitivity System (3rd-LASS) enables the effi-
cient computation of all of the 3rd-order sensitivities that stem from the 2nd-order 
sensitivity considered as the “model response.” If the 2nd-order sensitivity in-
volves only the original state function, the corresponding 3rd-LASS needed to 
compute the corresponding 3rd-order sensitivities will have the same dimensions 
as the original system or the 1st-LASS. If the starting 2nd-order sensitivity in-
volves only both the original state function and the 1st-level adjoint sensitivity 
function, the corresponding 3rd-LASS needed to compute the corresponding 
3rd-order sensitivities will have twice the dimensions of the original system or the 
1st-LASS. When the starting 2nd-order sensitivity involves in its expression the 
original state function, the 1st-level and 2nd-level adjoint sensitivity functions, the 
corresponding 3rd-LASS which is solved for computing the 3rd-order sensitivities 
stemming from such a 2nd-order sensitivity will have four times the dimensions 
of the original system or the 1st-LASS. These considerations provide guidelines 
for prioritizing the computation of the 3rd-order sensitivities: 1) the largest 
2nd-order relative sensitivities should be given priority consideration, and 2) the 
simplest expressions of the 2nd-order sensitivities should be used as starting 
points for computing the mixed 3rd-order sensitivities. Furthermore, the sym-
metries inherent to the 3rd-order sensitivities provide verification opportunities 
for assessing the computational numerical accuracy of the various adjoint sensi-
tivity functions.  

5. Computation of Fourth- and Fifth-Order Response  
Sensitivities  

The 4th-order sensitivities are obtained by using the 3rd-order sensitivities of in-
terest as “model responses” and computing their G-differentials by applying the 
4th-CASAM-N. If the 3rd-order sensitivity under consideration involves only the 
original state function, the corresponding 4th-LASS needed to compute the cor-
responding 4th-order sensitivities will have the same dimensions as the 1st-LASS. 
If the starting 2nd-order sensitivity involves only both the original state function 
and the 1st-level adjoint sensitivity function, the corresponding 4th-LASS needed 
to compute the corresponding 4th-order sensitivities will have twice the dimen-
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sions of the original system or the 1st-LASS. When the starting 3rd-order sensitiv-
ity involves in its expression the original state function, the 1st-level and 2nd-level 
adjoint sensitivity functions, the corresponding 4th-LASS which is solved for com-
puting the 4th-order sensitivities stemming from such a 3rd-order sensitivity will 
have four times the dimensions of the 1st-LASS. Finally, the starting 3rd-order 
sensitivity may depend on the original state function, the 1st-level, 2nd-level and 
3rd-level adjoint sensitivity functions. In such a case, the corresponding 4th-LASS 
(to be solved for computing the 4th-order sensitivities stemming from such a 
3rd-order sensitivity) will have eight times the dimensions of the 1st-LASS. These 
considerations provide guidelines for prioritizing the computation of the 
4th-order sensitivities: 1) the largest 3rd-order relative sensitivities should be giv-
en priority consideration, and 2) the simplest expressions of the 3rd-order sensi-
tivities should be used as starting points for computing the mixed -order sensi-
tivities. Furthermore, the symmetries inherent to the 4th-order sensitivities pro-
vide verification opportunities for assessing the computational numerical accu-
racy of the various adjoint sensitivity functions.  

The 5th-order sensitivities are obtained by using the 4th-order sensitivities of 
interest as “model responses” and computing their G-differentials by applying 
the 5th-CASAM-N. The dimensions of the 2nd-LASS, 3rd-LASS, and 4th-LASS 
which would correspond to a specific 4th-order sensitivity have the same charac-
teristics as mentioned above. In addition, if the 4th-order sensitivity of interest 
depends on all of the lower-level adjoint sensitivity state functions (i.e., the 4th- 
order sensitivity under consideration depends on the original function, 1st-, 2nd-, 
3rd-, and 4th-level adjoint sensitivity functions) characteristics, then the 5th-LASS 
to be solved for determining the 5th-order sensitivities will have dimensions that 
are 16 times larger than the dimensions of the 1st-LASS. As for the computation 
of lower-order sensitivities, the above considerations provide guidelines for pri-
oritizing the computation of the 5th-order sensitivities: 1) the largest 4th-order 
relative sensitivities should be given priority consideration, and 2) the simplest 
expressions of the 4th-order sensitivities should be used as starting points for 
computing the mixed -order sensitivities. Furthermore, the symmetries inherent 
to the 5th-order sensitivities provide verification opportunities for assessing the 
computational numerical accuracy of the various adjoint sensitivity functions.  

6. Concluding Remarks 

This work has illustrated the application of the recently developed [1] “Fifth- 
Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear 
Systems (5th-CASAM-N)” to a simplified Bernoulli model [2] comprising a 
nonlinear model response, uncertain model parameters, uncertain model do-
main boundaries and uncertain model boundary conditions. The demonstra-
tion model selected for illustrating the application of the 5th-CASAM-N admits 
exact, closed form expressions for the various adjoint sensitivity functions, as 
well as for the model response sensitivities with respect to the uncertain model 
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parameters, uncertain model domain boundaries and uncertain model boun-
dary conditions. While illustrating the fundamental aspects of applying the 
5th-CASAM-N, the guidelines for prioritizing the computation of sensitivities of 
various orders have also been outlined, indicating how the symmetries inherent 
if the mixed-sensitivities of various orders enable multi-faceted comparisons and 
mutual verifications of the various adjoint sensitivity functions, aiming at mini-
mizing the number of large-scale computations.  

The 5th-CASAM-N provides the foundation for developing a comprehensive 
adjoint sensitivity analysis methodology for computing efficiently and exactly 
model response sensitivities of arbitrarily high-order, aimed at overcoming the 
curse of dimensionality in sensitivity and uncertainty analysis. 
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