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Abstract 
The phenomena of magneto-hydrodynamic natural convection in a 
two-dimensional semicircular top enclosure with triangular obstacle in the rec-
tangular cavity were studied numerically. The governing differential equations 
are solved by using the most important method which is finite element method 
(weighted-residual method). The top wall is placed at cold Tc and bottom wall 
is heated Th. Here the sidewalls of the cavity assumed adiabatic. Also all the wall 
are occupied to be no-slip condition. A heated triangular obstacle is located at 
the center of the cavity. The study accomplished for Prandtl number Pr = 0.71; 
the Rayleigh number Ra = 103, 105, 5 × 105, 106 and for Hartmann number Ha 
= 0, 20, 50, 100. The results represent the streamlines, isotherms, velocity and 
temperature fields as well as local Nusselt number. 
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1. Introduction 

Convection is a mode of heat transfer which takes place through the movement 
of collective masses of heated atoms and molecules within fluids such as gases 
and liquids, including molten rock. Application of natural convection heat 
transfer is very important in science, engineering researcher and fields such as 
thermal insulation, heating and cooling buildings, solar collector, heat exchang-
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er, crystal growing, food processing, energy drying processes, lakes and geo-
thermal reservoirs, nuclear energy, underground water flow, etc. Several numer-
ical and experimental systems have been advanced to investigate flow characte-
ristics inside the cavities with and without obstacles. Most of the cavities repeat-
edly used in industries are rectangular, square, trapezoidal, cylindrical, elliptic 
and triangular, etc.  

Earlier studies were mainly developed on physics of the various flow systems 
in different cavity. Reddy [1] introduced finite element analysis to develop the 
energy and momentum equations subject to the boundary conditions simulta-
neously and the finite element solutions of differential equations with constant 
coefficients are exact at the nodes. Hussein et al. [2] developed entropy genera-
tion analysis of a natural convection inside a sinusoidal surrounding with vari-
ous shapes of cylinders. Their outcomes showed that the entropy generations 
due to heat transfer, fluid friction and total entropy generation enhance with in-
creasing values of Rayleigh number, while the local Bejan number decreases. 
Arun et al. [3] investigate on natural convection heat transfer problems by Lat-
tice Boltzmann Method. They found the importance of the natural convection 
problem and the ability of lattice Boltzmann method to apply in the computa-
tional field. Seyyedi et al. [4] studied natural convection heat transfer under con-
stant heat flux wall in a nanofluid filled annulus enclosure. Sheikholeslami et al. 
[5] investigated natural convection heat transfer in a nanofluid filled inclined 
L-shaped enclosure. It can be terminated that the turning angle of the enclosure 
can be a control parameter for heat and fluid flow. The outcomes publish that 
average Nusselt number is an increasing function of nanoparticle volume frac-
tion and Rayleigh number. Natural convection in a triangular top wall enclosure 
with a solid strip was extensively experimentally and numerically researched by 
Hussain et al. [6]. Bhuiyan et al. [7] studied magneto hydrodynamic natural 
convection in a square cavity with semicircular heated obstacle. They investi-
gated the effect of Rayleigh and Hartmann numbers on the flow field in a square 
cavity with semicircular heated block along uniform magnetic field. Numerical 
simulation of natural convection in a rectangular lacuna with triangles of differ-
ent orientation in presence of magnetic field was researched by Alam et al. [8]. 
They also establish the mentioned parameters that have meaningful effect on 
average Nusselt number at the hot wall and average temperature of the fluid in 
the enclosure. Saika et al. [9] investigated effect of Hartmann Number on Free 
Convective Flow of MHD Fluid in a Square Cavity with a Heated Cone of Dif-
ferent Orientation. They reported that a sufficiently large magnetic field can po-
tentially stop fluid movement altogether and heat transfer would be fully by 
conduction. Hakan and Khaled et al. [10] studied MHD mixed convection in a 
lid-driven cavity with corner heater. Finite Element Analysis of Magnetohydro-
dynamic Mixed Convection in a Lid-Driven Trapezoidal Enclosure Having 
Heated Triangular Block was researched by Sajjad and Alim et al. [11]. 

The above literature review motivates the author’s, to give attention to the 
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problem of natural convection in enclosure with obstacles of different shapes 
like triangles, circles, solid strips and so on. To the best of author’s knowledge no 
investigation has been done yet on finite element analysis of MHD natural con-
vection within semi-circular top enclosure with triangular obstacle. So the pro-
posed study is to address the issue. 

2. Physical Configuration 

The physical model deliberated in the present study of a two-dimensional rec-
tangular cavity and semi-circular top enclosure with heated triangular obstacles 
is shown in FIGURE1 is considered for simulation purposes. The height and the 
width of the cavity are denoted by L. The lower wall is kept at heated (Th) and 
the upper wall is kept atcold (Tc) under all situations Th > Tc condition is main-
tained. The right and left wall are adiabatic. The gravitational force g, acts verti-
cally downward. The magnetic field of strength B0 is applied parallel to the 
x-axis. 

3. Mathematical Formulation 

The flow is considered steady, laminar, incompressible and two-dimensional. 
The field of governing equations solved during the simulation for the free con-
vection flow inside the domain are, conservation of mass, momentum and ener-
gy can be written as: 

Continuity Equation 

0u u
x y
∂ ∂

+ =
∂ ∂

                             (1) 

Momentum Equations 
2 2

2 2

u u u u u
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  ∂ ∂ ∂ ∂ ∂

+ = − + +  ∂ ∂ ∂ ∂ ∂   
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Energy Equation 
2 2

2 2
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α
 ∂ ∂ ∂ ∂

+ = + ∂ ∂ ∂ ∂ 
                    (4) 

where x and y are the distances measured along the horizontal and vertical di-
rections respectively; u and v are the velocity components in the x and y direc-
tions respectively; T denote the fluid temperature, Tc denotes the reference tem-
perature for which buoyant force vanishes, ρ is the fluid density, g is the accele-
ration due to gravity, β is the volumetric coefficient of thermal expansion, σ is 
the electrical conductivity, B0 is the magnetic induction, α is the thermal diffu-
sivity and ν kinematic viscosity of the fluid. 

The governing equations are non-dimensionalized using the following dimen-
sionless variables: 
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Introducing the previous dimensionless variables, the following dimensionless 
forms of the governing equation are obtained as follow: 

Continuity Equation 

0U V
X Y
∂ ∂

+ =
∂ ∂

                         (5) 

Momentum Equations 
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                 (8) 

where X and Y are the coordinates varying along horizontal and vertical direc-
tions, respectively, U and V are the velocity components in the X and Y direc-
tions, respectively, θ is the dimensionless temperature and P is the dimensionless 
pressure. Cp is the fluid specific heat at constant pressure; k is the thermal con-
ductivity of fluid. 

The dimensionless parameters are the Prandtl number Pr, Hartmann number 
Ha and Rayleigh number Ra. which are defined as: 

( )32 2
2 0

2, , h cg L T T PrB LvPr Ha Ra
v

βσ
α µ

−
= = =  

Boundary Conditions 

The simulation domain with boundary conditions is shown in Figure 1. Which 
are No-slip conditions are applied at all cavity boundaries, i.e. u = v = 0. The left 
and right sidewalls are considered adiabatic. The lower wall is subjected to iso-
thermal heat temperature (Th). The upper wall is subjected to isothermal cold 
temperature (Tc). The internal triangular obstacle is taken thermally insulated  

everywhere, i.e. d 0
d
T
y
= . 

4. Numerical Procedure 

The dimensionless governing equations are solved with the required boundary 
conditions using the finite element method, the Galerkin weighted residual 
technique. Mass, momentum and energy are two dimensional non-linear partial  
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Figure 1. Schematic physical configuration with boundary condition considered in the 
present paper. 
 
differential equations which are transferred into a system of integral equations. 
The quadratic triangular element is used to develop the finite element equations. 
Different types of grid densities have been selected to assess the accuracy of the 
numerical simulation procedure. These modified nonlinear equations are trans-
ferred in linear algebraic equations with the aid of Newton’s method. Finally, the 
triangular factorization method is applied for solving those linear equations. 

5. Validation of Numerical Procedure 

Validation of the numerical procedure was made by comparing streamlines and 
isotherms with results shown in Figure 2(a) and Figure 2(b) by Bhuiyan et al. 
(2014). They investigate the effect of magnetic field in a square cavity with semi-
circular heated block. From this figures as seen the obtained outcomes show ex-
cellent agreement. 

6. Results and Discussion 

Following portion the estimates are completed for Prandtl number Pr = 0.71, the 
Rayleigh number Ra = 103, 105, 5 × 105, 106 and for Hartmann number Ha = 0, 
20, 50, 100. The outcomes are pictorial with isotherms, streamlines, velocity pro-
files, dimensionless temperature and the local Nusselt number. 

Streamlines and Isotherms are shown in Figure 3. From the streamlines fig-
ure, many cells can be observed inside the cavity. For Ha = 0 where there is no 
magnetic field are presented in Figure 3 to comprehend the effects of Rayleigh 
number on the flow field and temperature distribution. At Ra = 103 and in the 
non-existence of the magnetic field (Ha = 0) are created four elliptic-shaped cells 
appear on the top-right, top-left, bottom-right and bottom-left corner of the tri-
angular heated block of the cavity shown in the left side of Figure 3(a). The 
top-left cells rotate anticlockwise and the top-right cells rotate clockwise. For  
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(a) 

 
(b) 

Figure 2. (a) Comparison results for Streamlines while Ha = 0, Pr = 0.71 and Ra = 104; (b) 
Comparison results for Isotherms while Ha = 0, Pr = 0.71 and Ra = 104. 
 
higher Rayleigh numbers almost the similar outcomes as Figure 3(a) but flow 
power increases are shown in Figures 3(b)-(d). The right side of Figure 3 shows 
the isotherms for different values of Rayleigh number (Ra) with Pr = 0.71 and 
Ha = 0. The dimensionless temperature whose value range is 0 - 1. Stream func-
tion has a symmetrical value about the vertical center line as the triangular 
heated obstacle is symmetrical. It is observed that isothermal lines slightly move 
from the heated surfaces to cold surfaces on the right side of Figure 3(a) and 
Figure 3(b) at Ra = 103 and Ra = 105. With increasing Rayleigh number, iso-
therms are many submission which means increasing heat transfer through 
convection. The differences are clean between Ra = 5 × 105 and Ra = 106 are 
shown on the right side of Figure 3(c) and Figure 3(d). 

Streamlines and Isotherms are shown in Figure 4 where Rayleigh number (Ra 
= 105) is fixed. Ha is increased to 0, 20, 50 and 100. At Ra = 105 and increasing 
Ha = 0 to 100 are created four elliptic-shaped cells be present on the top-right, 
top-left, bottom-right and bottom-left corner of the triangular heated block of the 
cavity shown in the left side of Figure 4(a). The top-left cells rotate anticlockwise  
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Figure 3. Streamlines and isotherms for (a) Ra = 103; (b) Ra = 105; (c) Ra = 5 × 105; (d) Ra = 106 while Ha = 0 
& Pr = 0.71. 
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Figure 4. Streamlines and isotherms for (a) Ha = 0; (b) Ha = 20; (c) Ha = 50; (d) n = 100 while Ra = 105 & Pr = 
0.71. 

https://doi.org/10.4236/ajcm.2022.121004


A. A. Runa et al. 
 

 

DOI: 10.4236/ajcm.2022.121004 41 American Journal of Computational Mathematics 
 

and the top-right cells rotate clockwise. For higher Hartmann numbers almost 
the same result as Figures 4(a)-(c) but flow power increases and closer to one 
another are shown in Figure 4(d). The right side of Figure 4 shows the iso-
therms for various values of Hartmann number (Ha) with Pr = 0.71 and Ra = 
105. Stream function has a symmetrical value about the vertical centerline as the 
triangular heated obstacle is symmetrical. It is observed that Ha does not have 
more effect on heat transfer with high Ra. The differences are clean between Ha 
= 50 and Ha = 100 are shown on the right side of Figure 4(c) and Figure 4(d). 

The y-component of velocity along the line parallel to the x axis (y = 0.15) is 
presented. Figure 5(a) and Figure 5(b) display the effect of different Rayleigh 
number (Ra) and Hartmann number (Ha) with Pr = 0.71 on the y-component of 
velocity at y = 0.15. Figure 5(a) display the four profiles corresponding to the 
four values of Ha which are 0, 20, 50 and 100. It can be visible from Figure 5(a) that 
the velocity has a larger change for the lower Hartmann number value. Velocity  
 

 
Figure 5. Variation of velocity profiles at different (a) Hartmann number with Pr = 0.71, Ra = 105 and (b) Rayleigh number with 
Pr = 0.71 and Ha = 0 on y-component at y = 0.15. 

 

 
Figure 6. Variation of local nusselt number at different (a) Hartmann number with Pr = 0.71, Ra = 105 and (b) Rayleigh number 
with Pr = 0.71 and Ha = 0 on y-component at y = 0.15. 
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grows maximum at two locations which is at x = 0.06 and x = 0.14 when Ha = 0. 
Figure 5(b) displays the four profiles corresponding to the four values of Ray-
leigh number (Ra) which are 103, 105, 5 × 105 and 106. It can be visible from Fig-
ure 5(b) that velocity has a big change for a higher Rayleigh number value. As 
seen from Figure 5(a) and Figure 5(b) there is no value of velocity on the tri-
angular heated block. The local Nusselt number at different Hartmann number 
(Ha) and Rayleigh number (Ra) with Pr = 0.71 on y-component at y = 0.15 is 
shown in Figure 6(a) and Figure 6(b). At Ha minimum, we get maximum val-
ues and at Ha maximum, we get minimum shape curve which is shown in Fig-
ure 6(a). For different Hartmann numbers, we get different curves. Again the 
local Nusselt number at a various Rayleigh number with Pr = 0.71 and Ha = 0 
fixed on the y-component at y = 0.15 is shown in Figure 6(b). At Ra maximum 
we get maximum shape curve and if Ra minimum we get the minimum value. 

7. Conclusion 

A numerical study investigates Magneto-hydrodynamic natural convection fluid 
flow and heat transfer in a semi-circular top square cavity filled with heated tri-
angular obstacles. The fluid considered is air. The governing equation of mass, 
energy equation and momentum were solved using the Galerkin weighted resi-
dual method of finite element method. For all cases considered four coun-
ter-rotating eddies were shaped inside the cavity. From the present investigation 
the following conclusions may be drawn as: Rate of heat transfer enhanced for 
the increase in the buoyancy force via an increase in Rayleigh number with Ha = 
0 and reduced for the increasing value of Hartmann number. And also magnetic 
field strength plays a significant role to control parameters for heat transfer and 
fluid flow. 
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