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Abstract 
The impact of certain separate characteristics, including the porosity para-
meter, reaction rate parameter, and viscoelastic parameters of steady convec-
tive diffusion across a rectangular channel, has been investigated in this ar-
ticle. The model’s momentum and concentration equations were developed 
using the similarities technique, and the numerically finite volume method 
was combined with the Beavers and Joseph slip conditions. Various graphs 
have been used to get insight into various parameters of the problem on ve-
locity and concentration. The cartilage surfaces are assumed to be porous, 
and the viscosity of synovial fluid varies with hyaluronate (HA) content. 
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1. Introduction 

The synovial joints are crucial in both human and animal movement. Under 
normal physiological conditions (see Figure 1), these joints can withstand very 
high loads and have very low friction [1]. Articular cartilage is a porous gel of 
proteoglycan aggregates embedded in a water-swollen network of collagen fibrils 
[1]. When cartilage is compressed, the interstitial fluid is forced to flow relative 
to the solid organic matrix and exude from it [2]. The vessels that transport nu-
trients are present in immature articular cartilage [2] [3]. The extracellular fluid 
transports nutrients from the synovial fluid via diffusion and convection [4]. 
The process of dispersion is critical in both chemical and biological systems [5] 
[6]. Hyaluronic acid [HA], glycoprotein, and other macromolecular components 
move from synovial fluid to cartilage in synovial joints [5] [6]. In healthy syn-
ovial fluid, the diffusion coefficient of hyaluronan was on average 30% slower 
than expected by sample viscosity [5] [6]. While dispersing from synovial fluid  
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Figure 1. Shows physical information of synovial joint (Human Knee joint) [9]. 

 
to cartilage, HA and other components may also perform microcirculation [7]. 
Endothelium in arteries and cartilage in synovial joints are porous cell layers that 
can or cannot deform [7]. Synovial fluid is essential for joint lubrication, nu-
trient delivery, and metabolite removal from avascular articular cartilage [7] [8]. 
Increased lubrication, imbibition, and exudation increase the concentration of 
hyaluronic acid molecules in synovial fluid [7] [8]. According to Wegamir’s 
findings, an increase in hyaluronic acid concentration causes an increase in 
synovial fluid viscosity. 

1.1. Models of Lubrication    

The most prominent theory of lubrication regarding human joints was regulated 
by hydrodynamic. Well-built investigations were carried out to find the similari-
ties between physical wedges and articulating surfaces in human joints shown by 
Reynolds which is necessary for hydrodynamic or fluid film lubrication [10]. 
The intraarticular cartilage (synovial fluid in knee joint) behaves as a slight in-
clination of the coupled surfaces to cater wedge shaped lubricant films, which is 
suggested by MacConail [10] [11]. After his research, there was conclusion about 
joints to view as hydrodynamically lubricated systems by performing the first 
detailed experiments on friction in naturally acting joints, observing a horse 
stifle mounted as the fulcrum in a pendulum machine. A very low coefficient of 
friction ( 0.02f = ) in case of sliding was observed when the joint was lubricated 
by synovial fluid whereas an unlubricated joint revealed creaking noise after 
8000 cycles when applied a constant load of 445 N [12] [13]. After 4 hours, ob-
servations were the joint heating, debris being thrown, bone granting, stream 
rising, etc. [12] [13]. After such experiment he highlighted the essential role of 
lubrication in natural joints. So hydrodynamic theory at that time played a fun-
damental role in the study of natural human joint lubrication [12] [13] [14]. 
Even if this topic remains under investigation, to summarize and highlight the 
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scientific progress coupled with mathematical equations made through the years 
in the understanding and modelling of lubrication mechanisms in natural hu-
man synovial joints, covering more popular and relevant theories from earlier 
research in this field up to the latest ones, can be viewed by introducing briefly 
some milestones from the 1930’s to today [12] [13] [14]. 

1.2. Boundary Lubrication    

The conclusion was drown which was based on several pendulum experiments 
(in which a linear decay in amplitude was observed) that hydrodynamic action 
could not exist due to low sliding velocities under the heavy loads acting in the 
human joints. An alternative to MacConail theory, a boundary lubrication mod-
el was proposed by Charnley in 1959 by his experiment which recorded friction 
coefficient values [13] [14]. Such lubrication exists between unlubricated sliding 
surfaces and fluid-film lubrication. It is also characterized as condition in which 
the friction between surfaces is determined by features of the surfaces and prop-
erties of the lubricant other than viscosity [13] [14]. Barnett and Cobbold made 
critical observations on Charnley’s theory, in which linear decay in amplitude 
was attributable to the dissection of the joint [15]. Such decay showed an essential 
linear relationship with time when replaced the joint in the pendulum fulcrum 
with a hydrostatic bearing. In 1968, Linn and Radin conducted experiments on 
animal joints at a constant load attracted a lot of interests in which extraneous dy-
namic force component give rise to friction force [16]. The most important con-
clusion was the animal joints operate within mixed film region of lubrication. 

1.3. Weeping Lubrication    

McCutchen considered the porosity and elasticity of articular cartilage of joint 
lubrication problem for the first time in 1966 [17]. According to his views, the 
pressured synovial fluid travels through the porous cartilage which acts as a 
sponge like material [17]. Weeping lubrication is a form of fluid lubrication in 
which the load bearing surfaces are held apart by a film of lubricant that is 
maintained under pressure [16] [17] [18]. Weeping implied that the lubricant 
film was sweated into the high-pressure zone between opposing cartilages, while 
the boundary lubrication effect between the contact surfaces remained [16] [17] 
[18]. McCutchen came up with the term ‘‘weeping lubrication” because of bear-
ing materials that accomplish it weep fluids when pressurized. An external pump 
is frequently used to supply pressure in engineering aspects while the pump ac-
tion in the human body is provided by muscle contractions around the joint or 
by weight bearing compression of articular cartilage, which causes the cartilage 
to distort and “weep” fluid, forming a fluid film across the articular surfaces [16] 
[17] [18]. Because the impervious layer of calcified cartilage prevents the fluid 
from being driven into the subchondral bone, it can only move into the joint. 
When the stress is removed, osmotic pressure causes the fluid to flow back into 
the articular cartilage [16] [17] [18]. When cartilage weeps under force, the 
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weight is absorbed by the hydrostatic pressure of the fluid, even though the liq-
uid content of the porous cartilage would be evacuated and the friction coeffi-
cient would grow if the squeeze is sustained indefinitely. It also appears that 
wringing water out of the porous matrix takes longer and is more difficult, whe-
reas resoaking is simple [16] [17] [18]. This sort of lubrication is most effective 
when the load is high, but it can be used in a variety of situations. 

1.4. Elastohydrodynamic Lubrication    

The protective fluid film is maintained at an adequate thickness in the elastohy-
drodynamic lubrication model by the elastic deformation of the articular surfac-
es [19]. Elastohydrodynamic lubrication is a hydrodynamic process in which the 
fluid film pressure produces elastic deformation of the bearing surfaces, altering 
the pressure in the film region. To put it another way, the elastic cartilage de-
forms slightly to keep a layer of fluid between the opposing joint surfaces. Under 
strong loading, the elastohydrodynamic motion can keep a fluid film intact [19]. 
The fluid film thickness varies between 10−5 and 10−4 cm [19]. In general, elastic 
distortion offers greater geometrical conformity in the contact zone than is or-
dinarily present, resulting in a substantially thicker lubricating film for a given 
load [19]. Furthermore, the high pressure may produce a significant rise in the 
viscosity of the lubricant. The thickness of the lubricating film is further in-
creased by this viscosity effect [19]. With the addition of the effective elastic 
modulus, the minimum film thickness is a function of the same factors as in hy-
drodynamic lubrication [19]. In 1963, Dintenfass firstly, showed failure of the 
hydrodynamic lubrication mode in which he completely neglected deformations 
while he took into account the deformability of articular cartilage and led to Ela-
strohydrodynamic lubricayion theory (EHD) [20]. The main finding was that 
the operating film thickness in highly loaded lubricated contacts could be up to 
100 times greater than predicted by conventional lubrication theory, because the 
human joint requires the correct operating conditions for the cartilage to be se-
parated by a synovial film and thus boundary lubrication does not exist [20]. In 
1966, Tanner theoretical values suggested the possibility of lubricating film in 
the human joints when surfaces are subject to relative motion [21]. Later on, in 
1986 confirmed EHD lubrication as prominent mode of lubrication of soft bear-
ing or highly deformable systems, such as synovial joints [21]. 

1.5. Squeeze-Film Lubrication    

When the bearing surfaces are moving perpendicularly towards one other, 
squeeze-film lubrication occurs. The movement of articular surfaces that are 
perpendicular to one another creates pressure in the fluid film. The fluid film is 
squeezed out of the area of approaching contact as the opposing surfaces draw 
closer together. The viscosity of the fluid in the gap between the surfaces creates 
pressure, which causes the lubricant to be forced out. The surface is kept sepa-
rated by the pressure caused by the fluid’s viscosity [22]. This sort of lubrication 
is best for heavy loads that are only used for a short time. This device has the 
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ability to carry heavy loads for brief periods of time [22]. The layer of fluid lu-
bricant thins when the fluid is driven out, and the joint surfaces come into con-
tact. Under particular conditions, the film’s height may be measured, and the 
time it takes for the film to shrink from a given height to zero can be calculated 
[22]. A squeeze film mechanism of lubrication was suggested by Dowson and 
Popov in 1966 which based on assumption that the analysis concerning a loaded 
rigid cylinder approaching a rigid plate [23]. A rigid plane opposes a rigid bone 
covered by a porous, elastic layer of articular cartilage lubricated by synovial 
fluid with relative velocities are both sliding and squeezing [23]. Dowson used 
the primary results of hydrodynamic and EHD theories in a simple model for 
human joints for the first time in tribology history [22] [23]. Theoretical and 
experimental values of film thickness were found to be in excellent agreement. 
Higginson and Norman (1974) and Higginson (1977) looked at a pair of com-
pliant surfaces where the lubricant was squeezed out. However, the non-Newtonian 
behaviour of the synovial fluid was not taken into account in the computations 
[24]. An asymptotic analysis of a lubrication problem for a model of articular 
cartilage and synovial fluid under squeeze-film conditions, was proposed an 
original analytical approximate model for the synovial pressure field determination 
in the ankle joint in a pure squeeze motion, accounting for the non-Newtonian 
behaviour of synovial fluid and cartilage porosity [23] [24]. 

2. The Rheology of Synovial Fluid    

● Power Law Model: 
Ostwald-de Waele relationship which is called power law model can be related 

to viscosity and shear rate in a steady shear flow,  
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where µ  is viscosity, γ  shear rate,   and n are cure fitting coefficients [25].  
● Newtonian Fluid in Generalized Form: 

A general type of Newtonian fluid for shear thinning can be described by 
Ostwald-de Waele relationship which satisfies the Rheological equation,  
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An idealized fluid is generalized Newtonian fluid in which shear stress is a func-
tion of shear rate at a particular time whereas independent of deformation his-
tory [25]. With the help of power law for fluid, equation of Rheology becomes,  
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● Stokes Coupled Stress Fluid: 
Stokes theory (1966) is used to model synovial fluid to build up link with the 
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momentum and continuity equations [25]. According to this theory, defined 
equations are,  

 4

,

1 ,
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Dt

ρ µ

ρ ρ η

= −∇ + ∇
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                    (4) 

where ρ  is density of synovial fluid, vectors  ,   and   represent velocity, 
body force and body couple per unit mass. µ  is viscosity and η  represents 
coupled stress constant [25].  

3. Kinematics    

In term of mathematical equations for fluid flow is the conservation laws of 
physics.  
● The mass of a fluid is conserved (continuity equation).  
● The rate of change of momentum equals the sum of the forces on a fluid par-

ticle (Newton’s 2nd law of motion) [26].  
Steady, two-dimensional mass conservation or continuity equation at a point 

in a compressible fluid is,  

( )div 0,
t
ρ ρ∂
+ =

∂
  

where the first term is the rate of change of density with respect to time while 
second term represents the net flow of mass out of the element across its boun-
daries and is called the convective term. Our assumption in this article is that the 
density is constant (incompressible flow), so above equation can be written as,  
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Conservation of momentum equation in x-direction is defined as,  
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Conservation of momentum equation in y-direction is defined as,  
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where xxτ  and yyτ  are viscous stress components which is composed of the li-
near deformation rate and the volumetric deformation rate. Liquids are incom-
pressible so the mass conservation equation is continuity and viscous stresses are 
twice the local rate of linear deformation times the dynamic viscosity [26] [27]. 

3.1. Assumptions on Momentum Equation    

● Steady, two dimensional and incompressible.  
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● Ie  is x component of the seepage velocity in fluid film region.  
● Ie  is average velocity.  
● 

xMS  and 
yMS  are source terms include contribution due to body forces 

only and   is pressure. We consider 0
x yM MS S= =  and linear deforma-

tion rate.  
● Neglect the variation of pressure normal to very thin film of lubrication.  
● n is power law index with 1n = .  

Above assumptions led to the following expression,  
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Let us consider a special slip boundary conditions at lower and upper permeable 
surfaces.  

 , at ,I
I

ee y h
yα

∂
= − =

∂
                     (8) 

where   and α  are permeability of porous medium and slip parameter re-
spectively [26] [27]. The boundary of porous medium with a free viscous fluid is 
the continuity of pressure and the normal mass flux which give rise to wipe up 
the tangential velocity of the synovial fluid [28] [29]. Such boundary condition 
was proposed by Beavers and Joseph (BJ) in 1967 as a empirical formula. The 
analysis showed that BJ condition is macroscopic law which describes a pheno-
mena at a macroscopic scale whereas characteristic length is much larger than 
the pore characteristic size [28] [29]. Similarity transformation is useful to scale 
out the problem.  

 0, at 0.Ie y= =                         (9) 

Convection diffusion phenomena has great potential for applications in mathe-
matical biology as well as pattern formation. The hyaluronic acid (HA) mole-
cules in synovial fluid linked by convection diffusion phenomena is simple mass 
balance between changes in concentration   of solutes [28] [29].  

 ( ) ( )
2 2

12 2 ,I I J J Diffe e e e
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where  , 1  and Diff  are concentration of solutes, chemical reaction with 
first order rate (such reaction occurs in fully developed flow after diffusion) and 
diffusion constant respectively. 

3.2. Assumptions on Concentration Equation    

● Transverse diffusion is very much higher than longitudinal diffusion.  
2 2

2 2 ,
x y

∂ ∂
⇒

∂ ∂


   
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● Steady convection diffusion phenomena.  
We apply the following boundary conditions on Equation (10),  

 0 , at ,c y h= =                        (11) 

1, at .c y h= = −                       (12) 

4. Governing System for Synovial Fluid    

The physical configuration to proposed problem as incompressible synovial fluid 
flowing two parallel surfaces which is apart by 2h separated distance [28]. The 
synovial fluid has been represented by viscoelastic fluid and its elasticity is per-
tinent in joint lubrication and bounded by porous layer [28].  
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5. Methodology    

Partial differential equations occur in almost every branch of science and engi-
neering. Exact analytical solutions may be obtained only for very few cases 
among them. In most cases one has to adopt some numerical method to solve 
the problems. As we know that the momentum and continuity equations were 
first time solved by German engineer H. Blasius, which is done by transforming 
the partial differential equations into ordinary differential equations [30]. He in-
troduced a new independent variable which is called similarity variable (nondi-
mensionalization) [30]. 

5.1. Nondimensionalization   
5.1.1. Velocity Distribution Profile 

For non-dimensionalization technique, let us consider y
h

η =  which is ac-

commodated in Equation (13) [30] [31] [32].  

 
2

1
2 2

1 1 , at 1 & 0, at 0.I
I I

e ee e
x hh

η η
µ α ηη

∂ ∂∂
= = − = = =

∂ ∂∂ 

       (15) 

Solution to problem (15) is,  
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As synovial fluid velocity is distributed randomly in the cartilage, so we can find 
the average velocity by introcing the following expression,  
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Now we try to find 1e  which can be used in concentration equation.  
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5.1.2. Concentration Distribution Profile 
Apply non-dimensionalization technique to Equation (14) [30] [31] [32], such as  
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which led to the following equation,  
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Solution to problem (21) is,  
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5.2. Finite Volume Method    

Computational methods like finite difference, finite volume, finite element or 
their variants, that are most frequently used in computational fluid dynamics. 
The present work emphasises mainly the finite volume method for computa-
tional solution to aforementioned problems (13) & (14). Implementation steps 
are as follows:  
● Divide the domain into the finite sized subdomains (finite control volumes) 

and each subdomain is represented by a finite number of grid points (like 
Nodes) [33],  

● integrate the governing differential Equation (GDE) over each subdomain 
[33],  

● consider a profile assumption for the dependent variable (like, interpolation 
function) to evaluate the above integral which express the result as an alge-
braic quantity at the grid points [33].  

d d 0,
V V

u V Source Vηη η∆ ∆
+ =∫ ∫                   (24) 

above Equation (24) can be written as,  

 ( )d d 0.
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profile assumptions for uη  at control volume faces n and s are as follows,  
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Combining Equations (26) →  (28) to get the following system,  
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P P S N u

SP PN SP PN

A A A A
S u u u S

δη δη δη δη
 

+ − = + + 
 

         (29) 

5.2.1. Algorithm Implementation for Velocity Profile 
Scheme procedure can be deduced from Equation (29), which is as follows:  

Interior Boundary Nodes: 

 

,

,
where , &

,

.

P P S S N N u

s
S

SP
SP PN s n

n
N

PN

P S N P

a u a u a u S
A

a
A A A

A
a

a a a S

δη
δη δη δη

δη

= + + 

=
 = = = =
=



= + − 

 (30) 

Left Boundary Node: For first boundary node, we use 0u =  at 0η = .  
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 ( ) ( )2 0N P P a
A Au u u u Source Aη δη
δη δη

− − − + =              (31) 

,
0,

,

,
2 ,

2 .

P P S S N N u

S

N

P S N P

P

u a

a u a u a u S
a

Aa

a a a S
AS

AS u Source Aη

δη

δη

δη
δη

= + + 
= 


= 


= + − 

= −


= +


                     (32) 

Right Boundary Node: For last (right) boundary node, we use Equation (15) at 
1η = .  

 ( ) 0P P S
h AA u u u Source Aη

α δη
δη

 
− − − + = 
 

            (33) 

,

,

0,
,

,

.

P P S S N N u

S

N

P S N P

P

u

a u a u a u S
Aa

a
a a a S

hS A

S Source Aη

δη

α

δη

= + + 

=

= 
= + − 
 

= −  
  

= 



                    (34) 

5.2.2. Algorithm Implementation for Concentration Profile 
Finite volume method to Concentration Equation (14) is defined as;  

 2
1d d d 0,yy CV V V

C V C V Source Vβ
∆ ∆ ∆

+ + =∫ ∫ ∫               (35) 

above Equation (35) can be written as,  

 ( ) 2
1d d d 0,y y CV V V

d C V C V Source Vβ
∆ ∆ ∆

− + =∫ ∫ ∫            (36) 

which implies,  

 2
1 0.y s y P Cn s

nC A C A yC Source A yβ δ δ   − − + =              (37) 

Profile assumptions for yC  at control volume faces n and s are as follows,  

 
( )

,s P S
y

SP

A C C
South Face Flux

yδ
−

=                  (38) 

( )
,n N P

y
PN

A C C
North Face Flux

yδ
−

=                  (39) 

Combining Equations (37) →  (39) to get the following system,  

 P P S N c
A A A AS C C C S
y y y yδ δ δ δ

 
+ − = + + 

 
             (40) 
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Scheme procedure can be deduced from Equation (40), which is as follows:  
Interior Boundary Nodes: 

 

2
1

,

,

,

,

,

P P S S N N c

S

N

P S N P

P

c C

a C a C a C S
Aa
y
Aa
y

a a a S

S A y
S ASource y

δ

δ

β δ
δ

= + + 

=


= 

= + −


= − 
= 

                  (41) 

Left Boundary Node: For first boundary node, we use oC c=  at 1y = .  

 ( ) ( ) 2
1

2 0N P P a C P
A AC C C C Source A y A yC
y y

δ β δ
δ δ

− − − + − =     (42) 

which implies,  

 

2
1

,
0,

,

,
2 ,

2 .

P P S S N N c

S

N

P S N P

P

u a C

a C a C a C S
a

Aa
y

a a a S
AS A y
y

AS C Source A y
y

δ

β δ
δ

δ
δ

= + + 
= 


= 


= + − 

= − −


= +


                  (43) 

Right Boundary Node: For last (right) boundary node, we use 1C c=  at 
1y = − .  

 ( ) ( ) 2
1

2 0b P P S C P
A AC C C C Source A y A yC
y y

δ β δ
δ δ

− − − + − =     (44) 

which implies,  

 

2
1

,

,

0,
,

2 ,

2 .

P P S S N N c

S

N

P S N P

P

u b C

a C a C a C S
Aa
y

a
a a a S

AS A y
y

AS C Source A y
y

δ

β δ
δ

δ
δ

= + + 

=

= 

= + − 

= − −


= +


                 (45) 

6. Results  

In this section, we discussed the part of numerical results of the weakly coupled 
problem through graphs and expressions which acquired from non-dimensiona- 
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lization of velocity and concentration equations. These results are calculated 
numerically by utilizing MATLAB software. Figure 2 shows results for velocity 
profile which is deduced from Equation (29) by using Finite volume scheme. 
Figure 3 shows results for velocity profile error which deduced from Equation 
(29) by using Finite volume scheme at different grid settings. Figure 4 shows 
results for concentration profile which deduced from Equation (40) by using Fi-
nite volume scheme. Figure 5 shows results for concentration profile error which 
deduced from Equation (40) by using Finite volume scheme. Figure 6 shows re-
sults for velocity profile which deduced from Equation (29) by using Finite volume  
 

 
Figure 2. Shows numerical and analytical results comparison for velocity Equations (28) & (30).    

 

 
Figure 3. Shows error results for velocity Equation (30).    
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Figure 4. Shows numerical and analytical results comparison for concentration Equation 
(41).    

 
Figure 5. Shows error results for concentration Equation (41).   

 

 
Figure 6. Shows result for velocity Equation (13) with different values of Be = Bejian 
number.    
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Figure 7. Shows result for velocity Equation (13) with different values of α .    

 

 
Figure 8. Shows result for concentration Equation (14) with different values of 1β . 

 

scheme at different 
2

Bejan Number hBe
xµ

∂
= =

∂
  with 1µ = , while Figure 7  

shows results for velocity profile by using Finite volume scheme at different α  
values [34] [35]. Figure 8 shows results for concentration profile which deduced 
from Equation (29) by using Finite volume scheme at different 1β  values.  
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