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Abstract 
Zernike polynomials have been used in different fields such as optics, as-
tronomy, and digital image analysis for many years. To form these polyno-
mials, Zernike moments are essential to be determined. One of the main is-
sues in realizing the moments is using factorial terms in their equation which 
causes higher time complexity. As a solution, several methods have been pre-
sented to reduce the time complexity of these polynomials in recent years. 
The purpose of this research is to study several methods among the most 
popular recursive methods for fast Zernike computation and compare them 
together by a global theoretical evaluation system called worst-case time 
complexity. In this study, we have analyzed the selected algorithms and calcu-
lated the worst-case time complexity for each one. After that, the results are 
represented and explained and finally, a conclusion has been made by com-
paring these criteria among the studied algorithms. According to time com-
plexity, we have observed that although some algorithms such as Wee method 
and Modified Prata method were successful in having the smaller time com-
plexities, some other approaches did not make any significant difference com-
pared to the classical algorithm. 
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1. Introduction 

Zernike polynomials are widely used in different fields such as optics, astronomy 
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science and digital image analysis. They are able to describe every circular aper-
ture since they have orthogonality over this type of aperture [1]. They could be 
used in wavefront reconstruction applications [2], object-class detection [3] [4] 
[5] [6], image classification [7], feature extraction [8] [9], brain tumor diagnosis 
[10], or even cone dimensions detection in keratoconus [11]. 

Zernike polynomials have a mathematical definition for optical aberration 
[12]. These polynomials have been used for more than seventy years in optical 
applications [13]. Moreover, they are able to describe both fixed and random 
aberrations [14] and model optical surfaces such as telescope mirrors or corneal 
topography [15]. Zernike polynomials are able to determine the primary shape 
of the optical surface and remove individual terms with no effect on the value of 
reminded terms [16]. 

Many of the applications that use Zernike polynomials, are related to eye ab-
erration [17]. Eye aberration is the distortion of human vision and is measured 
using the reflected wavefront at pupil [18]. The wavefront is expressed by meas-
ured gradients related to each reflected point [19] and various types of abnor-
mality are classified by Zernike polynomial set [20]. As a result, to form these 
polynomials, Zernike moments are essential to be determined. These moments 
are defined as the projection of 1D (speech)/2D (image) signals onto Zernike 
polynomials. One of the main issues in computing the moments is using factori-
al terms. Factorial terms cause a heavy computational load and a large time 
complexity. Therefore, this problem makes Zernike polynomials less proper to 
be used in real time applications. 

In this paper, we have studied the most popular recursive algorithms which 
tried to reduce the time complexity of Zernike moments [21]-[27]. We have assessed 
and compared their efficiency by computing the worst-case time complexity. 

The paper is organized as follows: we have described the primary concepts re-
lated to the time complexity in the next Section. In Section 3, we have intro-
duced Zernike polynomials, Zernike moments, and the classical approach to ob-
tain the moments. Section 4 is specified to some of the popular algorithms that 
have been existed to decrease the time complexity of Zernike moments, and 
comparative results and discussion are available in Section 5. Finally, we have 
the conclusion in Section 6. 

2. Primary Concepts of Time Complexity 

Time complexity is a criterion to evaluate algorithms. This concept is defined as 
the minimum time resource that the algorithm needs to be completed consider-
ing all of the exceptional situations. Time complexity is classified to theoretical 
time complexity and practical time complexity. The second, known as running 
time, is only available on code lines and applications. In addition, this concept is 
completely dependent on the machine while theoretical time complexity is an 
absolute independent estimation [28]. Consequently, practical time complexity 
is an unreliable criterion since different computers have different hardware 
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properties; on the contrary, theoretical time complexity is a global independent 
standard to evaluate time efficiency of an algorithm [29]. To clarify this matter, 
the definitions of the two concepts are provided. 

Running time of program A is the number of moves A makes (on input x) un-
til the program is completed [30]. The moves are in either time unit or instruc-
tion unit. In other words, to calculate the running time of a program we should 
count the instructions or measure the time until the program completes its func-
tion. Numbering instructions of a program is not a standard method to evaluate 
time efficiency since there are differences between programming languages that 
the algorithm is implemented by [29]. In addition, the number of instruction 
lines may differ depending on the programmer choices. Measuring the time unit 
is not a reliable evaluation because hardware features may vary in different com-
puters [29]. 

While running time is totally dependent on the program, theoretical time 
complexity is the number of statements executed by the algorithm on input x 
[31]. It is based on the raw algorithm and counts the number of the main opera-
tion until the algorithm halts [29]. Theoretical time complexity may be evaluated 
by the exact case, the best case, the average case, or the worst case analysis func-
tions. 

The best case time complexity, the average case time complexity, and the 
worst case time complexity are detected by the minimum, the average, or the 
worst repetition rate of the main operation respectively and the final result is a 
function of the size of the input string. 

The worst case analysis function has been widely used to estimate time effi-
ciency of an algorithm. The standard notation for this assessment is Big-Oh (O) 
notation [32]. It ignores worthless details in calculations and determines the 
certain time bound in which an algorithm can be completed [32] [33]. As a ma-
thematical expression, the exact time complexity ( )f n  is of ( )( )O g n  if there 
are positive constants such C and k (k is integer) that for all input string length 
n k> , ( ) ( )f n C g n≤ ⋅  [34]. This situation is addressed as ( )f n  is Big-Oh of 
( )g n . 
Figure 1 shows the difference between the exact time complexity and the 

worst case time complexity, represented by a black line and a blue line 
respectively. As we can observe, if the exact time complexity of an algorithm  

equals 20.723 3 1.618
x

x∗ + , the related worst case time complexity will be 3x .  
The other subject to discuss is the model of the calculations. Generally, 

there are two models to calculate theoretical time complexity [35]. A uni-
form model supposes that all operations on any size of input take the same 
constant time to be completed while a non-uniform model allocates a unique 
computation time to each operation that is executed on every single input length 
[35]. Uniform models are common for algorithms with low domain numbers 
while a non-uniform model is recommended to evaluate the algorithms that 
have large length inputs. 
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Figure 1. An example of the exact time complexity and the worst-case time 
complexity. 

 
In this study, we use the uniform model and the worst-case time complexity 

to evaluate time efficiency of the selected algorithms. The worst-case time com-
plexity has been chosen since this assessment delivers us the maximum time unit 
taken by the algorithm. The uniform model has been selected due to low domain 
size of input strings used in Zernike moments. The input string is the order of 
the polynomial and doesn’t go further than 15 in the researches [36]. In fact, the 
notable information is represented by moments up to order 15 [37]. This num-
ber doesn’t take a considerable time complexity in computational operations and 
as a result, using uniform model is completely acceptable for this purpose.  

3. Classical Method to Calculate Zernike Moments 

Zernike polynomials have been introduced by Frits Zernike in 1934 [38]. They 
are featured by having orthogonality in a continuous circle with unit radius [39] 
and are able to describe every function of wavefront aberration or phase [1]. 

In a discontinuous environment, Zernike polynomials model wavefront re-
presentation [1] [40] [41] using (1),  

( ) ( )
1 0

, ,
N n

m m
n n

n m
W C Zρ θ ρ θ ε

= =

= +∑ ∑                   (1) 

m
nC  is Zernike moment in azimuthal frequency m and polynomial order n. 

The parameters ,ρ θ  are the elements of the polar coordinate centered around 
the aperture. ρ  must be normalized as it is limited to unitary cycle. θ  is the 
angle in polar coordinate, and ( ),W ρ θ  is the reconstructed wavefront. N 
shows the maximum order that has been used to model the wavefront. The 
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maximum value of N is 15 in researches [36] while in clinical diagnosis, calcula-
tions are up to forth order [42]. ε  represents the error of modeling and mea-
suring the wavefront. It is assumed that the input noise is idd random noise with 
a zero valued average and a constant variance [40] [43]. 

Radial normalization is calculated using (2),  

pup

r
r

ρ =                             (2) 

r is the distance between off-center and center points. pupr  is the radius of 
aperture. 

Radial function [1] [36] [39] [40] [43] is defined by (3),  

( )
( ) ( )

( ) ( )
2
0

1 !
, even

! 0.5 ! 0.5 !

0 otherwise

sn m

m s
n

n s
m n n m

R s n m s n m sρ

−

=

 − −
≤ − ==    + − − −    



∑  (3) 

Finally, Zernike polynomials [1] [40] are determined using (4),  

( )
( )
( )

cos 0, 0 1, 0 2
,

sin 0, 0 1, 0 2

m m
n nm

n m m
n n

N R m m
z

N R m m

ρ θ ρ θ
ρ θ

ρ θ ρ θ

π ≥ ≤ ≤ ≤ ≤= 
− < ≤ ≤ ≤ ≤ π

       (4) 

m
nN  is the normalization factor defined [1] [40] as follows:  

( )
0

2 1
,

1
m
n

m

n
N

δ
+

=
+

                         (5) 

0mδ  is the regular delta function. We can merge (4) and (5) and rewrite Zer-
nike polynomials [36] [39] [40] [44] as (6):  

( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )

2 1 cos 0, 0 1, 0 2

, 2 1 sin 0, 0 1, 0 2

2 1 0, 0 1, 0 2

m
n

m m
n n

m
n

n R m m

z n R m m

n R m

ρ θ ρ θ

ρ θ ρ θ ρ θ

ρ ρ θ

 + > ≤ ≤ ≤ ≤

= + < ≤

π

π

π

≤ ≤ ≤


+ = ≤ ≤ ≤ ≤

    (6) 

( ) ( )1 1

0 0
, , d dm m

n nc W Zρ θ ρ θ ρ θ ρ= ∫ ∫                  (7) 

( ) ( )
( ) ( )

1

1

, , 0

, , 0

m
nm

n m
n

W Z m
C

W Z m
ρ

ρ

ρ θ ρ θ

ρ θ ρ θ
≤

≤

 ≥= 
− <

∑ ∑
∑ ∑

              (8) 

After transformation to the discontinuous environment, Zernike moments are 
determined by (8) [1]. Negative values of m doubles the time complexity, how-
ever, it does not change the order. Consequently, we ignore negative values of 
this variable in the rest of the article. 

To evaluate the time complexity of Zernike moments, we obtain the time 
complexity of radial functions at first. The main operation is different in every 
term of the expression (Table 1). Each term is repeated in a loop to construct the 
radial function. Table 2 represents the number of repetitions for each term and 
the related time complexity. The reason to consider multiplication as the main 
operation of factorial terms, and compare as the main operation of ( )1 s−  could  
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Table 1. Time complexity of each term in the equation of radial function for 1 time. 

Expression Main Operation Time complexity 
2n sρ −  Multiple 2n s−  

( )1 s−  Compare 1 

( )!n s−  Compare or Multiple n s−  

!s  Compare or Multiple s  

( )0.5 !n m s+ −  Compare or Multiple 1n m s+ − +  

( )0.5 !n m s− −  Compare or Multiple 1n m s− − +  

Dividing Multiple 1 

Total  4 4 4n s+ −  

 
Table 2. Number of repetitions for each term until the algorithm halts and the total time 
complexity related to the expression. 

Expression Repetition Estimated total time complexity 

2n sρ −  0 to 
2

n m−
 

( )( )2
4

n m n m+ + −
 

( )1 s−  0 to 
2

n m−
 1

2
n m−

+  

( )!n s−  0 to 
2

n m−
 

2 23 2 6 2
8

n mn n m m− + − +  

!s  0 to 
2

n m−
 

( )( )2
8

n m n m+ − −
 

( )0.5 !n m s + −   0 to 
2

n m−
 

2 23 2 12 5 20
32

n nm n m m+ + − +  

( )0.5 !n m s − −   0 to 
2

n m−
 

( )( )3 2
16

n m n m+ − −
 

Dividing 0 to 
2

n m−
 1

2
n m−

+  

( ),T m n   
2 233 26 104 7 8 64

32
n nm n m m− + − − +  

 
be discussed as following: To calculate !n , the below algorithm is used: 
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As we can observe, we have a compare operation to check if 0n =  or 1n =  
which is the main operation in the case of 0n =  or 1n = . Then, if 1n >  the 
loop will start and the multiple will be the main operation. 

The other term is ( )1 s− . The reason is that ( )1 s−  could be implemented as 
below easily without any exceeded calculation: 

 

 
 
It only needs a comparison operation to realize the result. 
To compute a complete set of radial functions, the equation needs  

mode ,mode 2, ,
2 2
n nm n   = +   

   
 , evenn m− = . Then, we calculate the total  

time complexity which is independent of m as follows:  

( ) ( ) ( ) ( )

( ) ( )

222

0
3 2

4 3 2
4

33 26 2 104 7 2 8 2 64
32

53 399 778 384
192

53 638 2407 3358 1536
768

n

i

n n i n i i
T n

n n n

N N N NT N O N

 
  

=

− + − − +
=

+ + +
= ⇒

+ + + +
= ∈

∑

        (9) 

N is the maximum order used by the algorithm. To obtain the total time 
complexity for each n, we have added a summation expression to ( ),T m n .  

Summation limitation is in 0,
2
n 

  
 and we have replaced m with:  

2 mode , 0,1 ,
2 2
n nm i i   = + =      

                  (10) 

Then, we have used i instead of m. mode
2
n 

 
 

 is the reminder when n is  

devided by 2 which can be ignored. 
Finally, a complete set of radial functions could be computed in ( )4O N  for 

each point of the image. According to (6), ( ),m
nZ ρ θ  has the same worst-case 

time complexity with ( )m
nR ρ . As a result, a complete set of Zernike polyno-

mials has the worst-case time complexity of ( )2 4O M N  for a M M×  image. 
As we can observe, factorial terms and power terms would be obtained recur-

sively by ( )! 1 !n n n= −  and 1s sρ ρ ρ −= × .  

4. Fast Methods to Calculate Zernike Moments 

In this section, we will study seven best known recursive methods that tried to 
reduce the time complexity of Zernike moments. We have selected recursive 
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methods due to their success in this aim. In the following, we will consider these 
fast algorithms.  

4.1. Kintner Method 

In 1976, Kintner represented his method to calculate radial functions and used a 
pure recursive relationship with three terms [21]. This recursive function is 
represented by:  

( ) ( ) ( ) ( )2
1 2 2 3 4 2

m m m
n n nK R K K R K Rρ ρ ρ ρ+ −= + +             (11) 

And the coefficients ,1 4iK i≤ <  are defined using:  

( )( )
( ) ( )( )

( )

1

2

2
3

4

2 1 1
2 2

2 1 2

1 1 2

2 2
2 2

n m n mK n

K n n n

K m n n n n

n m n mK n

+ −  = + +  
  

= + +

= − + − + +

+ −  = − +  
  

                 (12) 

2
m
mR +  and m

mR  are calculated through the classical method. 
To start with the coefficients, multiplication is the main operation. 

1 2 3 4, , ,K K K K  need 5, 3, 5, 6 multiplications respectively. Devision, expontiation, 
and multiplying by −1 are considered as multiplication as well. Each ( )m

nR ρ  
has 6 multiplications in its equation. As a result, to calculate the time complexity 
of ( )m

nR ρ , we need 25 multiplications. As we can see in Figure 2, ( )m
nR ρ  

could be ontained when ( )2
m
nR ρ−  and ( )4

m
nR ρ−  are determined. Thus we can 

obtain ( ),T m n  by (13)  

( ) ( ) ( ), 25 , 2 , 4T n m T m n T m n= + − + −               (13) 

If we sketch the binary tree of the time complexity (Figure 2), it is obvious 
that there is 20 node in the first level, 21 nodes in the second layer, 22 nodes in the 
third layer, and in general 42n m− −  nodes in the layer before the last layer. Thus,  
 

 
Figure 2. Kintner method, the binary tree of the time complexity, top-down program-
ming. 
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we have 4
0 2n m i

i
− −

=∑  nodes. Each node needs 25 multiplications. Therefore, we 
have ( ),T m n  by (14):  

( )
4

3

0
, 25 2 25 2 1

n m
j n m

j
T m n

− −
− −

=

 = × = × − ∑               (14) 

And we have (15) for ( )T n  and ( )T N :  

( ) ( )

( ) ( )

4 mode
2 2

2

0 mode
2

2

4

, 25 2 25 25

25 2 25 25 50
2

n n

n

ni

NN

n

T n T m n n

N NT N T n

−
+

−

= +

=

= = × − + ⇒

× − × + −
= =

∑

∑

          (15) 

The final T(N) includes the time complexity for ( )2 , 0, , 2m
mR m Nρ+ = −  and 

the time complexity of ( ) , 0, , 2m
mR m Nρ = −  as well. However, these two 

terms don’t change the order of the worst-case time complexity. Consequently, 
the time complexity would be of ( )2NO . To be more precise in the time com-
plexity of ( )m

mR ρ , we only need 0s = . If we calculate the time complexity of 
each operation and total them together, the time complexity would be 4 3m + . 
For ( )2

m
mR ρ+ , we use 0s =  and 1s = . As a result, the time complexity of 

( )2
m
mR ρ+  is 8 2m + . After calculating ( )m

mR ρ  and ( )2
m
mR ρ+ , each radial func-

tion needs 25 multiplications as the main operator. For each m we have (16)  

( )

( ) ( ) ( )

4

mode 22 2
2

mode
2

, 4 3 8 2 25

37 166 28025 13 2 70 , 4
4

N

i m
N N

Ni

T m N m m

N NT N N i O N N

= +

+

=

= + + + + ⇒

− −
= − − = ∈ ≥

∑

∑
  (16) 

Obviously, for 4N ≤  The time complexity is the same with the classical 
method. The time complexity of Kintner algorithm depends on the program-
ming style. The previous calculations are related to the top-down mode. Howev-
er, if we use button-up programming approach, 2

m
mR +  and m

mR  are obtained 
using the classical method and the time complexity is of ( )O n  for them. Then, 

4 6, ,m m
m mR R+ + 

 are calculated and m
nR  is computed by a sequence progress with 

no excess computation. The related binary tree is provided in Figure 3. 
Finally, the time complexity for the complete set of Zernike moments will be  

of ( )2 2O M N  and the exact value equals 
2

2 37 166 280
4

N NM − − . 

4.2. Prata Method 

In another approach, Prata offered a recursive relationship for radial functions 
in 1989 [22] to expand Zernike polynomials functions. In this method, the coef-
ficients are evaluated by a 2-D integration formula which is the result of the or-
thogonality of the Zernike polynomials. The algorithm calculates the higher or-
der radial functions from the lower orders using:  

( ) ( ) ( )1
1 1 2 2

m m m
n n nR L R L Rρ ρ ρ−

− −= +                   (17) 
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Figure 3. Kintner method, the binary 
tree of the time complexity, button-up 
programming. 

 
which 1L  and 2L  are constants computed by:  

1 2
2 ,n n mL L
n m n m
ρ −

= = −
+ +

                    (18) 

The high order radial functions are computed from low orders using (17) 
which 1 2,L L  are constants computed by (18). The algorithm can not be used in 
the cases 0m =  and m n= . In these cases, radial functions have to be calcu-
lated using a different method such as the classical approach. 

Like Kintner algorithm, the time complexity of this method depends on the 
programming style. By top-down programming style, we may identify ( )T N  
using drawing the binary tree of the calculations which is represented by Fig-
ure 4. 

1L  and 2L  need 3 and 2 multiplications respectively. As a result, ( )m
nR ρ  

needs 7 multiplicaitons to be obtained in each level of the tree. We have 2i  
noodes in level i of the tree until the level p: ( )minp m n m= ⋅ − . Then, the 
number of nodes will decrease until we have ( )0 , , 2, ,kR k m m n mρ = + −  
and/or ( )m

mR ρ  in the terminals. 
Considering the first part of the calculations, we can write the equation below  

if we consider 2 mode
2
nm i= + :  

( )

( ) ( )

( ) ( )

1

0

62 2
2 2

0 0

, 7 2 2 2 1

2 16 2
2 min 2 1, 2 1

8

2

p
i p

i

n n
n

i n i

i i

N

T m n

n n
T n

T N O

+

=

+
−

= =

 ≥ × = − ⇒ 

 
− − + ≥ − − = ⇒  

 

∈

∑

∑ ∑      (19) 

When we consider the calculation trees of top down programming for both  
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Figure 4. Prata method, the binary tree of the time complexity, top down programming. 
 
Prata and Kintner method, we can observe that each element could be consi-
dered as a local formula which has to reach the lower level elements inside itself. 
Since, these lower-level elements are not calculated globally, they have to be 
re-computed for every higher level elements and this matter causes redundancy. 
As a result, these repeations affect the time efficiency and reduce it. For this rea-
son, we will not continue the top down calculations in the rest of the article. 

In Figure 5 we have sketched the binary tree of the time complexity, 
considering button-up programming. As we can see, 0 1

0 1, , , N
NR R R

 (horizental  
level on top) and 0 0 0

2 4 mode
2

, , , NN
R R R

−
  (vertical level on left) are needed as the  

basic elements. If we consider (3), we only have 0s =  for m n= . Therefore:  

( )
( )

1 !
0! 0.5 2 !

n
n
n

n
R

n
− ×

=
  

                       (20) 

There are four multiplications as the main operation and we have:  

( )

( )

1

2

1
0

, 3 5

3 13 103 5
2

N

n

T n n n

N NT N n
=

= + ⇒

+ +
= + =∑

                (21) 

For 0m = , we can use the last row of Table 2:  

( )

( ) ( )

2

2

3 2

2
2 0

9 26 160, for 2
4

6 31 70 320,2
16

N

j

n nT n n j

N N NT N T j
=

+ +
= = ⇒

+ + +
= =∑

          (22) 
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Figure 5. Prata method, the binary tree of the time complexity, but-
ton-up programming. 

 
For the rest of the radial polynomials, each ( )m

nR ρ  needs 7 multiplications. 
1 2 2
3 4, , , N

NR R R −


 are acquired using the basic elements. We have 2N −  radial 
functions in this layer. The next step of the loop is quantifying 1 2 4

5 6, , , N
NR R R −


 

( 4N −  elements). This process continues to the last layer. In the last layer, the  

only radial function is 1

2 1
2
NR  +  

. If N is odd, 2 1
2
N N  + =  

, otherwise, it  

calculates only one more radial function which doesn’t effect the order of the 
time complexity at all. As the result, ( )T N  could be acquired by (23) and Zer-
nike moments are obtained with the time complexity of ( )2 3O M N . 

( ) ( ) ( ) ( )

( ) ( )

2

1 2
1

3 2
3

7 2

6 83 118 112
16

N

j
T N T N T N N j

N N NT N O N

 
  

=

= + + −

+ + +
⇒ = ∈

∑
             (23) 

Therefore, for the whole wavefront ( ) ( )2 3,T M N O M N∈ .  

4.3. Belkasim Method 

In 1996, Belkasim and others [23] expanded the complex equation of Zernike 
moments to obtain a recursive relationship which has been represented below:  

( )
( ) ( ) ( ) ( )2

, , , , 2 2 , ,

n n
n

m n n m
n n m n n n m n n n m m m

R

R R R R

ρ ρ

ρ β ρ β ρ β ρ−
− −

=

= + + +

       (24) 

( )( ) ( )( )2
, , , , 2 2e em n jm n jm

n n m n n n m n nC C Cθ θ

θ θ
β θ β θ−

− −= +∑ ∑          (25) 

( ) 2

, ,

1 !
2

! ! !
2 2 2

n k

n m k

n k

n k k m k m
β

− +
−

=
− + −

                   (26) 

In this approach, radial functions are calculated by (24), Zernike moments are 
determined using (25), and , ,n m kβ  is realized by (26). 

To obtain , ,n m kβ , we have to analyze the main operations. In this equation, 
the main operation is multiplication. There are 5 multiplication in the main 
equation. We also suppose that factorial terms are calculated recursively since  
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the article did not mention any specific method. To calculate 21
n k−

− , we only 

need a compare operation to check if 
2

n k−
 is an odd or even number. As a  

result, each , ,n m kβ  could be obtained in:  

( ) 4, , 1 5
2 2 2 2

n k n k k m k mT n m k n k+ − + − +
= + + + + = + +        (27) 

For each m
nR , , ,n m kβ  and kρ , , 2,k n n m= −  are needed. There are 

2
n m−

  

multiplications in the main equation as well. Then, we may obtain ( ),T n m , 
( )T n , and ( )T N  by: 

( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( )

( )

( )

( )

( )

2
, , , , 2 2

, ,

2 2

2 2
2 2

3 2

4 3 2

,

2

, 5 2 2
2

2 10 4 10,
2

21 68 60
12

30 179 3030 2880
48

n n
n m n n n m n n

m
n m m m

n n

m mj j

T n m T T R T T R
n mT T R

n mT m n n j j

n n nm m mT m n

n n nT n

N N N NT N

β ρ β ρ

β ρ

−
− −

= =

= + + + +
−

+ + +

−
⇒ = + + + + ⇒

+ − − − +
= ⇒

+ + +
= ⇒

+ + + +
=

∑ ∑



    (28) 

Then, the time complexity for the complete set of ( )m
nR ρ  is of ( )4O N  and 

as a result, the algorithm is of ( )2 4O M N .  

4.4. Q-Recursive Method 

Chong and his colleagues recommended a method for fast calculation of Zernike 
moments which is known as q-recursive method [24]. This algorithm uses re-
cursive equations to compute radial functions. The recursiveness is based on m 
and does not change n in the right side of equation. To determine radial func-
tions, Q-recursive approach follows:  

( ) ( ) ( )4 23
1 2 2 , 2m m m

n n n
H

R H R H R n mρ ρ ρ
ρ

− − 
= + + − > 

 
        (29) 

For the ( ) , 2m
nR n mρ − =  or 0n m− =  we have:  

( ) ( ) ( ) ( )
( )

2 2
21n n n

n n n

n n
n

R nR n R

R

ρ ρ ρ

ρ ρ

− −
−= − −

=
               (30) 

The coefficients are obtained by:  

( ) ( )( )

( )( )
( )

( )( )
( )( )

3
1 2

3
2

3

1 2
2 8

2
2

4 1
4 2 3

2 4

m m H n m n m
H mH

H n m n m
H m

m
m m

H
n m n m

− + + −
= − +

+ − +
= + −

−
− −

= −
+ − − +

           (31) 
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As the algorithm mentioned the bottom-up programming style as the main 
style of the method, we immediately go through this style. The first step is to 
calculate the initial elements ( ) , 0,1, 2, ,n

nR n Nρ =  . The time complexity of 
( )n

nR ρ  is n. As a result, for the complete set of ( )n
nR ρ :  

( ) ( )
1

0

1
2

n N

n

N N
T N n

=

=

+
= =∑                      (32) 

In the next level, ( )2 , 0,1, , 2n
nR n Nρ− = −  could be reached and needs 2 

multiplicaions. Then, ( )2 2T n = . The complete set of ( )n
nR ρ  will be obtained 

in:  

( ) ( )
2

2
0

2 2 1
n N

n
T N N

= −

=

= = −∑                    (33) 

Finally, ( ) ( ) ( )
mode

4 6 2, , ,
n

n n
n n nR R Rρ ρ ρ

 
 − −  

 , will be reached (Figure 6) using 
the obtained elements. 

For each ,m
nR m n≠  and 2n − , 1 2,H H  and 3H  must be calculated. They 

need 6, 4, and 4 multiplications (the main operation) respectively. In addition, 
there are 3 multiplications in the main Equation (29) and the time complexity of 

2ρ  is 2. Therefore, for each , , 2m
nR m n n≠ − :  

( )3 , 4 4 6 3 2 19T m n = + + + + =                   (34) 

Consequently, ( )T n  would be (we suppose n is even, however, there is the 
same process for odd values of n):  

( )
2

3
0
19 19 1

2

n

i

nT n
=

 = = + 
 

∑                     (35) 

And ( )T N  is calculated by:  

( )
2

3
0

19 9519 1
2 4

N

n

n N NT N
=

+ = + = 
 

∑                (36) 

 

 
Figure 6. Q-recursive method, the binary tree of the time 
complexity, button-up programming. 
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Therefore, the total time complexity would be:  

( ) ( ) ( ) ( )
2

1 2 3
21 105 8 , 1

4
N NT N T N T N T N N+ −

= + + = ≥         (37) 

As a result, the worst case time complexity of the algorithm is of ( )2O N  for 
the complete set of radial functions, and for Zernike moments this value is of 

( )2 2O M N . 

4.5. Wee Method 

In 2004, Wee, Paramesran, and Takeda offered an approach for the complete set of 
Zernike moments that is a merged approach of Kintner, Prata, and Q-recursive 
algorithms [25]. The main formula is the recursive formula of Prata method. 
However, as we know, there are some cases that Prata algorithm is unusable. In 
these cases, Kintner and q-recursive methods have been used instead. In Wee 
method, radial functions are reachable by:  

( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( )

2
2

2
1 2 2 3 4

1
1 1 2 2

1 2, 0

0, 2

else

n

n n
n nm

n m m
n n

m m
n n

n m
nR n R n m

R
M M R M R m n

L R L R

ρ
ρ ρ

ρ
ρ ρ ρ

ρ ρ

−
−

− −

−
− −

 =


− − = =
=  + + = ≠
 +

       (38) 

( )
( )( )

( )( )
( )( )( )
( )( )
( )( )( )

1

2 2

2

3

4 1

2 1 2

2

2 2
2

n n
M

n m n m

n n n m
M

n m n m n

n n m n m
M

n m n m n

−
=

+ −

− − +
= −

+ − −

+ − − −
= −

+ − −

                  (39) 

1L  and 2L  are the coefficients of Prata approach, which have been defined 
by (18). , 1, 2,3iM i =  is calculated by (39). 

To consider the time complexity, we need an initial computation of 
0 1
0 1, , , N

NR R R
. For ( )n

nR ρ , we have ( )1T n n=  and the complete time com-
plexity would be:  

( ) ( )
1

0

1
2

N

n

N N
T N n

=

+
= =∑                      (40) 

The next step is calculating ( ) , 0, 2m
nR m nρ = =  which needs 2 multiplica-

tions and therefore, ( )2 2T N = . Then, we have to obtain 0 0 0
4 6 mode

2

, , , NN
R R R

−
  

each contains 1 2 3, ,M M M . The time complexities of the coefficients are 4, 10, 6 
respectively if we consider multiplication as the main operation. The time com-
plexity of 2ρ  is 2, and the formula contains 3 multiplications itself. Therefore, 
there are 25 multiplications required to compute each , 0, 2m

nR m n= ≠  and the 
complete set of it could be obtained using:  

( )
( )

2

2
4 even 2

25 5025 25
2

N
N

n n j

NT N
= =

−
= = =∑ ∑               (41) 
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When 0m ≠  and m n≠ , the algorithm uses Prata method. Each ( )m
nR ρ  

needs 7 multiplications. Thus, considering 2m i= , we could write:  

( ) ( ) ( )
22

3 3 3
1 3

7 7 42, 7 7 7
2 2 4

n
N

i n

n n N NT m n T n T n
= =

+ −   = = ⇒ = ⇒ =   
   

∑ ∑      (42) 

And the total time complexity will be  

( ) ( ) ( ) ( ) ( )
2

2
1 2 3

9 59 142
4

N NT N T N T N T N O N+ −
= + + = ∈      (43) 

As a result, the final time complexity is of ( )2 2O M N . 

4.6. Amayeh Method 

Amayeh and his colleges designed an algorithm to calculate Zernike moments 
and claimed that their method needs less time resources than the classical ap-
proach [26]. This method uses complex relationship of Zernike moments and 
obtains m

nc  by:  

( )

( )

2 2

2 2

, ,
1

, ,
1

, , ,

1 e ,

1 e ,

1

n
m k jm
n n m k

k mx y

n
jm k

n m k
k m x y

n

n m k m k
k m

nc W x y

n W x y

n X

θ

θ

β ρ

β ρ

β

−

=+ ≤

−

= + ≤

=

 +
=   

 
 +

=   
 

π

+
=

π

π

∑ ∑ ∑

∑ ∑ ∑

∑

           (44) 

,m kX  is identified as the common term of (44), which has a unified repeti-
tion. For example, for 10, 0n m= =  we have Table 3. The method is similar to 
Belkasim algorithm, As we observed previously, the bottleneck of Belkasim algo-
rithm that has increased the time complexity, was , ,n m kβ . This expression has 
been repeated in Amayeh method as well. 

We consider multiplication as the main operation. For each m
nc , there are  

1
2

n m−
+  multiplications. In addition, it is only needed to calculate ,m nX  for  

each m
nc . Thus, we can write:  

 
Table 3. The process of Zernike moments calculation in n = 10; m = 0. 

Zernike moment ( )0 , 0,2,4,6,8,10ic i =  

0
0 0,0,0 0,0c Xβ=  

0
2 2,0,0 0,0 2,0,2 0,2c X Xβ β= +   

0
4 4,0,0 0,0 4,0,2 0,2 4,0,4 0,4c X X Xβ β β= + +  

0
6 6,0,0 0,0 6,0,2 0,2 6,0,4 0,4 6,0,6 0,6c X X X Xβ β β β= + + +   

0
8 8,0,0 0,0 8,0,2 0,2 8,0,4 0,4 8,0,6 0,6 8,0,8 0,8c X X X X Xβ β β β β= + + + +  

0
10 10,0,0 0,0 10,0,2 0,2 10,0,4 0,4 10,0,6 0,6 10,0,8 0,8 10,0,10 0,10c X X X X X Xβ β β β β β= + + + + +   
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( ) ( ) ( )

( )

, , ,

2 2

,

, 1
2

3 2 16 8 20
4

n

m n n m k
k m

m n

n mT m n T X T

n mn n m m T X

β
=

− = + + + 
 

− + − − +
= +

∑
         (45) 

For the complete set of Zernike moments, we have:  

( ) ( ) ( )

( ) ( ) ( )

3 2

,
0 0

4 3 2
4

,
0 0

14 111 286 240,
24

7 88 404 803 480
48

n n

m n
m m

N n

m n
n m

n n nT n T m n T X

N N N NT N T X O N

= =

= =

+ + +
= = + ⇒

+ + + +
= + ∈

∑ ∑

∑ ∑
  (46) 

The time complexity of ,m nX  is a constant value. Therefore, we can rewrite:  

( ) ( ),

2

,
0 0 0 0

5 4
4m n

N n N n

X m n
n m n m

CN CN CT N T X C
= = = =

+ +
= = =∑ ∑ ∑ ∑         (47) 

Therefore, it does not affect the order of the time complexity and the final 
( ),T M N  is of ( )2 4O M N . 

4.7. Modified Prata Method 

Singh and Walia proposed a modification of Prata algorithm [27] and combined 
(17) and (18) to:  

( ) ( ) ( )1
1 1 2 2

1 2

,

2 ,

mm m
n n n

n n
n

R L R L R n m

R
n n mL L

n m n m

ρ ρ ρ ρ

ρ

−
− −′= + ≠

=

−′ = = −
+ +

             (48) 

The basic elements are 0 1
0 1, , , N

NR R R
 and the time complexity of m

mR  is 
( )T m m= . Therefore, for the complete set of radial functions, ( )1T N  is ob-

tained by:  

( ) ( )
1

0

1
2

N

m

N N
T N m

=

+
= =∑                      (49) 

In the next layer, the method produces 0 1 2 2
2 3 4, , , , N

NR R R R −


. To produce 
2n

nR − , we need 7 multiplications as the main operation. The tree of radial func-
tion determination is represented in Figure 7. We have 2N −  movements to 
obtain 0 1 2

2 3, , , N
NR R R −


 and 4N −  movements to determine 0 1 4

4 5, , , N
NR R R −


.  

It would continue to the last layer with the only member 
mode

2
N

NR
 
 
  . As a result,  

( )T N  equals:  

( ) ( )

( ) ( )

( ) ( )

1

2

1
2

2

7 2 4 ... mod
2

1
7 2

2
9 16

4

N

i

NT N N N e T N

N N
N i

N NT N O N

=

  = − + − + + +  
  

+
= − + ⇒

+
= ∈

∑           (50) 

and the complexity of this algorithm is of ( )2 2O M N .  
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Figure 7. The tree of radial function determination in modified Prata 
method. 

5. Results and Discussion 

In this paper, we have studied several approaches which tried to decrease the 
time complexity of Zernike moments. We have used the worst-case time com-
plexity criterion and the uniform model to evaluate time efficiency of the pre-
sented algorithms. As the result presented in Table 4, classical method has the 
worst-case time complexity of ( )2 4O M N . The bottleneck of the complexity 
has been created by the factorial terms that must be calculated each time and 
some of the studied approaches tried to remove these terms. 

In general, the time complexity of Kintner, Prata, Q-recursive, Wee, and mod-
ified Prata approaches are dependent on programming Style. However, as we 
discussed before, top-down programming causes redundancy and excess com-
putation of the elements. The most successful approaches, in terms of time com-
plexity order, are Kintner, Q-recursive, Wee, and modified Prata algorithms. 
These methods could halve the order of the time complexity. 

Prata method was successful to reduce the time complexity as wel. However, 
the worst-case time complexity is higher than the mentioned algorithms in the 
previous paragraph. 

Neither of Belkasim and Amayeh approaches could diminish the order of the 
time complexity in calculating Zernike moments. However, Belkasim method, 
has slightly reduced the coefficient of term with the highest order from 0.07 to 
0.02 as we have calculated before. Amayeh method had an increment in the 
coefficient compared to the classical approach. 

Therefore, the main competition is among Kintner, Prata, Q-recursive, Wee, 
and modified Prata algorithms. This competition is in the coefficient of term 
that has the largest order. 

Wee and Modified Prata approaches have the smallest coefficient in their terms 
with the highest order which is 2.25. To have an exact comparison, we make an 
inequation supposing that the time complexity of Wee method is larger than the 
time complexity of Modified Prata algorithm and will see if our assumption  
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Table 4. The result of worst-case time complexity for studied recursive algorithms. 

Method Coefficient of the order in ( ),T M N  Worst-case time  
complexity 

Classical method 0.07M2N4 O(M2N4) 

Kintner method 9.25M2N2 O(M2N2) 

Prata method 0.375M2N3 O(M2N3) 

Belkasim et al. method 0.02M2N3 O(M2N4) 

Q-recursive method 0.5M2N2 O(M2N2) 

Wee method 2.25M2N2 O(M2N2) 

Amayeh method 0.146M2N4 O(M2N4) 

Modified Prata method 2.25M2N2 O(M2N2) 

 
is correct or not: 

2 29 16 9 59 142 43 142 3
4 4

N N N N N N+ + −
< ⇒ > ⇒ >         (51) 

Therefore if 3N ≥ , the time complexity of Modified Prata approach is more 
efficient than Wee method’s. 

As we mentioned previously, uniform model is used to evaluate the studied 
algorithms in this article. Although the uniform model is a popular model to 
evaluate time complexities of the algorithms, one of the disadvantages of this 
model is supposing a uniform cost (which is time scale in this study) for all op-
erations in every size, while different operations do not have the same cost in the 
binary machine. For example, if we consider binary production 1 × 1 and 11 × 1, 
the former takes ( ) 1T n =  and the time complexity of the latter production is 
( ) 2T n = , while the main operation is binary production in both. 
This discussion leads us to consider evaluating the algorithms by logarithmic 

cost model which assumes that the cost of every operation is a function of the 
numbers of input bits (39). 

The other subject to be considered is spatial complexity which is related to the 
memory space that algorithms take while they are running. Spatial complexity 
could be reached by the same computational process similar to this study but in 
the storage field.  

6. Conclusions 

In this study, we have evaluated seven algorithms that tried to decrease the time 
complexity of Zernike Moments. Our assessment is done by the worst-case time 
complexity criteria and the uniform cost model. To have a brief comparison be-
tween studied algorithms, the following points could be mentioned: 
- The algorithms that removed the factorial functions in their equations, were 

successful in reducing the order of the worst-case time complexity.  
- Belkasim and Amayeh approaches, which had kept factorial terms in their 

equations, could not succeed in decreasing the order of the time complexity, 
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even though the coefficient of the term with the largest order has been dimi-
nished in Belkasim method. The barrier that caused these algorithms to fail, 
was using factorial terms in their recursive relationships.  

- Both Kintner and Prata approaches have limitations in their computations. 
Kintner’s method is limited to 4n m− ≥  [45]. Similarly, Prata algorithm is 
not usable in 0m =  and n m=  and classical method must be used in these 
cases. However, the linear relationships, which enable us to obtain higher 
order moments from lower orders, may be an advantage of this method [24].  

- In Q-recursive method, moments of each order are independent of moments 
in higher or lower orders which makes it useful for real time and parallel ap-
plications. This characteristic lets the whole set of Zernike moments of each or-
der be separately calculated in a loop without any duplicated computations. 
This characteristic can be observed by drawing the tree of time complexity re-
lated to the algorithm in which branches are sequenced instead of being parallel.  

- In Wee and modified Prata algorithms, factorial terms have been removed 
from the main equation and as a result, the efficiencies of the algorithms have 
improved. In these methods, factorial terms have been completely removed 
and are replaced with production terms, the equations have small numbers of 
production operations, and the relationships have changed into linear rela-
tionships. As a result, fewer computations have happened during the process. 
In fact, these two approaches have the least coefficient of term with the largest 
order among the studied algorithms. However, modified Prata algorithm has a 
better functionality in terms of time complexity for 3N > .  

- In general, recursive approaches are totally programming-style dependant. 
However, top-down programming style generates excessive steps that must 
be repeated for each related radial function.  

There are other aspects of studying these algorithms. One discussion is about 
time complexity using the non-uniformed model. While the uniform model as-
sumes the same cost for all the operations and input numbers even keeping large 
values, Non-uniform models let us know how the time complexity reacts to dif-
ferent numbers and operations. These models may be considered to be one of 
the future works to study theoretical time complexity of Zernike moments. 

Even though computers have a large amount of memory nowadays, another 
issue is the space complexity of each algorithm, which is related to the amount of 
digital memory that each algorithm needs to be completed. For instance, in 
some methods, if the factorial terms are saved in a grid before starting the algo-
rithm, the time complexity will reduce outstandingly. However, the device must 
specify a certain piece of memory to the algorithm to halt. As a result, the device 
may be more expensive. The issue is that how to balance between space com-
plexity and time complexity to be both real time and cost-effective. 
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