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Abstract 
Nucleons are fermions with intrinsic spins exhibiting dipole character. Di-
pole-dipole interaction via their dipole moments is the key feature quantify-
ing the short-range nucleonics interaction in two-body physics. For a pair of 
interacting dipoles, the energy of a pair is the quantity of interest. The same is 
true for chemical polar molecules. For both cases, derivation of energy almost 
exclusively is carried out vectorially [1]. Although uncommon the interacting 
energy can be derived algebraically too. For the latter Taylor, expansion is 
applied [2]. The given expression although appears to be correct it is incom-
plete. In our report, by applying Taylor’s expansion up to the 4th order and 
utilizing a Computer Algebra System we formulate the missing terms. Our 
report highlights the impact of correcting missing terms by giving two expli-
cit examples. 
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1. Introduction 

Reviewing literature on the format of dipole-dipole interaction energy in three 
areas of physics, magnetic, nuclear, and electric shows the similarity of the for-
mulations. Denoting dipole moments by, µ , σ , and m , respectfully, these 
are, 

( ) [ ]1 2 1 1 2 1 23
ˆ, ˆ1 3U C r r

r
µ µ µ µ µ µ⋅= ⋅− ⋅
      ,                 (1) 

( ) [ ]1 2 2 1 2 1 23
ˆ, ˆ1 3U C r r

r
σ σ σ σ σ σ⋅= ⋅− ⋅
      ,                 (2) 
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( ) [ ]1 2 3 1 2 1 23
ˆ, ˆ1 3U C r r

r
m m m m m m⋅= ⋅− ⋅
      .               (3) 

The constant coefficients C’s are associated with the coupling constants of 
each case. In these expressions, r is the vector distance between the dipoles with 
r̂  being its associated unit vector. 

2. Calculation 

These expressions have been derived applying vector analysis e.g. [3]. For in-
stance, the derivation of (1) is based on the gained energy of a magnet with a 
magnetic dipole 2µ



 in the magnetic field of another magnet with a dipole mo-
ment 1µ



. 
Motivated with [2] we revisited its algebraic derivation. We consider a pair of 

electric dipoles in a 2D space. Figure 1 describes the scenario.  
The ±q charges of each dipole are separated by a distance of 2d. For the sake 

of calculation, midpoints are used indicating the separation of the dipoles 12r . 
As shown, there are four paired charges; these are labeled with their connect-
ing-colored dashed lines; 1, 2, 3, and 4. These lines are indicative of repulsive 
and/or attractive interactions. The blue dashed lines 1, 2 join the +q to −q of in-
dividual dipole while the red dashed lines 3, 4 join the corresponding +q’s and  

−q’s. Aside from the electrostatic coupling constant 
2

9
2

0

1 N m8.95 10
4 C

k
ε

⋅
= = ×

π
  

and the charge q the electrostatic potential energy of the paired dipoles according  

to Figure 1 is, 4
1

1'
i

i

U
dist=

= ±∑  where ∑' is the algebraic sum, and disti is the  

distance between the pairs, namely i = 1, 2, 3 and 4. Applying this notation ac-
cording to vectors shown in Figure 1 the potential energy reads, 

( ) ( ) ( ) ( )2 1 2 1 2 1 2 1

1 1 1 1U
r d d r d d r d d r d d

   
   = − + + +   + − + − + + + − +      

       

   

   (4) 

 

 
Figure 1. Two electric dipoles with identical di-
pole moments 2dq are oriented as shown. Vector 

12r  connects their centers. 
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As noted, for the sake of simplicity in (4), 12r  is replaced with r . The first 
two terms and the last two terms in (4) correspond to lines 1, 2 and 3, 4, shown  

in Figure 1, respectively. Note also according to notation: 1 12
ˆdd d=



 and 

2 22
ˆdd d=



. These are conducive to dipole moments, 1 1̂qm dd=
  and 2 2

ˆqm dd=
 . 

One notices all four terms in (4) are common in 1/r and since we are confined  

in a 2D space this means 
2 2

1

x y+
. The objective of the calculation is to apply  

Taylor expansion, as such the latter fraction is expanded for each of the four 
terms of (4) according to their increments. Let’s define 

( )
2 2

1, :f x y
x y

=
+

                        (5) 

Expanding the first term of (4) with its associated increment gives,  

( ) ( )( )
( ) ( )( ) ( )( )

( )( ) ( )( ) ( )

( )( ) ( )( )

( )( ) ( ) ( )( ) ( )

( )

2 1 2 1

2 1 2 1

22
2 1 , 2 1 2 1

2 42 3 4
2 1 2 1

3 2 23 2 2
2 1 2 1 2 1 2 1

3

,

, , ,

1 , 2 ,
2!

1 1, 0 ,
3! 4!

4 , 6 ,

4 ,

x y

x yx y

x x yx x y

y xy x

x y x yx y x y

x y

f x d d y d d

f x y f x y d d f x y d d

f x y d d f x y d d d d

f x y d d f x y d d

f x y d d d d f x y d d d d

f x y d

+ − + −

 = + ∂ − + ∂ − 

+ ∂ − + ∂ − −

 + ∂ − + + ∂ − 

+ ∂ ∂ − − + ∂ ∂ − −

+ ∂ ∂ ( ) ( ) ( )( )3 44
2 1 2 1 2 1,yx y yd d d f x y d d− − + ∂ − 

 +

  (6) 

In (6), O3 is the 3rd order term, its format is like the 2nd and the 4th term. Be-
cause of its collective null value, it is not given explicitly. Noting also 4

x∂  means 

, , ,x x x x∂ , etc. Equation (6) must be applied to the remaining three terms of (4). 
Realizing the first two terms of (4) are negative and the last two are positive 
yields to the cancelation of the first term of (6) when applied to (4). The second 
term of (6) contains first-order partial derivatives. Increments of four terms of (4) 
are such that when the second term of (6) is applied to (4) gives zero. Further 
analysis shows in general all odd orders of (6) when applied to (4) yield zero. In 
other words, only even terms of (6) survive. i.e., Taylor expansion of (4) may re-
place (4) in terms of only even powered terms.  

As such we calculate the first even powered term of Taylor expansion, this is, 

[ ] [ ] [ ]{ }

( ) ( ) ( ) ( ) ( )

, , ,

2 2

5 2 3 2 5 2 5 2 3 22 2 2 2 2 2 2 2 2 2

, , 2 , , ,

3 1 6 3 1, ,

x x x y y yf x y f x y f x y

x xy y

x y x y x y x y x y

∂ ∂ ∂

 
 = − − 

+ + + + +  

   (7) 

Equation (7) reveals the functional format of the expression. Simply put de-
nominators are of form 1/r3 and 1/r5, these are compatible with the functional 
formats of (1)-(3). Now each term of (7) needs to be multiplied by their asso-
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ciated increments. Carrying out this algebraic simplification is cumbersome, that 
is the reason it is carried out applying a CAS, specifically Mathematica [4]. Non-
etheless, its simplified output needs to be format-ed using the defined 1m  and 

2m  in the text. This step requires regrouping of terms and is handled by hand. 
The result is identical to (3).  

Successfully this algebraic procedure bypasses the vector analysis producing 
the standard energy associated with the dipole-dipole interaction. However, 
Taylor expansion should not be terminated to the 2nd order! As mentioned earli-
er higher even order terms should be included. It is one of the objectives of this 
report to investigate the impact of the next, i.e., the 4th. One may argue contribu-
tion of terms beyond the 2nd order “should” be ignored. Reasoning these terms 
would be falling off vs. distance as 1/r7 and 1/r9. Of course, the argument holds 
so long as separation distance is large, however, for short distances this is not 
true. Even more interesting, here we show the 4th order term contains a term 
such as 1/r5, and that needs to be added to the term of the same format that 
comes about from the 2nd order Taylor expansion. Here is the proof. Noting the 
4th order term of the Taylor expansion as pointed out in (6) contains 4th order 
partial derivatives we form its derivatives,  

[ ] [ ] [ ] [ ] [ ]{ }

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, , , , , , , , , , , , , , ,

4 2 3

9 2 7 2 5 2 9 2 7 22 2 2 2 2 2 2 2 2 2

2 2 2 2

9 2 7 2 7 2 5 22 2 2 2 2 2 2 2

, , 4 , ,6 , , 4 , , ,

105 90 9 105 45,4 ,

105 15 15 36

x x x x x x x y x x y y x y y y y y y yf x y f x y f x y f x y f x y

x x x y xy

x y x y x y x y x y

x y x y

x y x y x y x y

∂ ∂ ∂ ∂ ∂

  
  = − + −   + + + + +  

 
 − − + + + + + 

( ) ( ) ( ) ( ) ( )
3 4 2

9 2 7 2 9 2 7 2 5 22 2 2 2 2 2 2 2 2 2

,

105 45 105 90 94 ,xy xy y y

x y x y x y x y x y



  
 − − +   + + + + +   

 (8) 

If in (8) virtually we replace 2 2x y+  with r, we see that there are three 
terms in proportion to 1/r5; these cannot be ignored and ought to be added to 
the terms of the same format when the 2nd order expansion is considered. The 
other terms in (8) using the r notation are of the form 1/r7 and 1/r9; depending 
on the situation these terms may be ignored. It needs to be noted that it is ob-
vious that higher-order expansion terms appear to contain overlapping 1/rn 
terms of the lower order. E.g., a sixth-order Taylor expansion would contain a 
term such as 1/r7 and that needs to be added to the 4th order, etc. 

Now as it is done for the 2nd order, terms of the (8) are to be multiplied with 
their associated increments and then to be factored with 1/r5. This is indeed a 
very labor-intensive algebraic procedure. This is carried out applying CAS, Ma-
thematica. The output is an algebraic expression with 44 terms! The terms are 
regrouped long-hand. In the end, utilizing the dipole moment notations we ar-
rive at,  
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( ) ( )1 2
1 2 3 1 2 1 2 1 1 2 23 5

3 1,
8

U C rm mm m m m r
r r

m m m m m m  = − −
⋅

⋅ ⋅ ⋅ ⋅ ⋅+    

 

               (9) 

Equation (9) is compared to (3). The second expression in the angled bracket 
is the correction term. Its dimension is L−1 as is the dimension of the expression 
in the curly bracket. The constant C3 is kq2 where the k is the electrostatic 
coupling constant and q is the charge of the dipole making the dimension (9) 
energy as expected.  

To illustrate the impact of the correction term we consider two instances. 
Figure 2(a) and Figure 2(b) depict the cases of interest.  

The values of the moments may be chosen selectively, for the sake of simplici-
ty here we assume 1 2 1m m= = . According to Figure 2(a) and Figure 2(b), (9) 
without and with correction terms (3) yields, respectfully. 

3 3 5

1 1 3 1~ ,
4

U
x x x

 + 
 

                       (10) 

3 3 5

1 1 9 1~ ,
4

U
y y y

 
− 

 
                       (11) 

In (10) and (11), x and y are the horizontal and vertical distances between the 
centers of dipoles.  
 

 
Figure 2. Two parallel electric dipoles are shown. (a) Both di-
poles are perpendicular to the vector 12r  separating the di-
poles. (b) Dipoles are aligned with the separating vector 12r . 

 

 
Figure 3. The left panel is associated with Figure 2(a), the right panel is with Figure 
2(b). 
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In Figure 3, the blue curves are the uncorrected expressions in (10) and (11). 
The red curves are the corrected expressions. It is notice-able the correction 
terms have no neglect-able impacts. For the case shown in Figure 2(a), the im-
pact is large, while for Figure 2(b) it is not severe.  

We shown two instances to highlight the impact of the corrections. There are 
other cases correlated with Figure 2, such as antiparallel-oriented dipoles. These 
and other cases are left to the interested reader to explore. 

3. Conclusion 

Dipole-dipole interaction conducive to either mutual paired forces or energy 
redundantly is utilized in various areas of physics. Derivation of these quantities 
exclusively is based on vector calculation. An attempt was made in the refe-
renced article to derive the same expressions applying algebra, specifically Taylor 
expansion that bypasses the latter. Although it is shown the goal is “achievable”, 
but the calculation falls short by limiting the number of the expansion terms. In 
our investigation explicitly we have shown higher-order terms beyond the 
second order ought to be considered. This stresses that although the algebraic 
approach is novel, it must be done with much care. 
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