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Abstract 
In this paper, for the initial and boundary value problem of beams with 
structural damping, by introducing intermediate variables, the original fourth- 
order problem is transformed into second-order partial differential equations, 
and the mixed finite volume element scheme is constructed, and the exis-
tence, uniqueness and convergence of the scheme are analyzed. Numerical 
examples are provided to confirm the theoretical results. In the end, we test 
the value of δ  to observe its influence on the model. 
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1. Introduction 

The beam is the most important part of the upper frame of a building, which is 
widely used in engineering projects, bridge construction and aerospace. So the 
vibration and damping of beam have always been the concern of engineers and 
researchers [1] [2] [3]. As we know, the differential equation that the deflection 
curve of the beam should meet is: 

( )
2 2

2 2

d d
d d

uEI p x
x x
 

= 
 

                        (1) 

where, ( )u x  is a displacement of the beam, ( )p x  is a load force normal to 
the beam at the point x, E is Young’s modulus, and I is the area moment of iner-
tia of the beam’s cross-section. There are many research results on beam vibra-
tion, both in mechanics and mathematics. Thankane studied the vibration equa-
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tion of a beam with free ends by using the finite differential method in literature 
[4]. In literature [5] [6] [7], Gupta studied the existence and uniqueness of solu-
tions for a class of beam vibration equations. Ni et al. [8] applied the genera-
lized difference method to solve the free vibration problem of beams by using the 
first-order element hat function as the trial function and the pieced linear 
function as the test function, and finally proposed a sixth-order implicit scheme. 
Xu et al. [9] constructed a finite difference scheme for the fourth-order equation 
of the beam, and realized the stable explicit calculation of the approximate solu-
tion by using the asymmetric scheme. Zeng put forward the fourth-order differ-
ence scheme with two parameters α  and β  [10], the four-layer weighted β  
scheme and the tridiagonal four-layer implicit scheme [11] for the linear eq-
uation of the beam, and studied the stability of the difference scheme with the 
Fourier analysis method. Yin et al. [12] proposed a finite element method to 
study the vibration of beams on elastic foundations under moving loads using 
the Hermite element. Catal [13] used the differential transformation method to 
solve the differential equation of free vibration of a beam on an elastic founda-
tion with fixed end and simply supported end, and obtained the analytical solu-
tion and frequency factor. In literature [14], a high-precision multi-parameter 
numerical scheme for solving the vibration equation of a beam is presented. Sa-
bitov studied the Cauchy problem of beam vibration equations and obtained 
sufficient conditions for the existence of an explicit solution in the literature [15]. 
The study of damped elastic systems was probably started by Chen and Russell 
[16] in 1981. They present a mathematical model exhibiting the empirically ob-
served damping rates in elastic systems. The form of the model studied is as fol-
lows: 

0tt tu Bu Au+ + =                          (2) 

where A is the elastic operator and B is the damping operator. In recent years, 
Fan studied the existence, uniqueness and regularity of the abstract model for 
the vibration equations of the beam with structural damping and the existence of 
the global mild solution in literature [17] [18]. Tang and Yin studied the Her-
mite finite element method for a class of viscoelastic beam vibration problems in 
the literature [19]. The structural damped vibration of a uniform simply sup-
ported beam with length L can be written in the following one-dimensional fourth- 
order initial and boundary value problems: 

( ) ( ) ( ]
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) [ ]

(a)  , , , 0,
(b)  ,0 , ,0 ,
(c)  0, , 0, 0, , 0, 0,

tt xxt xxxx

t

x x

u u u f x t x t T
u x x u x x x
u t u L t u t u L t t T

δ
ϕ ψ

 − + = ∈Ω×
 = = ∈Ω
 = = = = ∈

    (3) 

where ( ),u x t  is used to represent displacement, ( )0, LΩ = , 0 T< < ∞ , ( )0δ >  
is structural damping coefficient, the source term ( ),f x t , initial value func-
tions ( )xϕ  and ( )xψ  are the known smooth functions, ( )xϕ  and ( )xψ  re- 
present the displacement and velocity of the beam at the initial moment, re-
spectively. 
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The objective of this paper is to construct a mixed finite volume element 
scheme for the vibration problem of the beam with structural damping (3). This 
scheme was first proposed by Russell [20] in 1995 when he solved the second-order 
elliptic problem. Then, Jones [21] [22] verified the method with numerical ex-
amples. This scheme has the following advantages: firstly, the smoothness of the 
solution space of the proposed mixed finite volume element method is lower 
than that of the common finite element method, so it is easier to construct the 
mixed finite element space; secondly, the mixed finite volume element method 
can be used to obtain two unknowns at the same time to reduce the cost of cal-
culation; thirdly, the scheme maintains the local conservation of physical quanti-
ties. Therefore, based on the above advantages, mixed finite volume element 
method has been widely used in practical problems. Wang [23] studied the equi-
librium equation of beams by using the mixed finite volume element method 
and proved that the scheme has first-order accuracy in the discrete H1 half-norm 
and the discrete L2 norm. In recent years, Yuan et al. [24] [25] used the mixed fi-
nite volume element method to simulate the transient behavior of semiconduc-
tor heat transfer devices and to solve the oil-water two-phase displacement 
problem. 

The paper is organized as follows: in Section 2, the vibration equation of 
structural damping beams (3) is transformed into second-order equations with 
similar ideas in [8]. Then, the spatial derivative term is discretized by the mixed 
finite volume element method, and the time derivative term is discretized by the 
backward Euler scheme to construct the mixed finite volume element scheme of 
(3); in Section 3, some necessary lemmas are given; in Section 4, we prove the 
existence and uniqueness of solutions of mixed finite volume element scheme; 
The convergence of semi-discrete and fully-discrete mixed finite volume element 
schemes is proved in Sections 5 and 6 respectively; in Section 7, some numerical 
examples are given to verify the accuracy of the scheme, which indicates that the 
scheme has high practicability. 

2. Mixed Finite Volume Element Scheme 

In order to formulate the mixed finite volume element approximate scheme, we 
introduce two auxiliary variables: 

( ) ( ) ( ) ( ), , ,   , ,t xxv x t u x t w x t u x t= =  

( ),v x t  and ( ),w x t  denotes the speed and bending moment of the beam 
when it vibrates respectively, then (1) can be rewritten as: 

( ) ( ) ( ]
( ) ( ]

( ) ( ) ( ) ( )
( ) ( ) [ ]

(a)  , , , 0,
(b)  , , 0,
(c)  ,0 , ,0 ,
(d)  0, , 0, 0,

xx xx

xx t

v v w f x t x t T
v w x t T
v x x w x x x
v t v L t t T

δ

ψ ϕ

 − + = ∈Ω×
 = ∈Ω×
 ′′= = ∈Ω
 = = ∈

       (4) 

Multiply the Equations (4)(a) and (4)(b) by ( )1
0Hφ ∈ Ω  respectively and in-
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tegrate them on Ω . Applying Green’s formula [26], we can get a weak form 
equivalent to (3): Find ( ) [ ] ( ) ( )1 1

0, : 0,v w T H H→ Ω × Ω , such that: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( )

1
0

1

(a)  , , , , ,       
(b)  , , 0,        
(c)  ,0 ,        
(d)  ,0 ,        

t x x x x

t x x

v v w f H
w v H

v x x x
w x x x

φ δ φ φ φ φ
φ φ φ

ψ
ϕ

 + − = ∀ ∈ Ω


+ = ∀ ∈ Ω


= ∈Ω
 ′′= ∈Ω

      (5) 

Next, we introduce the semi-discrete mixed finite volume element scheme of 
(1). 

Let 0 1 20 Nx x x x L= < < < < =  be the primal partition of Ω , the corres-
ponding dual partition is 0 1 3 1

2 2 2

0 NN
x x x x x L

−
= < < < < < = , where: 

( )1
1
2

, 0,1, 2, , 1
2

i i

i

x x
x i N+

+

+
= = −

. 

Now we choose a quasi-uniform subdivision  
[ ]{ }1, ; 0,1, 2 1h i i iA x x i N+ℑ = = = −  of the region Ω , The diameter of unit 

iA  is 1i i ih x x+= − , let 
0 1

lim ii N
h h

≤ ≤ −
= . 

We define the dual subdivision as follows: 

* *
1 1
2 2

, ; 0,1, 2, , 1h i i i
A x x i N

− +

   ℑ = = = −  
   

  

where * *
0 0 1 1

2 2

, , ,N NN
A x x A x x

−

   
= =   
   

, *
iA  constitutes the dual unit or control  

volume of node i, For the boundary node, its control volume is modified accor-
dingly. 

Define the finite element spaces by: 

( ){ }1, ,h h h hAU u C u P A= ∈ Ω ∈ ∀ ∈ℑ  

( ){ }*
2 * *

0, ,h h h hAV v L v P A= ∈ Ω ∈ ∀ ∈ℑ  

( ) ( ){ }0 , 0 0h h h h hU u U u u L= ∈ = =  

( ) ( ){ }0 , 0 0h h h h hV v V v v L= ∈ = =  

where hU  represent the linear finite element space corresponding to the primal 
partition hℑ , hV  is the constant function space of corresponding dual parti-
tion *

hℑ . 
The interpolation projection operator * :h h hU VΠ →  is defind as:  

( ) *

1
*

1
,  

i

N

h h h i h hA
i

w w x w Uχ
−

=

Π = ∀ ∈∑  

iχ  represents the eigenfunction on *
iA , i.e.:  

*

*

*

1     

0    i

i
A

i

x A

x A
χ

 ∈= 
∉
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Integrate (4) on the dual unit *
iA  to obtain: 

( )

( )

( )

*

*

*

1 1 1 1
2 2 2 2

1 1
2 2

(a)  , d , , , ,

      , d

(b)  , d , , 0

x x x xA i i i i

A

t x xA i i

v x t x v x t v x t w x t w x t

f x t x

w x t x v x t v x t

δ
+ − + −

+ −

           
 − − + −                               
 =


    
− − =              

∫

∫

∫

 (6) 

Sum over all the elements and notice that: 

( ) *

1
*

0
1

, d ,    ,
i

N

h h h h h h h hA
i

w w x w Uφ φ φ
−

=

Π = ∀ ∈∑∫  

Define: 

( )
1

*
1 1 0

1 2 2

, , , ,    ,
N

h h h h hx hx h h hi ii
B w w x t w x t w Uφ φ φ

−

+ −=

    
Π = − − ∀ ∈            

∑  

Then we have: 

( ) ( ) ( ) ( )
( ) ( )

* * * *
0

* *

(a)  , , , , ,     

(b)  , , 0,        

t h h h h h h h h h h

t h h h h h h

v B v B w f U

w B v U

φ δ φ φ φ φ

φ φ φ

 Π + Π − Π = Π ∀ ∈


Π + Π = ∀ ∈
  (7) 

Then, the semi-discrete mixed finite volume element scheme of problem (3) is: 
Find ( ) 0,h h h hv w U U∈ × , such that: 

( ) ( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( )

* * * *
0

* *

(a)  , , , , ,      

(b)  , , 0,        

(c)  ,0 ,        

(d)  ,0 ,        

ht h h h h h h h h h h h h

ht h h h h h h h

h h

h h

v B v B w f U

w B v U

v x x x

w x x x

φ δ φ φ φ φ

φ φ φ

ψ

ϕ

 Π + Π − Π = Π ∀ ∈

 Π + Π = ∀ ∈

 = ∈Ω


′′= ∈Ω

 (8) 

3. Some Lemmas 

In this part, we will give some necessary lemmas. Let 0h hu U∈ , we define the 
following norms: 

12 2
0,

1

N

h ih
i

u hu
−

=

= ∑  

2 2 2

1, 0, 1,h h hh h hu u u= +  

2
2 1
1,

1

N
i i

h h
i

u u
u h

h
−

=

− =  
 

∑  

Lemma 3.1. [26] On hU , the following pairs of norms are equivalent respec-
tively: 

1,h⋅  and 1⋅ ; 
0,h⋅  and ⋅ ; 

1,h⋅  and 1⋅ . That is, there are posi-
tive constants 1 4, ,C C  which is independent of hU , such that: 

1 2 00, 0, ,    h h h h hh hC C Uψ ψ ψ ψ≤ ≤ ∀ ∈  

3 4 01, 1 1, ,   h h h h hh hC C Uψ ψ ψ ψ≤ ≤ ∀ ∈  
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Lemma 3.2. [27] The bilinear form ( )*, hB ⋅ Π ⋅  meets: 

( ) ( )* *, , ,   ,h h h h h h h h hB B Uψ ϕ ϕ ψ ψ ϕΠ = Π ∀ ∈  

( ) 2*
01

1, ,   
2h h h h h hB Uψ ψ ψ ψΠ ≥ ∀ ∈  

( )*
01 1, ,   ,h h h h h h h hB C Uψ ϕ ψ ϕ ψ ϕΠ ≤ ⋅ ∀ ∈  

where 0C >  is a constant independent of h. 
Lemma 3.3. [27] ( )*, h⋅ Π ⋅  meets: 

( ) ( )* *, , ,     ,h h h h h h h h hUψ ϕ ϕ ψ ψ ϕΠ = Π ∀ ∈  

( ) 2* 1, ,      
8h h h h h hUψ ψ ψ ψΠ ≥ ∀ ∈  

( ) ( )* 1,  ,   , h h h h hw w w H Uψ ψ ψΠ ≤ ⋅ ∀ ∈ Ω ∀ ∈  

4. Existence and Uniqueness Analysis for Semi-Discrete  
Scheme 

In this part, we mainly discuss the existence and uniqueness of semi-discrete 
mixed finite volume element scheme solutions of the original problem (3). 

Theorem 4.1. There exist a unique solution ( ) 0,h h h hv w U U∈ ×  to (8) meets: 

( ) ( )( )00 0
max max  d 0 0

t
h h h ht T t T

v w C f v wτ
≤ ≤ ≤ ≤

+ ≤ + +∫  

Proof Choosing h hvφ =  in (8) (a), and h hwφ =  in (8) (b), we can obtain: 

( ) ( ) ( ) ( )* * * *, , , ,ht h h h h h ht h h h hv v B v v w w f vδΠ + Π + Π = Π  

Applying Lemma 3.2 and Lemma 3.3, there exists a constant ( )1 0C >  asso-
ciated with δ  such that: 

( ) ( ) 22* *
1 11 1

1

1, ,
4ht h h h ht h h hv v C v w w f C v
C

Π + + Π ≤ +  

Integrating both sides from 0 to t: 

( ) ( ) ( ) ( )2 22* *1 1, , 0 0
2 2h h h h h h h hv v w w C f v wΠ + Π ≤ + +  

Applying Lemma 3.2 and Lemma 3.3: 

( ) ( )( )2 22 2 2

0

1 1 d 0 0
16 16

t
h h h hv v C f v wτ+ ≤ + +∫  

Taking the square root of both sides to get the conclusion: 

( ) ( )( )00 0
max max  d 0 0

t
h h h ht T t T

v w C f v wτ
≤ ≤ ≤ ≤

+ ≤ + +∫          (9) 

To prove the existence and uniqueness of the solution of the system (8), we 
need only consider its corresponding homogeneous problem: 

( ) ( ) ( )
( ) ( )
( )
( )

* * *
0

* *

, , , 0,        

, , 0,        

,0 0,         

,0 0,        

h h h h h h h h h h h

ht h h h h h h h

h

h

v B v B w U

w B v U

v x x

w x x

φ δ φ φ φ

φ φ φ

 Π + Π − Π = ∀ ∈

 Π + Π = ∀ ∈

 = ∀ ∈Ω


= ∀ ∈Ω

   (10) 
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According to (9), we can easily deduce that 0h hv w= = , which achieves the 
uniqueness proof. Since the differential equation is finite dimensional, the uni-
queness holds that the existence holds. 

5. Convergence Analysis for Semi-Discrete Scheme 

In order to analyze the error of the scheme, we introduce the mixed finite volume 
element elliptic projection of the original problem: find ( ) 0,h h h hv w U U∈ ×  , 
meets: 

( )
( ) ( )

*
0

* *

, 0,

, , ,

h h h h h

h h h h h h h h

B w w U

B v v w w U

φ φ

φ φ φ

 − Π = ∀ ∈


− Π = − − Π ∀ ∈



 

          (11) 

Under the condition that hℑ  is C-uniform partition, the elliptic projection is 
unique, and meets the following error estimation formulas [27]: 

( )3 21h hv v w w Ch v w− + − ≤ +   

( )3 20hv v Ch v w− ≤ +  

We split the errors: 

( ) ( )
( ) ( )

h h h h

h h h h

v v v v v v

w w w w w w

ξ η

ρ θ

− = − + − = +

− = − + − = +

 

 

 

There are: 

( )
( )

3 2

3 2

t ht t t t

t ht t t t

v v Ch v w

w w Ch v w

η

θ

= − ≤ +

= − ≤ +





 

From (7) (8) and combining with the elliptic projection (11), we get the fol-
lowing error equations: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

* * * *
0

* * * * *

(a)  , , , , 0,

(b)  , , , , , 0,

h h h h t h h t h h h h

t h h t h h h h h h h h h h

B U

B B U

ξ φ θ φ ρ φ θ φ φ

ξ φ η φ δ ξ φ δ θ φ ρ φ φ

 Π − Π + Π + Π = ∀ ∈


Π + Π + Π − Π − Π = ∀ ∈
 (12) 

Theorem 5.1. Under the condition that hℑ  is C-uniform division, let ( ),v w  
and ( ),h hv w  be solutions of (7) and (8), respectively. ,v w  meets the required 
regularity condition, then there exist a constant 0C >  independent of the par-
tition hℑ , such that: 

( )
1

2 22 2 2
3 2 3 21 3 20

d
t

h h t tv v w w Ch v w v w v w τ
   − + − ≤ + + + + +     

∫   (13) 

Proof Choosing hφ ρ=  in the error Equation (12) (a), and hφ ξ=  in (12) 
(b) to obtain: 

( ) ( ) ( ) ( )
( ) ( ) ( )

* * * *

* * *

, , , ,

, , , 0

t h t h h h

h t h t h

Bξ ξ η ξ δ ξ ξ δ θ ξ

θ ρ ρ ρ θ ρ

Π + Π + Π − Π

− Π + Π + Π =
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Applying Lemma 3.3 and Young’s inequality, there exists a constant ( )2 0C >  
associated with δ  such that: 

( ) ( )2 * *
2 1

2 22 2 2 2 2 2
2 1

2

1 d 1 d, ,
2 d 2 d

1 1 1 1
4 4 4 4

h h

t t

C
t t

C C C C
C C C C

ξ ξ ξ ρ ρ

η ξ θ ξ θ ρ θ ρ

+ Π + Π

≤ + + + + + + +
 

Integrating both sides from 0 to t, we have: 

( )

2 2

2 22 2 2

0 0 0

1 1
16 16

d d d
t t t

t tC C C

ξ ρ

η θ θ τ ξ τ ρ τ

+

 ≤ + + + +  ∫ ∫ ∫
 

By Gronwall’s lemma and error estimation of elliptic projection, we obtain: 

( )2 22 2 2 22
3 23 20

d
t

t tCh v w v wξ ρ τ + ≤ + + +  ∫        (14) 

From (12) we can prove that: 

( )
1

2 2 2 2 2
3 23 20

d
t

t tCh v w v wρ τ
   ≤ + + +     
∫           (15) 

Then we estimate 1ξ . 
Choosing hφ ξ=  in the error Equation (12) (a): 

( ) ( ) ( ) ( )* * * *, , , , 0h h t h t hB ξ ξ θ ξ ρ ξ θ ξΠ − Π + Π + Π =  

Applying Lemma 3.3 and Young’s inequality: 

2 22 2 2 2 2
1

1 1 1 1
2 3 3 3t tC C Cξ θ ξ ρ ξ θ ξ≤ + + + + +  

It can be easily known from the error estimation of (16) and elliptic projection 
that: 

( )
1

2 22 2 2
1 3 2 3 2 3 20

d
t

t tCh v w v w v wξ τ
   ≤ + + + + +     

∫      (16) 

Combining (15), (16) and applying triangle inequality, the conclusion can be 
obtained. 

6. Fully-Discrete Mixed Finite Volume Element Scheme and  
Convergence Analysis 

Firstly, the spatial region Ω  is divided into hℑ  and *
hℑ  as in Section 2, let 

0 10 Mt t t T< < < < =  be a given partition of time interval, then we have the  

time step Tt
M

∆ = , and , 0,1, ,nt n t n M= ∆ =  . For a smooth function hv , we 

denote ( )n n
h hv v t= . 

By using the backward Euler scheme of the time derivative, we construct the 
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following fully-discrete scheme: Find ( ) ( )0, , 1, 2,n n
h h h hv w U U n∈ × =  , such that: 

( ) ( ) ( )

( )

( ) ( )

1
* * * *

0

1
* *

0

(a)  , , , , ,     

(b)  , , 0,                                              

(c)  ,0 ,        

(d)  

n n
n n nh h

h h h h h h h h h h h h

n n
nh h

h h h h h h h

h h

v v
B v B w f U

t

w w
B v U

t

v x x x

φ δ φ φ φ φ

φ φ φ

ψ

−

−

 −
Π + Π − Π = Π ∀ ∈ 

∆ 
 −

Π + Π = ∀ ∈ 
∆ 

= ∀ ∈Ω

( ) ( )0 ,0 ,       h hw x x xϕ










 ′′= ∀ ∈Ω

(17) 

Since the problem is a system of linear equations, it is easy to prove that the 
solution of the problem is unique. 

Then we introduce the elliptic projection of the mixed volume element of the 
original problem, find ( ) [ ] 0, : 0,n n

h h h hv w T U U→ ×  , meets: 

( )
( ) ( )

*
0

* *

, 0,

, , ,

n n
h h h h h

n n n n
h h h h h h h h

B w w U

B v v w w U

φ φ

φ φ φ

 − Π = ∀ ∈


− Π = − − Π ∀ ∈



 

         (18) 

Under the condition that hℑ  is C-uniform partition, the elliptic projection is 
unique, and meets the following error estimation formulas [27]: 

( )3 21
n n n n

h hv v w w Ch v w− + − ≤ +                 (19) 

( )3 2
n n

hv v Ch v w− ≤ +                    (20) 

Similar to the notations in Section 5, we still denote that: 

( ) ( )n n n n n n n n
h h h hv v v v v v ξ η− = − + − = +   

( ) ( )n n n n n n n n
h h h hw w w w w w ρ θ− = − + − = +   

1 1

,   
n n n n

n n
t tt t

ξ ξ η ηξ η
− −− −

∂ = ∂ =
∆ ∆

 

1 1

,   
n n n n

n n
t tt t

ρ ρ θ θρ θ
− −− −

∂ = ∂ =
∆ ∆

 

Then, we have: 

( )3 2
n n n
t ht t t tv v Ch v wη = − ≤ +  

( )3 2
n n n
t ht t t tw w Ch v wθ = − ≤ +  

Based on (7), (8) and elliptic projection (18), the following error equation can 
be obtained: 

( ) ( ) ( ) ( )
( )
( ) ( ) ( ) ( ) ( )

( )

* * * *

*
0

* * * * *

*

(a)  , , , ,

      , ,      

(b)  , , , , ,

      , ,       

n n n n
h h h h t h h t h h

n n
t t h h h h

n n n n n
h h h h h h t h h t h h

n n
t t h h h h

B

w w U

B B

v v U

ξ φ θ φ ρ φ θ φ

φ φ

δ ξ φ δ θ φ ρ φ ξ φ η φ

φ φ

 Π − Π + ∂ Π + ∂ Π

 = − ∂ Π ∀ ∈


Π − Π − Π + ∂ Π + ∂ Π


= − ∂ Π ∀ ∈

 

(21) 
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Theorem 6.1. Under the condition that hℑ  is C-uniform division, If ( ),v w  
is a solution to problem (4) or its equivalent form (6) and ,v w  meet the re-
quired regularity condition. Then the solution ( ) 0,h h h hv w U U∈ ×  of the fully 
discrete mixed finite volume element scheme (17) converges to ( ),v w , and 
there exists a positive constant C which does not depend on the subdivision of 

hℑ  meeting the following estimation: 

( )
10

max n n
hn T N

v v C h t
≤ ≤

− ≤ + ∆                     (22) 

( )
0
max n n

hn T N
w w C h t

≤ ≤
− ≤ + ∆                    (23) 

Proof Choose n
hφ ρ=  in (21) (a) and n

hφ ξ=  in (21) (b) to obtain: 

( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( )

* * * *

* *

* * *

, , , ,

, ,

, , ,

n n n n n n n n
h h t h t h

n n n n
t h t h

n n n n n n n n
h t t h t t h

B

v v w w

δ ξ ξ δ θ ξ ξ ξ η ξ

ρ ρ θ ρ

θ ρ ξ ρ

Π − Π + ∂ Π + ∂ Π

+ ∂ Π + ∂ Π

= Π + −∂ Π + − ∂ Π

 

Transposition: 

( ) ( )
( ) ( ) ( ) ( )
( ) ( )

2 * *
1

* * * *

* *

, ,
2

, , , ,

, ,

n n n n
t h t h

n n n n n n n n
h h t h t h

n n n n n n
t t h t t hv v w w

δ ξ ξ ξ ρ ρ

θ ρ δ θ ξ η ξ θ ρ

ξ ρ

+ ∂ Π + ∂ Π

= Π + Π + ∂ Π + ∂ Π

+ −∂ Π + − ∂ Π

 

Applying Lemma 3.3: 

( ) ( )

( ) ( )

( ) ( )

* 1 *

2* 1 * 1 1

* 1 * 1

1, ,

1 , ,
2
1 , ,

2

n n n n n
t h h

n n n n n n
h h

n n n n
h h

t

t

t

ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ

−

− − −

− −

∂ Π = − Π
∆

 ≥ Π − Π + −  ∆

 ≥ Π − Π ∆

 

Similarly: 

( ) ( ) ( )* * 1 * 11, , ,
2

n n n n n n
t h h ht
ρ ρ ρ ρ ρ ρ− − ∂ Π ≥ Π − Π ∆

 

Combined with Lemma 3.3, there is: 

( ) ( )

( ) ( )
( ) ( ) ( ) ( )
( ) ( )

* 1 * 1

2* 1 * 1
3 1

* * * *

* *

6

1

1 , ,
2

1 , ,
2

, , , ,

, ,

n n n n
h h

n n n n n
h h

n n n n n n n n
h h t h t h

n n n n n n
t t h t t h

i
i

t

C
t

v v w w

I

ξ ξ ξ ξ

ρ ρ ρ ρ ξ

θ ρ δ θ ξ η ξ θ ρ

ξ ρ

− −

− −

=

 Π − Π ∆

 + Π − Π + ∆

≤ Π + Π + ∂ Π + ∂ Π

+ −∂ Π + − ∂ Π

= ∑

      (24) 

For the estimates of the right-sides of (24), we have: 

( ) 2 2*
1

1,
4

n n n n
hI C

C
θ ρ θ ρ= Π ≤ +  
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Similarly, there exist a constant ( )3 0C >  associated with δ  such that: 

( ) 2 2 2 2*
2 3 3 1

3 3

1 1,
4 4

n n n n n n
hI C C

C C
δ θ ξ θ ξ θ ξ= Π ≤ + ≤ +  

( ) 2 2*
3

1,
4

n n n n
t h tI C

C
η ξ η ξ= ∂ Π ≤ ∂ +  

where: 

( ) ( )
1 1

2
2 21 1d dn n

n n

t tn
t t tt tt t
η η τ τ η τ τ

− −
∂ = ≤

∆ ∆∫ ∫  

Thus: 

( )
1

22
3

1d
4

n

n

t n
tt

CI
t C

η τ τ ξ
−

≤ +
∆ ∫  

Similarly: 

( )
1

22
4

1d
4

n

n

t n
tt

CI
t C

θ τ τ ρ
−

≤ +
∆ ∫  

( ) 2 2*
5

1,
4

n n n n n n
t t h t tI v v C v v

C
ξ ξ= − ∂ Π ≤ − ∂ +  

where: 

( ) ( )

( ) ( )

1

1 1

2 212

1

2 2

1 d

d d

n

n

n n

n n

n n tn n n
t t t n ttt

t t
tt ttt t

v vv v v t v
t t

v t v

τ τ τ

τ τ τ τ

−

− −

−

−
−

− ∂ = − = −
∆ ∆

≤ ≤ ∆

∫

∫ ∫

 

Thus: 

( )
1

2 2
5

1 d
4

n

n

tn
ttt

I C t v
C

ξ τ τ
−

≤ + ∆ ∫  

Similarly: 

( )
1

2 2
6

1 d
4

n

n

tn
ttt

I C t w
C

ρ τ τ
−

≤ + ∆ ∫  

Substitute all the above estimates into Equation (24), we obtain: 

( ) ( ) ( ) ( )

( )

( ) ( )

( )

1

1 1

1

* 1 * 1 * 1 * 1

2 2 2 22

3

2 2 22

2 2

1 1, , , ,
2 2

1 1 1d
4 4 4

1 1d d
4 4

1 d
4

n

n

n n

n n

n

n

n n n n n n n n
h h h h

tn n n n
tt

t tn n
t ttt t

tn
ttt

t t
CC

C C t C
C C t v

t C C

C t w
C

ξ ξ ξ ξ ρ ρ ρ ρ

θ ρ θ η τ τ ξ

θ τ τ ρ ξ τ τ

ρ τ τ

−

− −

−

− − − −   Π − Π + Π − Π   ∆ ∆

≤ + + + +
∆

+ + + + ∆
∆

+ + ∆

∫

∫ ∫

∫

 

Multiplying both sides by 2 t∆ , then summing over n results in: 

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

* *

2 22 2

0 0
1 1

2 2 2 0 * 0 0 * 0
0 0

1

, ,

1 1  d d

d d , ,

n n n n
h h

n nT Tj j
t t

j j

n T Tj
tt tt h h

j

C t
t t

t v t w

ξ ξ ρ ρ

θ η τ τ ρ θ τ τ

ξ τ τ τ τ ξ ξ ρ ρ

= =

=

Π + Π


≤ ∆ + + + ∆ ∆


+ + ∆ + ∆ + Π + Π



∑ ∑∫ ∫

∑ ∫ ∫
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When the t∆  is sufficiently small, applying the discrete Gronwall’s lemma 
[28], we have: 

( ) ( )

( ) ( )

2 2 2 2 2

0 0
1

2 22 2 0 0
0 0

1 1 d d

d  d

n T Tn n j
t t

j

T T
tt tt

C t
t t

t v t w

ξ ρ θ η τ τ θ τ τ

τ τ τ τ ξ ρ

=


+ ≤ ∆ + + ∆ ∆


+ ∆ + ∆ + +



∑ ∫ ∫

∫ ∫
 

where: 
0 0 0 0 0 0 0

h h h hw w w w w w Chξ = − ≤ − + − ≤   

0 0 0 0 0 0 0
h h h hv v v v v v Chρ = − ≤ − + − ≤   

By the error estimation of elliptic projection, we obtain: 

( )
2 2 2 2n n C t hξ ρ  + ≤ ∆ +                    (25) 

From (25) we can prove that: 

( )n C t hρ ≤ ∆ +                        (26) 

Choosing n
hφ ξ=  in (21) (a): 

( ) ( ) ( ) ( ) ( )* * * * *, , , , ,n n n n n n n n n n n
t h h t h h t t hB w wρ ξ ξ ξ θ ξ θ ξ ξ∂ Π + Π + ∂ Π − Π = −∂ Π  

Applying Lemma 3.2, Lemma 3.3: 
2 2 2 2 2 2

1

1 1
2

n n n n n n n
t t t tC C C C w w

C
ξ ρ θ θ ξ≤ ∂ + ∂ + + − ∂ +   (27) 

For the estimates of the right-sides of (27), we have: 

( ) ( )
1 1

2
2 21 1d dn n

n n

t tn
t t tt tt t
ρ ρ τ τ ρ τ τ

− −
∂ = ≤

∆ ∆∫ ∫  

( ) ( )
1 1

2
2 21 1d dn n

n n

t tn
t t tt tt t
θ θ τ τ θ τ τ

− −
∂ = ≤

∆ ∆∫ ∫  

( ) ( )

( )

1

1

2 212

1

2

1 d

d

n

n

n

n

n n tn n n
t t t n ttt

t
ttt

w ww w w t w
t t

t w

τ τ τ

τ τ

−

−

−

−
−

− ∂ = − = −
∆ ∆

≤ ∆

∫

∫
 

The above inequality leads to: 

( ) ( )

( ) )
1 1

1

2 2 2

1

22

1 1d d

1d

n n

n n

n

n

t tn
t tt t

t n
ttt

C
t t

t w
C

ξ ρ τ τ θ τ τ

τ τ ξ

− −

−

≤ + ∆ ∆

+ ∆ +

∫ ∫

∫
 

Combining (25) and the error estimation of elliptic projection, we derive that:  

( )
1

n C t hξ ≤ ∆ +                         (28) 

Finally, apply (26) (28) and triangle inequality to complete the proof. 
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7. Numerical Simulation 

In this part, we will give two experiments to test our mixed finite volume ele-
ment scheme. The numerical results will be presented to illustrate the efficiency 
and order of accuracy of the algorithm.  

Example 1: The vibration equation of beam with structural damping is con-
sidered as follows:  

( ) ( ) ( ) ( ]
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) [ ]

(a)  , ,           , 0,1 0,1
(b)  ,0 , ,0 , 0,1
(c)  0, 1, 0, 0, 1, 0, 0,1

tt xxt xxxx

t

x x

u u u f x t x t
u x x u x x x
u t u t u t u t t

ϕ ψ
 − + = ∈ ×
 = = ∈
 = = = = ∈

  (29) 

This is a special case of (3), where 1, 1, 1T Lδ = = = . We give a exact solution 
to the problem ( ) ( ) ( ), sin cosu x t x t= π π , then we have: 

( ) ( ) ( ), sin sinv x t x tπ π− π=  

( ) ( ) ( )2, sin cosw x t x tπ π= π−  

( ) ( ) ( ) ( ) ( )4 3 2, cos sin cos sinf x t t t t xπ π π π π π − −  π=  

,v w  are solved by mixed finite volume element scheme, u can be obtained 
from v by backward Euler method, Where the spatial step is 1h

N
= , time step is 

1t
M

∆ = , The errors and spatial convergence order of , ,u v w  are shown in 
Tables 1-3 respectively when 2M N= . As can be seen from Tables 1-3, in the 
sense of maximum norm, L2 norm and H1 norm, the displacement, bending 
moment and velocity of the beam under vibration are better approximated than 
the theoretical estimations, which justifies the effectiveness of the mixed finite 
volume element method. 

Using MATLAB software, we can get the function figures of the numerical 
solution and analytical solution, as indicated in Figures 1-6. It proves that the 
degree of numerical solutions is approximating the exact solutions in different 
grid points. 

Example 2: In Example 1, we assume that the beam is in a free vibration state, 
choosing 0.5x = , ( ]0,3t∈ . Different values of δ  were used to verify the  
 
Table 1. The computational errors and convergence orders of u. 

h hu u
∞

−  order 0,h h
u u−  order 1,h h

u u−  order 

4

1
2

 7.379e−03 - 5.218e−03 - 3.697e−02 - 

5

1
2

 1.751e−03 2.075 1.238e−03 2.075 1.860e−02 0.9912 

6

1
2

 4.319e−04 2.019 3.054e−04 2.019 9.469e−03 0.9740 

7

1
2

 1.076e−04 2.005 7.609e−05 2.005 4.794e−03 0.9820 

8

1
2

 2.688e−05 2.001 1.900e−05 2.001 2.413e−03 0.9898 
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Figure 1. u and uh at 1t = . 

 

 

Figure 2. w and wh at 1t = . 
 

 

Figure 3. The space-time image of uh when 1
16

h = . 
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Figure 4. The space-time image of u when 1
16

h = . 

 

 

Figure 5. The space-time image of wh when 1
16

h = . 

 

 

Figure 6. The space-time image of w when 1
16

h = . 
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influence of material damping on beam vibration. As can be seen from Figure 7, 
the larger the damping coefficient of material structure δ  is, the faster the at-
tenuation rate of beam vibration will be. 
 

 

Figure 7. The image of ( ),u x t  changing with time at midpoint when δ  takes differ-

ent values. 
 
Table 2. The computational errors and convergence orders of v. 

h hv v
∞

−  order 0,h h
v v−  order 1,h h

v v−  order 

4

1
2

 2.110e−02 - 1.492e−02 - 2.241e−01 - 

5

1
2

 5.281e−03 1.998 3.734e−03 1.998 1.157e−01 0.9531 

6

1
2

 1.320e−03 1.999 9.338e−04 1.999 5.883e−02 0.9767 

7

1
2

 3.302e−04 1.999 2.334e−04 1.999 2.965e−02 0.9885 

8

1
2

 8.255e−05 2.000 5.837e−05 2.000 1.488e−02 0.9943 

 
Table 3. The computational errors and convergence orders of w. 

h hw w
∞

−  order 0,h h
w w−  order 1,h h

w w−  order 

4

1
2

 1.444e−02 - 1.021e−02 - 1.533e−01 - 

5

1
2

 3.611e−03 1.999 2.553e−03 1.999 7.917e−02 0.9541 

6

1
2

 9.028e−04 1.999 6.384e−04 1.999 4.022e−02 0.9770 

7

1
2

 2.257e−04 2.000 1.596e−04 2.000 2.027e−02 0.9886 

8

1
2

 5.643e−05 2.000 3.990e−05 2.000 1.017e−02 0.9943 
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8. Conclusions and Suggestions 

In this paper, two intermediate functions with practical significance are intro-
duced to the vibration equation of the structural damping beam. The fourth-order 
partial differential equation is transformed into a set of second-order partial dif-
ferential equations. The spatial derivative is discretized by the mixed finite-volume 
element scheme, and the time derivative is discretized by the backward Euler 
scheme. A mixed finite-volume element scheme is obtained. The existence and uni-
queness of the scheme solution are analyzed and the error estimate is given. Fi-
nally, a numerical example is given to verify the accuracy and effectiveness of the 
scheme. In future work, the derivative of time can be processed with a more pre-
cise discrete scheme, and the vibration equations of beams with different damp-
ing types can also be solved numerically by this method.  
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