
American Journal of Computational Mathematics, 2021, 11, 94-132 
https://www.scirp.org/journal/ajcm 

ISSN Online: 2161-1211 
ISSN Print: 2161-1203 

 

DOI: 10.4236/ajcm.2021.112009  May 26, 2021 94 American Journal of Computational Mathematics 
 

 
 
 

Fourth-Order Adjoint Sensitivity Analysis of an 
OECD/NEA Reactor Physics Benchmark: I. 
Mathematical Expressions and CPU-Time 
Comparisons for Computing 1st-, 2nd- and 
3rd-Order Sensitivities 

Dan Gabriel Cacuci*, Ruixian Fang 

Center for Nuclear Science and Energy, Department of Mechanical Engineering, University of South Carolina, Columbia, SC, USA 

 
 
 

Abstract 
This work extends to fourth-order previously published work on developing 
the adjoint sensitivity and uncertainty analysis of the numerical model of a 
polyethylene-reflected plutonium (acronym: PERP) OECD/NEA reactor 
physics benchmark. The PERP benchmark comprises 7477 imprecisely 
known (uncertain) model parameters which have nonzero values. These pa-
rameters are as follows: 180 microscopic total cross sections; 7101 micro-
scopic scattering sections; 60 microscopic fission cross sections; 60 parame-
ters that characterize the average number of neutrons per fission; 60 parame-
ters that characterize the fission spectrum; 10 parameters that characterize the 
fission source; and 6 parameters that characterize the isotope number densi-
ties. Previous works have used the adjoint sensitivity analysis methodology to 
compute exactly and efficiently all of the 7477 first-order and 27,956,503 
second-order sensitivities of the PERP benchmark’s leakage response to all of 
the benchmark’s uncertain parameters. These works showed that largest re-
sponse sensitivities involve the total microscopic cross sections, which moti-
vated the recent computation of all of the (180)3 third-order sensitivities of 
the PERP leakage response with respect to these total microscopic cross sec-
tions. It turned out that some of these 3rd-order cross sections were far larger 
than the corresponding 2nd-order ones, thereby having the largest impact on 
the uncertainties induced in the PERP benchmark’s response. This finding 
has motivated the development of the original 4th-order formulas presented in 
this work, which are valid not only for the PERP benchmark but can also be 
used for computing the 4th-order sensitivities of response of any nuclear sys-
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tem involving fissionable material and internal or external neutron sources. 
Subsequent works will use the adjoint-based mathematical expressions ob-
tained in this work to compute exactly and efficiently the numerical values of 
the largest fourth-order sensitivities of the PERP benchmark’s response to the 
total microscopic cross section and use them for a pioneering fourth-order 
uncertainty analysis of the PERP benchmark’s response. 
 

Keywords 
Polyethylene-Reflected Plutonium Sphere Benchmark, 1st-Order, 2nd-Order, 
3rd-Order Forward Sensitivity Analysis, Finite-Differences, 1st-Order, 
2nd-Order, 3rd-Order Adjoint Sensitivity Analysis, Cross Sections 

 

1. Introduction 

Until recently, only the first-order sensitivities (i.e., functional derivatives) of a 
computational model’s responses (i.e., quantities of interest) to the respective 
model’s imprecisely known (i.e., uncertain) parameters have been considered 
when assessing the uncertainties induced in the respective responses by the pa-
rameter uncertainties. The second- and higher-order sensitivities could not be 
computed, except for very simple models comprising a handful of parameters, so 
these sensitivities were ignored. The Second-Order Adjoint Sensitivity Analysis 
Methodology (2nd-ASAM) recently conceived by Cacuci [1] is the only practical 
method that enables the exact computation of the large number of 2nd-order sen-
sitivities arising in large-scale problems comprising many parameters. The ap-
plication of the 2nd-ASAM to a multiplying nuclear system with source [2] [3] [4] 
has opened the way for the large-scale application presented in [5]-[10] to a po-
lyethylene-reflected plutonium (acronym: PERP) OECD/NEA reactor physics 
benchmark [11]. The numerical model of the PERP benchmark comprises 21,976 
uncertain parameters, of which 7477 parameters have nonzero values, as follows: 
180 group-averaged total microscopic cross sections, 7101 non-zero group-av- 
eraged scattering microscopic cross sections (the other scattering cross sections, 
of which there are 21,600 in total, are zero); 120 fission process parameters; 60 
fission spectrum parameters; 10 parameters describing the experiment’s nuclear 
sources; and 6 isotopic number densities.  

All of the non-zero first-order sensitivities and second-order sensitivities of 
the PERP leakage response with respect to the benchmark’s parameters were 
computed, ranked, and analyzed in [5]-[10]. The results obtained in [5]-[10] 
showed that the 2nd-order sensitivities of the leakage response with respect to the 
group-averaged microscopic total cross sections are the largest (by comparison 
to the 2nd-order sensitivities of the leakage response with respect to the other 
uncertain model parameters) and have therefore the largest impact on the un-
certainties induced in the leakage response. For example, neglecting the 2nd-or- 
der sensitivities of the leakage response with respect to the total cross sections 
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could cause an error as large as 2000% in the expected value of the leakage re-
sponse and up to 6000% in the variance of the leakage response [5]. Given that 
the effects of these 2nd-order sensitivities are much larger than the effects of the 
1st-order sensitivities [5] [10], it is logical to quantify the magnitudes and con-
tributions that would stem from the 3rd-order sensitivities of the PERP bench-
mark’s total leakage response with respect to the microscopic total cross sections. 
To enable the computation of such 3rd-order sensitivities, Cacuci [12] has re-
cently conceived the “third order adjoint sensitivity analysis methodology for 
reaction rate responses in a multiplying nuclear system with source” and then 
applied this general theory to the PERP benchmark in order to derive the exact 
analytical expressions of the 3rd-order sensitivities of the PERP benchmark’s lea-
kage response with respect to this benchmark’s microscopic total cross sections 
[13] [14] [15]. These works [13] [14] [15] have shown that the largest 3rd-order sen-
sitivities involve the microscopic total cross section for the lowest (30th) energy 
group of isotope 1H (i.e., 30

,6tσ ). In particular, the largest overall 3rd-order sensi-
tivity is the mixed 3rd-order sensitivity ( ) ( )3 30 30 30 5

,1 ,6 ,6, , 1.88 10g g g
t t tS σ σ σ′ ′′= = = = − × , 

which also involves the microscopic total cross section for the 30th energy group 
of isotope 239Pu (i.e., 30

,1
g
tσ = ). The largest unmixed 3rd-order sensitivity is also 

with respect to 30
,6tσ , namely ( ) ( )3 30 30 30 4

,6 ,6 ,6 2.9 10, , 66g g g
t t tS σ σ σ′ ′′= = = = − × . These sen-

sitivities significantly larger than the largest lower-order sensitivities; by com-
parison, the largest 1st-, 2nd- and 3rd-order sensitivities are ( ) ( )301

,6 9.366tS σ = − , 
( ) ( )30 30

,6 ,
2

6, 429.6t tS σ σ =  and ( ) ( )3 30 30 30 5
,1 ,6 ,6, , 1.88 10g g g

t t tS σ σ σ′ ′′= = = = − × , respectively. 
The results obtained in [5]-[10] and [13] [14] [15] indicated that the total micro-
scopic cross section of isotopes 1H and 239Pu are the most important parameters 
affecting the PERP benchmark’s leakage response, since they are responsible for 
the largest 1st-, 2nd- and 3rd-order sensitivities.  

This work is organized as follows: Section 2 presents the computational mod-
eling of the PERP Benchmark. Section 3 presents the main features and the 
CPU-times required for applying the three fundamental deterministic (as op-
posed to “statistical”) methods for computing the 1st-order response sensitivities, 
namely 1) finite differences; 2) the forward sensitivity analysis method (FSAM); 
and 3) the 1st-Order Comprehensive Adjoint Sensitivity Analysis Methodology 
(1st-CASAM) for linear systems. Section 4 presents the main features and the 
CPU-times required for applying the three fundamental deterministic methods 
(i.e., finite differences, FSAM the 2nd-CASAM, respectively) for computing the 
2nd-order response sensitivities. The results presented in Section 4 clearly high-
light the fact that the 2nd-CASAM is the only method that can be used in practice 
to compute 1st- and 2nd-order sensitivities of a response of a large-scale system, 
involving many parameters. Section 5 presents comparisons of the CPU times 
required for computing the 3rd-order sensitivities of the PERP benchmark’s lea-
kage response solely to the group-averaged total cross sections. These results 
underscore the fact that the 3rd-CASAM is exact, introducing no intrinsic me-
thodological errors in the computation of sensitivities, and is by far more effi-
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cient than any other method. Section 6 concludes this work, noting that the ex-
pressions and results for the 4th-order sensitivities will be presented in compa-
nion works [16] [17]. Notably, the original mathematical concepts underlying the 
1st-order FSAM and 1st-CASAM were presented in [18] [19] [20] while the general 
theory underlying the 4th-Order Comprehensive Adjoint Sensitivity Analysis Me-
thodology (4th-CASAM) for linear systems is presented in [21]. 

2. Mathematical/Computational Model of the PERP  
Benchmark 

The spherical polyethylene-reflected plutonium (acronym: PERP) benchmark 
comprises a metallic inner sphere (“core”) containing the following 4 isotopes: 
Isotope 1 (239Pu), Isotope 2 (240Pu), Isotope 3 (69Ga) and Isotope 4 (71Ga). This 
core (which is designated as “material 1”) is surrounded by a spherical shell of 
polyethylene (designated as “material 2”), containing two isotopes, designated as 
Isotope 5 (C) and Isotope 6 (1H), respectively. The dimensions and material 
composition of the polyethylene-reflected plutonium (PERP) metal sphere con-
sidered in this work are presented in Table A1 in the Appendix. The quantity of 
interest in this work, which will be called the “response,” is the leakage of neu-
trons out of the PERP sphere, which has been measured experimentally [11]. 

The numerical modeling of the neutron flux distribution within the PERP 
benchmark, as well as the computation of the PERP leakage response has 
been performed using the multigroup discrete ordinates particle transport code 
PARTISN [22] together with neutron sources computed using the code SOUR- 
CES4C [23]. The neutron flux distribution within the PERP benchmark, as well 
as the leakage of neutrons out of the PERP sphere has been modeled using the 
standard multigroup form of the Boltzmann neutron transport equation subject 
to the boundary condition of no incoming flux, with an internal spontaneous 
fission source, which can be written in the following form: 

( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )
1 4

, ; , d , ; ,

; ; , 1, , ,

G
g g g h h g

t s
h

hg g
f

r r r r r

r r Q g G

ϕ ϕ ϕ

χ ν

π

→

=

′ ′ ′⋅∇ + Σ − Σ →

+ Σ = =

∑ ∫



Ω Ω Ω Ω Ω Ω Ωα α

α α α
(1) 

( ), 0, , 0, 1, ,g
dr r r g Gϕ =  = ⋅ < =n Ω Ω ,               (2) 

where dr  is the radius of the PERP sphere. Note that many works, use the “ g ′ ” 
as the “dummy” summation index in Equation (1); the index h (instead of g ′ ) 
is preferred in this work in order to avoid, as much as possible, the appearance 
of “superscripted superscripts.” In this work, therefore, the superscript-indices 
“g” and “h” will refer exclusively to “energy groups.”  

The source, ( )gQ α , which appears on the right-side of Equation (1) is de-
fined as follows: 

( ) 131

42 d e sinhe
g

k
k kf

g

a bN
E E ag SF SF

k k k k kE
k k k

Q N F b
a b

E Eλ ν +
−

=

− 
 
 
 π 

∑ ∫α ,   (3) 
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where fN  denotes the total number of spontaneous-fission isotopes. The PERP 
benchmark has 2fN =  spontaneous-fission isotopes, namely “isotope 1” (239Pu) 
and “isotope 2” (240Pu). The spontaneous fission neutron spectrum of 239Pu and 
240Pu, respectively, is each approximated by a Watts fission spectrum, characte-
rized by: 1) the evaluated parameters ka  and kb ; 2) the spontaneous emission, 

SF
kν , of an average neutron of an isotope k; 3) the decay constant, kλ , for acti-

nide nuclide k; 4) the fraction, SF
kF , of decays that are spontaneous fission (the 

“spontaneous-fission branching fraction”); 5) the index 1k =  refers to “isotope 
1” (239Pu) while 2k =  refers to “isotope 2” (240Pu). The symbols used in Equa-
tions (1) through (3) have their usual meanings; for convenient referencing, they 
are described in the Appendix and are summarized in the Nomenclature.  

The mathematical expression of the PERP benchmark’s leakage response, de-
noted as ( )L α , is provided below: 

( ) ( )
1 0

d d ,
b

G
g

gS

L S rϕ
= ⋅ >

⋅∑∫ ∫
n

n

Ω

Ω Ω Ωα .                (4) 

The PARTISN [22] computations of the neutron flux used the MENDF71X 
[24] 618-group cross section data collapsed to 30G =  energy groups, as well as 
a P3 Legendre expansion of the scattering cross section and a fine-mesh spacing 
of 0.005 cm (comprising 759 meshes for the plutonium sphere of radius of 3.794 
cm, and 762 meshes for the polyethylene shell of thickness of 3.81 cm). The first- 
and second-order response sensitivities were computed using an angular qua-
drature of S256. The 3rd- and 4th-order sensitivities of the leakage response with 
respect to the total cross sections were computed using an angular quadrature of 
S32. The group boundaries of the 30G =  energy groups are provided in Table 
A2 in the Appendix. The scattering and fission terms in Equation (1) contain 
implicitly a factor 1 4π , to conform to the convention used in PARTISN [22]. 

The vector α , which appears in the arguments of the various quantities in 
Equations (1) and (4), is defined as follows: 

[ ]† †
1, , ; ; ; ; ; ; ,

where .
TP s t f

TP JQ I JSX JTX JFX JNU J

α α

χ

  
+ + + + + +

q N p  



σα σ σ ν
          (5) 

The components of the TP-dimensional vector α  are the imprecisely known 
(i.e., uncertain) model and response parameters, and are described in the Ap-
pendix. In Equation (5) and throughout this work, the dagger will be used to 
denote “transposition.” The nominal values of the parameters in Equation (5), as 
well as of all other quantities in this work, will be denoted using the superscript 
“zero,” e.g., 

†0 0 0
1 , , TPα α   α .  

For the mathematical derivations to follow in this work, it will be convenient 
to use the matrix-form of Equations (1) and (2), which is as follows: 

( ) ( ) ( ), ,r =B QΩα ϕ α                         (6) 

( ), , , 0,dr r r=  = ⋅ <n0Ω Ωϕ                      (7) 

where 
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( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 1
11 1 1

1

1

; , ; ;

g G

g g
g gg gG

G G
G Gg GG

B B B Q

B B B r Q

B B B Q

ϕ

ϕ

ϕ

     
     
     
     
     
     
     

    

B Q

 
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 

   
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 

 

Ω

α α α

α α αα ϕ α

α α α

(8) 

with components defined below: 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )

0 1
,

0

1

4

; , 1, , ;

, ; , ;

, d ; , ; ; .

gh g h gg gh

g g g
gg t

hh h g g
gh s f

B B B g h G

B r r r

B r r r r

δ

ϕ ϕ

ϕ χ ν→

π

− =

 ⋅∇ + Σ 
 ′ ′ ′Σ → + Σ  ∫

 





Ω Ω Ω

Ω Ω Ω Ω

α α α

α α

α α α α

  (9) 

The notation ,g hδ , which appears in Equation (9), denotes the Kronecker 
delta-functional, which is defined as usual, i.e., , 1g hδ = , if g h=  and , 0g hδ = , 
if g h≠ .  

3. Computation of First-Order Sensitivities  
( ) jL j TP, 1, ,∂ ∂ =α α    

Basically, there are three methods for computing deterministically (as opposed 
to computing “statistically”) the response sensitivities to model and response 
parameters, as follows:  

1) The so-called “brute-force re-computations” method, which uses finite- 
difference formulas to approximate the derivative that expresses the response 
sensitivity to the parameter under consideration; this method will be presented 
in Subsection 3.1; 

2) The Forward Sensitivity Analysis Methodology (FSAM), which will be ap-
plied in Subsection 3.2; 

3) The 1st-Order Comprehensive Adjoint Sensitivity Analysis Methodology 
(CASAM) conceived by Cacuci [21], which will be applied in Subsection 3.3. 

Subsection 3.4 will present a comparative discussion of the computational re-
sources and times (CPU) which are required by the three above-mentioned de-
terministic methods. 

3.1. Re-Computations with Finite-Difference Approximation  

The first-order sensitivities of the leakage response, ( )L α , can be approximately 
computed by re-computations using the well-known finite-difference formula 
presented below: 

( ) ( ) ( )2
1 1

1 , 1, ,
2 j j j

j j

L
L L h j TP

hα + −

∂
≈ − + Ο =

∂


α
,           (10) 

where ( )1j j jL L hα+ + , ( )1j j jL L hα− −  and jh  denotes a “judiciously- 
chosen” variation in the parameter jα  around its nominal value 0

jα . The val-
ues ( )1j j jL L hα+ +  and ( )1j j jL L hα− −  are obtained by re-solving Equa-
tions (1) and (2) repeatedly, using the changed parameter values ( )j jhα ± . As 
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is well known, the value of the variation jh  must be chosen by “trial and error” 
for each parameter jα , and varies from parameter to parameter; when jh  is 
too large or too small, the result produced by Equation (10) will be far off from 
the exact value of the derivative ( ) jL α∂ ∂α . It is important to note that finite 
difference formulas introduce their intrinsic “methodological errors,” such as 
the error ( )2

jhΟ  indicated in Equation (10), which are in addition to and in-
dependent of the errors that might be incurred in the computation of ( )L α . In 
other words, even if the computation of ( )L α  were perfect (error-free), the fi-
nite-difference formulas nevertheless introduce their own, intrinsic, numerical 
errors into the computation of the sensitivity ( )d d jL αα .  

3.2. Forward Sensitivity Analysis Methodology (FSAM) 

If one could solve the neutron transport Equations (1) and (2) in closed form, 
the respective closed form of ( ),g rϕ Ω  would be an explicit function of the pa-
rameters α . However, since the neutron transport Equations (1) and (2) cannot 
be solved in closed form, it follows that ( ),g rϕ Ω  is therefore an implicit func-
tion of α . Consequently, as Equation (4) indicates, the PERP benchmark’s lea-
kage response, ( )L α , is a function of the vector α  of model parameters im-
plicitly through the group-flux ( ),g rϕ Ω .  

The Forward Sensitivity Analysis Methodology (FSAM) is developed [18] [19] 
in the vector-space of the model parameters α . In this vector-space, the 
first-order partial sensitivity of ( )L α  to a generic model parameter, jα , can 
in principle be obtained by taking the first-order partial G-derivative of Equa-
tion (4) with respect to a generic model/respond parameter jα , evaluated at the 
nominal parameter values 0α , which yields: 

( ) ( )

( )

0

0

0 0

1 0
0

1 0

; ; ,d d d
d

,
d d , 1, , .

b

b

gG j j

gj jS

gG

g jS

h rL
S

r
S j TP

ε

ϕ α ε

α ε α

ϕ
α

= ⋅ >
=

= ⋅ >

 ∂ + ∂   ⋅   
∂ ∂      

 ∂ = ⋅ = 
∂  

∑∫ ∫

∑∫ ∫

n

n α

n

n





Ω

Ω

Ω
Ω Ω

Ω
Ω Ω

α

αα

    (11) 

In turn, the derivative ( ),g
jrϕ α∂ ∂Ω  is the solution of the equations ob-

tained by taking the first-order G-derivatives of Equations (1) and (2) with re-
spect to jα , evaluated at the nominal parameter values 0α , which yields, by 
definition, the following equations:  

( ) ( ) ( ){
( ) ( )

( )( ) ( ) ( )}

0 0 0 0 0 0

0 0 0 0

1 4

0 0 0 0 0 0

0

d ; ; , ; ; ; ; ,
d

d ; ; , ; ; ,

; ; ; ; ; 0,

1, , ;

g g g
j j t j j j j

G
h h g

j j s j j
h

hg g
j j f j j j j

h r h r h r

h r h r

h r h r Q h

j TP
ε

ϕ α ε α ε ϕ α ε
ε

ϕ α ε α ε

χ α ε ν α ε α ε

π

→

=

=

⋅∇ + + Σ + +

′ ′ ′− + Σ + →

+ + Σ + − + =
=

∑ ∫



α α α

α α

α α α

Ω Ω Ω

Ω Ω Ω Ω
(12) 

( ){ }0 0

0

d ; ; , 0, , 0, 1, , ; 1, , .
d

g
j j dh r r r g G j TP

ε
ϕ α ε

ε =
+ =   = ⋅ < = =n  Ω Ωα (13) 
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Carrying out the differentiations with respect to ε  in Equations (12) and 
(13), setting 0ε =  in the resulting equations and subsequently cancelling eve-
rywhere the scalar quantity jh  yields the following equations for the function 

( ),g
jrϕ α∂ ∂Ω : 

( ) ( )

( )
0

0

,

, , ,
, 1, , ; 1, , ,

g
g

j

g g

j

r
B

S r r
g G j TP

ϕ
α

ϕ

α

  ∂ 
  

∂    

  ∂  = = = 
∂  

 

α

α

α
Ω

Ω Ω
         (14) 

( )
0

,
0, ; 0, 1, , ; 1, ,

g

d
j

r
r r g G j TP

ϕ
α

 ∂  =   = ⋅ < = = 
∂  

n  

Ω
Ω

α

,     (15) 

where 

( ) ( ) ( ) ( )
, , ,

, ,
g g g g

g

j j j

S r r Q B
r

ϕ
ϕ

α α α

 ∂ ∂ ∂   −  ∂ ∂ ∂


Ω Ω
Ω

α α
          (16) 

( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

1

;
, ,

; ;; ,
d , .

g g
tg g

j j

hg
h gG f
sh

h j j

B r
r r

r rr
r

ϕ ϕ
α α

χ ν
ϕ

α α

→

= 4π

∂ ∂Σ
  ∂ ∂

  ∂ Σ′∂Σ →    ′ ′− + 
∂ ∂ 

 

∑ ∫

Ω Ω

Ω Ω
Ω Ω

α α

α αα
 (17) 

The system of Equations (14) and (15) is called the 1st-Order Forward Sensi-
tivity System (1st-OFSS), the solutions of which are required in Equation (11) to 
compute, in the end, the response sensitivities using the forward sensitivity 
analysis method. Note that a “place-holder,” denoted as “[]”, has been explicitly 
used on the left-side of Equation (14) to indicate that the operator ( )gB α  acts 
(linearly) on the function that appears in this place-holder. Place-holders “[]” 
have also been used on the right-side of Equation (16) and on the left-side of 
Equation (17) to indicate that the operator ( )g

jB α∂ ∂α  acts on the function 
that appears in the respective place-holder. Since there are a total of TP parameters 

jα , it is evident that the computations of all of the sensitivities ( ) jL α∂ ∂α  
require TP large-scale computations to solve the 1st-OFSS, cf. Equations (14) and 
(15), followed by TP small-scale computations for performing the integration 
represented by Equation (11). 

3.3. First-Order Comprehensive Adjoint Sensitivity Analysis  
Methodology (1st-CASAM)  

The aim of the First-Order Comprehensive Adjoint Sensitivity Analysis Metho-
dology (1st-CASAM) is to find an alternative way for expressing the contribution 
of the flux variation (the so-called “indirect-effect term” contribution) to the to-
tal response sensitivity, so as to avoid the need for having to compute the deriva-
tives ( ),g

jrϕ α∂ ∂Ω  of the state functions with respect to the model’s para-
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meters, as is the case when using the FSAM. In contradistinction to the FSAM, 
which is set in the vector-space of the parameters α , the 1st-CASAM is set in 
the combined space of the parameters and the state-functions, denoted as 

( )
†1

1; , , ; , ,G
TPϕ ϕ α α =  u   ϕ α , and does not a priori consider that the 

state functions 
†1, , Gϕ ϕ   ϕ  are implicit functions of the parameters α . 

In its full generality, the 1st-CASAM also considers that the phase-space do-
main’s boundaries and internal interfaces are also subject to uncertainties (i.e., 
are imperfectly well known). For the purpose of this work, however, the boun-
daries of the phase-space domain (which consist of the boundaries of the spatial 
domain, i.e., the internal and external radii of the PERP sphere) and the end- 
points of the energy groups are considered to be free of errors (i.e., are perfectly 
well known) so that the sensitivities of the leakage response to these phase-space 
domain boundaries will not be considered. In this case, the 1st-CASAM reduces 
to the adjoint sensitivity analysis methodology originally conceived by Cacuci 
[18] [19]. When the response sensitivities with respect to the boundaries of the 
phase-space domain are not considered, the G-differential, denoted as  

( ); gLδ δϕα , of the leakage response defined in Equation (4) for a variation  
( );δ δ δu  ϕ α  around the nominal values ( )0 0 0;u  ϕ α  is obtained, by defi-

nition, as follows:  

( ) ( ) ( )

( )

,0

1 0 0

1 0

; d d , ,d
d

d d , .

b

b

G
g g

gS

G
g

gS

L S r r

S r

ε

δ
ε

δ ϕ εδϕ

δϕ

= ⋅ > =

= ⋅ >

   ⋅ +  
  

 = ⋅  

∑∫ ∫

∑∫ ∫

n

n

n

n



Ω

Ω

Ω Ω Ω Ω

Ω Ω Ω

α ϕ
  (18) 

In general, the total G-variation of the response depends comprises two con-
tributions, one arising directly from the parameter variations δα  (this contri-
bution is called the “direct-effect term”) and another contribution, stemming 
from the variations δϕ  in the state functions (this contribution is called the 
“indirect-effect term”). In the particular case of the leakage response considered 
in this work, the variation ( ); gLδ δϕα  does not depend directly on the para-
meter variations δα  but depends only on variations δϕ  in the state functions, 
as indicated in Equation (18). Therefore, ( ); gLδ δϕα  coincides with the “indi-
rect-effect term.”  

The variations ( ),g rδϕ Ω  are the solutions of the first-order G-differentials 
of the model Equations (1) and (2), which are determined by applying the defi-
nition of the G-differential to these equations, to obtain: 

( ) ( ){
( ) ( ) ( )

( ) ( ) ( )

( )( ) ( ) ( )}

,0

0 ,0

,0 0

1

0 0 0

0

d , ,
d

; , ,

d , , ; ,

; ; 0,

g g

g g g
t

G
h h h g

s
h

hg g
f

r r

r r r

r r r

r r Q
ε

ϕ εδϕ
ε

εδ ϕ εδϕ

ϕ εδϕ εδ

χ εδ ν εδ εδ

→

= 4

=

π

 ⋅∇ + 

 + Σ + + 

 ′ ′− + Σ + →  

+ + Σ + +− =

∑ ∫

α α

α α

α α α α α α

Ω Ω Ω

Ω Ω

Ω Ω Ω Ω Ω
     (19) 
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( ) ( ){ },0

0

d , , 0, , 0, 1, , .
d

g g
dr r r r g G

ε
ϕ εδϕ

ε =
 + =   = ⋅ < =  n Ω Ω Ω    (20) 

Carrying out the differentiations with respect to ε  in Equations (19) and (20), 
and setting 0ε =  in the resulting equations yields the following system of equ-
ations for the variations ( ),gδϕ r Ω  in terms of the parameter variations δα : 

( ) ( ) ( ) ( )10 0 0, ; , ; , 1, , ,g gB Q g g Gδϕ δ  = = r Ωα α ϕ α          (21) 

( ), 0, , 0, 1, , ,g
dr r r g Gδϕ =   = ⋅ < =n Ω Ω             (22) 

where 

( ) ( ) ( ) ( ) ( ){ }
0

1 0 0
,

; , ; ,
g gg B rQ

Q g
ϕ

δ δ δ
∂∂

∂ ∂

    − 
  



Ω

α

αα
α ϕ α α α

α α
    (23) 

( ) ( ){ }
( ) ( )

( ) ( ) ( )( ) ( )

1

,
,

;
d , .

g g g
tg

hg
h gG f
sh

h

B r
r

r

ϕ
ϕ

χ

δ

ν

δ

δ δϕ
π

→

= 4

  Σ 

  Σ′Σ →    ′ ′− + 


∂ ∂
∂ ∂

∂

∂


∂


∂∑ ∫



α α
α α

α α

α αα
α α

α α

Ω
Ω

Ω Ω
Ω Ω

 (24) 

By analogy to Equations (6) and (7), Equations (21) and (22) can be written in 
following matrix-vector form:  

( ) ( ) ( ) ( )1, ; ,rδ δ=  B QΩα ϕ α α                     (25) 

( ), , , 0,dr r rδ =  = ⋅ <n0Ω Ωϕ                     (26) 

where 

( )

( )

( )

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

11

1 1

1

1; , ;,

, ; ; ., ; , ;

, ; , ;

g

G

Q

r Q g

Q G

δδϕ

δ δδϕ δ

δϕ δ

     
  
  
  
  
       

r

Qr

r





 




Ω

Ω Ω

Ω

α ϕ α

ϕ α α α ϕ α

α ϕ α

      (27) 

The aim of the 1st-CASAM—to construct an alternative expression for the 
“indirect-effect term” ( );Lδ δα ϕ  which would not depend on δϕ —can be 
achieved by implementing the following sequence of steps, which are all to be car-
ried out at the nominal parameter values 0α  (although this will not be explicitly 
indicated in the sequence in order to keep the notation as simple as possible):   

1) Consider that the square-integrable functions ( )1∈ϕ H  and ( )1δ ∈ϕ H  
are elements of a Hilbert space denoted as ( )1H , in which the inner product 
between two elements ( ) ( )1,r ∈u Ω H  and ( ) ( )1,r ∈v Ω H  is denoted as  

( ) ( ) ( )1
, , ,r ru vΩ Ω  and is defined as follows: 

( ) ( ) ( ) ( ) ( )2
1

1 0 4

, , , 4 d d , ,
drG

g g

g
r r r r u r v r

π=

π∑ ∫ ∫u v Ω Ω Ω Ω Ω .       (28) 

2) Form the inner product of Equation (25) with a yet undefined function 
( ) ( ) ( ) ( ) ( ) ( ) ( )

†1 1 , 1 ,
1, , , , ,g Gr r rψ ψ  ∈  Ω Ω Ωψ H  to obtain the following rela-
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tion: 
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

1 1 1

1 1

1 , 12 0 0

1 0

, , , , , ;

d d , ; , ; .
drG

g

g

r r r

r r r Q g

δ δ

ψ δ
= π4

=  

= 4π∑ ∫ ∫

B QΩ Ω Ω

Ω Ω

ψ α ϕ ψ α α

α ϕ α
      (29) 

3) Using the inner product defined in Equation (28) and the definition of the 
adjoint operator in ( )1H , recast the left-side of Equation (29) into the following 
equivalent form:  

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

( )

1

1

1 1

1

, , ,

, , , , ,

r r

r r P

δ

δ δ

  

 = +  

B

A

Ω Ω

Ω Ω

ψ α ϕ

ϕ α ψ ϕ ψ
            (30) 

where  

( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 ,

1 0

1 ,

1 0

, d d , ,

d d , , ,

b

b

G
gg

gS V

G
gg

gS V

P S r r

S r r

δ δϕ ψ

δϕ ψ

= ⋅ < ∂

= ⋅ > ∂

   ⋅   

 − ⋅  

∑∫ ∫ ∫

∑∫ ∫ ∫

n

n

n

n



Ω

Ω

Ω Ω Ω Ω

Ω Ω Ω Ω

ϕ ψ

   (31) 

denotes the bilinear concomitant evaluated on the PERP sphere’s surface bS  
and where ( )A α  denotes the operator adjoint to ( )B α , having components 

( ) ( ) *
gh hgA B  α α , where the symbol [ ]*  indicates “formal adjoint operator.”  
4) Require the first term on the right-side of Equation (30) to represent the 

functional defined in Equation (18) to obtain the following relation: 

( ) ( ) ( ) ( ) [ ]†1 , ; 1, ,1, ,1dr r rδ = ⋅ − A I n I   Ω Ωα ψ .         (32) 

5) Use the boundary condition given in Equation (22) to eliminate the cor-
responding boundary terms in the bilinear concomitant ( )1,P δ 

 ϕ ψ  in Equa-
tion (31) and eliminate the appearance of the remaining boundary terms in Eq-
uation (31) by imposing the following (adjoint) boundary condition: 

( ) ( )1 , , , 0.dr r r=   = ⋅ >n0Ω Ωψ                    (33) 

In component form, Equations (32) and (33) are as follows:  
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

1 , 1 ,

1 ,

1

, ,

d , ;

, 1, , ;

g gg
t

G gh g h h
s f

h

d

r r

r

r r g G

ψ ψ

ψ ν χ

δ

→

= 4π

− ⋅∇ + Σ

 ′ ′ ′− Σ → + Σ  

= ⋅ − =

∑ ∫
n 

α

α α α

Ω Ω Ω

Ω Ω Ω Ω

Ω

       (34) 

( ) ( )1 , , 0, , 0, 1, , .g
dr r r g Gψ =   = ⋅ > =n Ω Ω             (35) 

It is important to note that the relations presented in Equations (28) through 
(35) hold generally, including at the nominal values ( )0 0 0;u  ϕ α . In order to 
simplify the notation, the superscript “zero” denoting nominal values has been 
omitted in the foregoing derivations and will occasionally be omitted henceforth, 
as well. This simplification should not cause any loss of clarity since it will be-
come clear from the context which quantities are to be evaluated/computed us-
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ing the nominal values for the model parameters. 
6) Use Equations (29) through (33) in Equation (18) to obtain the following 

expression for the “indirect-effect term”: 

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

1 1

1

1 , 12 0 0

1 0

1

; , , ;

d d , ; , ;

.

drG
g

g

TP

j
j j

L r

r r r Q g

L

δ δ

ψ δ

δ

δα
α

= 4

=

π

=

= 4

∂

π

∂

∑ ∫ ∫

∑

Q



Ω

Ω Ω

α ϕ ψ α α

α ϕ α

α

      (36) 

7) Replacing in Equation (36) the expression of ( ) ( )1 0 0; , ;Q g δα ϕ α  from 
Equation (23) and identifying the expressions that multiply the arbitrary para-
meter variations jα  yields the expression of each partial sensitivity  

( )( )1, ; jL α∂ ∂α ϕ ψ , for all jα , 1, ,j TP=  , as follows:  
( )( ) ( ) ( ) ( )
1

1 ,2
4

1 0

, ;
4 d d , 1, 01 ;, ,

dr gG
g

gj j

L Q
r r r J

q
Q

q
jψ

π
=

∂
π

∂

∂
= =

∂
=∑ ∫ ∫ Ω Ω

α ϕ ψ α
(37) 

( )( )
( ) ( ) ( )

( ) ( ) ( )( ) ( )

1

2 (1),
4

1 0

2

1 0 4

, ;
4 d d , ,

;
4 d

6

d , ,

fo 1 ;r , ,

d

d

r gG
tg g

g j

hg
r h gG f

sh

h j

j

j

L
r r r r

r r r

N N

N N

j I

ψ ϕ

χ ν
ϕ

π

π

=

→

=

∂ Σ
=

  Σ′Σ →    ′ ′− + 

∂
π

∂ ∂

∂∂

 

=

π
∂ ∂


=



∑ ∫ ∫

∑ ∫ ∫



α ϕ ψ α

α αα

Ω Ω Ω

Ω Ω
Ω Ω (38) 

( )( ) ( ) ( )

( ) ( )

( ) ( )

1

1 ,2

1 0 4

2

1 0 4

, ;
4 d d ,

;
4 d d , ,

for 1, , ;1 21600

d

d

j

rG
g

g

r

j

h gG
s h

h

s

s

G G I ISCT

L
r r r

r r r

j JSX

ψ

ϕ

=

→

=

π

π

∂
=

∂

′∂Σ

π

π

× × ×

→
′ ′×

∂

== +=

∑ ∫ ∫

∑ ∫ ∫



α ϕ ψ

α

Ω Ω

Ω Ω
Ω Ω          (39) 

( )( ) ( ) ( ) ( ) ( )
1

1 ,2

1 0 4

, ;
4 d d , , ,

for 1, , 180;

dr gG
g tg

gj j

L
r r

t t

j JTX

ψ ϕ
= π

∂ ∂Σ
= −

∂ ∂

=

π

=

∑ ∫ ∫ r r



Ω Ω Ω
α ϕ ψ α

   (40) 

( )( ) ( ) ( )

( )
( )

1

1 ,2
4

1 0

2
4

1 0

, ;
4 d

1

d ,

4 d d , , , ,for 60;

d

d

rG
g g

g

hr

j

j

G f h

h

f

L
r

JFX

r r

r r j
f

r

ψ χ

ν
ϕ

=

=

π

π

π

π = =

∂
=

∂

 ∂ Σ ′ ′×
∂

∑ ∫ ∫

∑ ∫ ∫ 

α ϕ ψ
Ω Ω

Ω Ω

  (41) 

( )( ) ( ) ( )

( )
( )

1

1 ,2
4

1 0

2
4

1 0

, ;
4 d

1

d ,

4 d d , , f , ,or 60;

d

d
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g g

g
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j

j

G f h

h
J

L
r r r

r r r j NU

ψ χ
ν

ν
ϕ

ν

π

π

=

=

π

π = =

∂
=

∂

 ∂ Σ ′ ′×
∂

∑ ∫ ∫

∑ ∫ ∫ 

α ϕ ψ
Ω Ω

Ω Ω

  (42) 
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( )( ) ( ) ( ) ( )

( ) ( )

1

1 ,2
4

1 0

2
4

1 0

, ;
4 d d ,

4 d d , , fo 1, ,r 60.

d

d

r gG
g

g

rG h h
f

h

j j

L
r r r

J

p p

r r r j

χ
ψ

ϕ χν

π

π

=

=

π

π = =

∂ ∂
=

∂ ∂

′ ′× Σ

∑ ∫ ∫

∑ ∫ ∫ 

α ϕ ψ α
Ω Ω

Ω Ω

     (43) 

The expressions of the sensitivities provided in Equations (37) through (43) 
are to be evaluated at the nominal parameter values 0α  (which has not been 
indicted explicitly, in order to simplify the respective notations). All of these 
sensitivities have been computed numerically in [5]-[10]. Evidently, the compu-
tations of these sensitivities are inexpensive, involving only integrations using 
quadrature formulas, once the (1st-level adjoint) function ( ) ( )1 ,r Ωψ  is available. 

8) Equations (32) and (33) are called the First-Level Adjoint Sensitivity System 
(1st-LASS); the solution ( ) ( )1 ,r Ωψ  of the 1st-LASS is called the 1st-level adjoint 
function. The system of equations is called “first-level” as opposed to “first-order” 
because it does not contain any derivatives (of first- or higher-order) but its so-
lution is used for computing the first-order sensitivities. This terminology will be 
also used in the sequel, when deriving the expressions for the 2nd- and 3rd-order 
sensitivities. The 1st-LASS is independent of parameter variations, so it needs to 
be solved just once to obtain ( ) ( )1 ,r Ωψ . Thus, using the 1st-CASAM, the com-
putation of the TP partial sensitivities ( )( )1, ; jL α∂ ∂α ϕ ψ , 1, ,j TP=  , using 
Equations (37) through (43) requires just a single large-scale computation in 
order to determine ( ) ( )1 ,r Ωψ , followed by TP inexpensive computations to 
perform each integration (quadrature) involving the 1st-level adjoint function 

( ) ( )1 ,r Ωψ .  

3.4. Comparison of Computational Requirements  

The computer used for the PERP computations is a DELL desktop computer 
(AMD FX-8350) with an 8-core processor. A forward computation of the flux 
distribution ( ),r Ωϕ  within the PERP benchmark and of the leakage response 
takes ca. 2 minutes CPU-time when the forward transport equation is solved us-
ing an angular expansion of order ISN = 256 (S256). 

The 1st-level adjoint function ( ) ( )1 ,r Ωψ  used to compute the first-order sen-
sitivities given by Equations (37) through (43) has been computed in [5] by 
solving the 1st-LASS using an angular expansion of order ISN = 256 (S256). The 
CPU-time for a typical adjoint computation of ( ) ( )1 ,r Ωψ  using S256 is ca. 85 
seconds, which is comparable to the CPU-time needed for solving the forward 
transport equation to compute the flux distribution ( ),r Ωϕ . Furthermore, the 
typical CPU-time needed to perform the integration (quadrature) over the for-
ward and adjoint functions, to compute the respective sensitivity (using S256) is 
ca. 0.0012 seconds. The CPU requirements needed for computing the 7477 
non-zero sensitivities using forward computations in conjunction with the 2- 
point finite difference scheme presented in Section 3.1 and using the FSAM pre-
sented in Section 3.2, respectively, are compared in Table 1 with the CPU-re- 
quirements needed to compute the same sensitivities using the formulas obtained 
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Table 1. CPU-time needed for computing ( ) , 1, 7477,jL TPjα∂ =∂ = α . 

FD-approximation FSAM 1st-CASAM 

Nr. PARTISN comp. = 14954 (=7477 × 2) 
ISN = 256 (S256) 

Nr. PARTISN comp. = 7477 
ISN = 256 (S256) 

Nr. PARTISN comp. = 1 
ISN = 256 (S256) 

CPU time ≈ 1388 Hours CPU time ≈ 694 Hours CPU time: 95 Seconds 

 
in Equations (37) through (43) in Section 3.3, which were obtained by having 
applied the 1st-CASAM. The “95 seconds CPU-time” needed by the 1st-CASAM 
comprises 85 seconds for the one adjoint computation plus 10 seconds for com-
puting all of the 7477 1st-order sensitivities. 

The results presented in Table 1 highlights the evident superiority of the 
1st-CASAM over the finite-difference method and/or the Forward Sensitivity 
Analysis Methodology (FSAM) for computing the sensitivities of one response 
(i.e., the PERP leakage) to the 7477 PERP parameters that have non-zero no-
minal values. 

4. Computation of  
( ) =j jL t t j JTX j jα∂ ∂ ∂ =2

1 2 , 1 1, , ; 2 1, , 1   

The finite-difference formulas that can be used to compute approximately the 
second-order response sensitivities with respect to the model parameters will be 
discussed in Subsection 4.1. The Forward Sensitivity Analysis Methodology will 
be presented in Subsection 4.2. The application of the 2nd-CASAM will be pre-
sented in Subsection 4.3, while Subsection 4.4 will compare the CPU-times 
which are required by these three deterministic methods. 

4.1. Re-computations with Finite-Difference Approximation 

The 2nd-order unmixed sensitivities, ( ) ( )22
jL α∂ ∂α , of the leakage response, 

( )L α , can be approximately computed by re-computations using the well-known 
finite-difference formula presented below: 

( )
( )

( ) ( )
2

2
1 12 2

1 , 1, ,j j j j
jj

L
L L L h j TP

hα
+ −

∂
≈ − + + Ο =

∂


α
,         (44) 

where ( )1j j jL L hα+ + , ( )j jL L α , ( )1j j jL L hα− −  and jh  denotes a 
“judiciously-chosen” variation in the parameter jα  around its nominal value 

0
jα . The 2nd-order mixed sensitivities, ( )2

1 2j jL α α∂ ∂ ∂α , can be calculated by 
using the following finite-difference formula: 

( ) ( ) ( )
2

2 2
1 1, 2 1 1 1, 2 1 1 1, 2 1 1 1, 2 1 1 2

1 2 1 2

1 , ,
4

1 1, , ; 2 1, , 1,

j j j j j j j j j j
j j j j

L
L L L L h h

h h

j TP j j

α α + + − + + − − −

∂
≈ − − + + Ο

∂ ∂

= = 

α
 (45) 

where 1jh  and 2jh  denote the variations in the parameters 1jα  and 2jα , re-
spectively. The values of the quantities ( )1 1, 2 1 1 1 2 2,j j j j j jL L h hα α+ + + + ,  

( )1 1, 2 1 1 1 2 2,j j j j j jL L h hα α− + − + , ( )1 1, 2 1 1 1 2 2,j j j j j jL L h hα α+ − + − , and  
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( )1 1, 2 1 1 1 2 2,j j j j j jL L h hα α− − − −  are obtained by re-solving Equations (1) and 
(2) repeatedly, using the changed parameter values ( )1 1j jhα ±  and ( )2 2j jhα ± . 
As also discussed in Subsection 3.1, the values of 1jh  and 2jh , respectively, 
must be chosen “judiciously” by “trial and error” for each of the parameters 1jα  
and 2jα ; otherwise, the result produced by Equation (45) will be far off from 
the exact value of the derivative ( )2

1 2j jL α α∂ ∂ ∂α . These simple finite differ-
ence formulas introduce their intrinsic “methodological errors” of order ( )2

1jhΟ  
and/or ( )2 2

1 2,j jh hΟ , as indicated in Equations (44) and (45), which are in addi-
tion to, and independent of, the errors that might be incurred in the computa-
tion of ( )L α . In other words, even if the computation of ( )L α  were perfect 
(error-free), the finite-difference formulas nevertheless introduce their own, in-
trinsic, numerical errors into the computation of ( )2

1 2j jL α α∂ ∂ ∂α .  

4.2. Forward Sensitivity Analysis Methodology 

The second-order partial sensitivity of ( )L α  to two generic model parameters, 

1jα  and 2jα  is obtained by differentiating the expression provided in Equa-
tion (11) with respect to (the second parameter) 2jα , to obtain the following 
expression: 

( ) ( )
0 0

2 2

12 1 1 20

,
d d

1,

,

1 2, ; .1, , 1
b

gG

gj j j jS

j j

r

j

L
S

TP

α α
ϕ
α α= ⋅ >

      = ⋅   
    

∂ ∂
∂ ∂ ∂ ∂ 

= =

∑∫ ∫
n

n

 

α α

α

Ω

Ω
Ω Ω

         (46) 

The second-order derivative ( ) 1 2
2 ,g

j jr α αϕ∂ ∂ ∂Ω  is the solution of the 
second-order G-derivative of Equations (1) and (2) with respect to 1jα  and 

2jα , namely:  

( ) ( ) ( )
0 02 1 2

22

1

, , ,,
,

for 1, , ; 1 1, , ; 2 1, , 1;

g gg
g

j j j j

r rr
B

g G j

S

j TP j

ϕϕ
α α α α

        =    
        

= = =

∂∂
∂ ∂ ∂ ∂

  

α α

α
Ω ΩΩ

       (47) 

( )
02

2

1

,
0, ; 0, 1, , ; 1 1, , ; 2 1, , 1,

g

d
j j

r
r r g G j TP j j

ϕ
α α

   =   = ⋅ < = = =
∂

∂

 ∂



n   

α

Ω
Ω (48) 

where 

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

2 1 2 1

2 1 2 1 1 2

2

2 2

1 2 1 14

, , , , , ,

; ; ,
,

; ;, ; ,
d

d

g g g g

j j j j

g g g g
t tg

j j j j j j

hg
h h gG f

s

h j j j

r r r r

Q r r r r
r

r r

S

r r

Sϕ ϕ

ϕ
ϕ

χ νϕ

α α α α

α α α α α α

α α α

ϕ

→

= π

′

     ∂ ∂∂  =  
∂ ∂ ∂ ∂  

∂

  

Σ Σ
− −

  Σ′ ′Σ →   

∂ ∂ ∂
=

∂ ∂ ∂ ∂

′+ + 
 
 

′+

∂ ∂

∂∂ ∂
∂ ∂ ∂∑ ∫

α α

α αα

Ω Ω Ω Ω

Ω
Ω

Ω Ω Ω
Ω

Ω ( ) ( ) ( )( ) ( )

1 2 1 2

2

4

2

1

; ;; ,
, .

hg
h gG f
sg

h j j j j

r rr
r

α

χ ν

α α α

→

= π

  Σ′Σ →    ′ + 
∂∂

 ∂ ∂ ∂


∂


∑ ∫
α αα Ω Ω

Ω

(49) 
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It is important to note that, as indicated in Equation (49), the computation of 
the 2nd-order flux-derivatives ( ) 2 1

2 ,g
j jr α αϕ∂ ∂ ∂Ω  requires knowledge of the 

1st-order flux derivatives ( ) 1,g
jrϕ α∂ ∂Ω , which appear in the definition of the 

right-side (“source”) for Equation (47) and which must therefore by computed 
prior to commencing the computations for obtaining ( ) 2 1

2 ,g
j jr α αϕ∂ ∂ ∂Ω . 

Thus, the computation of the ( )1 2TP TP +  distinct 2nd-order sensitivities 
( ) 2

2
1j jL α α∂ ∂ ∂α  requires TP large-scale computations for solving Equations 

(14) and (15) to determine the fluxes ( ) 1,g
jrϕ α∂ ∂Ω  which are needed to 

compute the right-side of Equation (47), followed by at least ( )1 2TP TP +  
large-scale computations to solve Equations (47) and (48) to determine the 
quantities ( ) 2 1

2 ,g
j jr α αϕ∂ ∂ ∂Ω . Subsequently, ( )1 2TP TP +  small-scale com-

putations are needed for performing the integrations represented by Equation 
(46). To summarize: obtaining the numerical values of the 2nd-order sensitivities 

( )2
i jL α α∂ ∂ ∂α  using the FSAM requires a total of ( )1 2TP TP TP+ +  

large-scale computations followed by ( )1 2TP TP +  small-scale computations.  

4.3. Second-Order Adjoint Sensitivity Analysis Methodology  
(2nd-CASAM) 

The numerical results for the complete 2nd-order sensitivity analysis of the PERP 
benchmark’s leakage response with respect to all ( )1 2TP TP +  nuclear para-
meters , 1, ,j j TPα =  , have been reported in [5]-[10]. Since this work ulti-
mately aims at applying the 4th-Order Comprehensive Sensitivity Analysis Me-
thodology (4th-CASAM) to obtain the closed form expressions of the 4th-order 
sensitivities of the PERP leakage response with respect to the group-averaged 
total microscopic cross sections, the proliferation of indices, superscripts and 
subscripts is unavoidable. Nevertheless, “subscripted-subscripts” can be avoided 
by using subscripts of the form ; 2 1, ,1 1, , 1j JTX j j==  , where the index j1 
will replace the index j (which was used in the Section 3) to index the 1st-order 
sensitivities, and where the index j2 will be used (in addition to j1) to index the 
2nd-order sensitivities. Furthermore, anticipating the notation to be used in sub-
sequent Subsections, the index j3 will be used (in addition to j1 and j2) to index 
the 3rd-order sensitivities; the index j4 will be used (in addition to j1, j2 and j3) to 
index the 4th-order sensitivities. Recall that even when only the components 

[ ]†
1, ,t JTXt t σ , 1, , 6i I= = , 1, , 30g G= = , 180JTX I G= × = , of the 

group-averaged total microscopic cross sections are considered, the numbers of 
sensitivities of the PERP leakage response with respect to these parameters 
are as follows: 1) 180 first-order sensitivities; 2) 32,400 second-order sensi-
tivities, of which 16,290 are distinct; and 3) 5,832,000 third-order sensitivities, of 
which 988,260 are distinct; 4) 1,049,760,000 fourth-order sensitivities, of which 
45,212,895 are distinct.  

In contradistinction to the FSAM, the 2nd-CASAM does not use Equation (11) 
as the starting point for computing 2nd-order response sensitivities but instead 
uses the expressions of the sensitivities in terms of the 1st-level adjoint function 
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( )1ψ , as produced by the 1st-CASAM, namely Equations (37) through (43), as 
individual starting points for deriving the expressions of the corresponding 2nd- 
order sensitivities. This procedure has been illustrated in [5]-[10] which has de-
rived and computed all of the 2nd-order sensitivities of the PERP leakage re-
sponse to the nuclear data. In turn, the 3rd-CASAM uses the expressions of the 
2nd-order response sensitivities derived within the 2nd-CASAM. The 4th-CASAM 
will use the expressions of the 3rd-order response sensitivities derived within the 
3rd-CASAM, and so on.  

In particular, the 2nd-order sensitivities involving only the total microscopic 
cross sections, are obtained by G-differentiating the expression provided in Equ-
ation (40) for the 1st-order sensitivities of the leakage response with respect to 
the group-averaged total microscopic cross sections, which yields the following 
result: 

( )( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0

0

0

1

1

1 , 1 ,2

1 10 4

1 ,2

1 10 4

1 ,2

0 4

, ;

d 4 d d , , ,
d

4 d d , , ,

4 d d , ,

d

d

d

j

r gG
g g tg

g j

r gG
g tg g

g j

r
g g

j

L

t

r r
t

r r
t

r r
t

δ

ψ εδψ ϕ
ε

ψ ϕ εδϕ

ψ ϕ

π

π

=

= π

 ∂ 
 

∂  

  ∂Σ   = − +    ∂   
π

π

π

 ∂Σ  − +   ∂  

∂
−

∂

∑ ∫ ∫

∑ ∫ ∫

∫ ∫

r r r

r r r

r r

α

α

α

α ϕ ψ

α

α

Ω Ω Ω Ω

Ω Ω Ω Ω

Ω Ω Ω ( ) ( )
01 1

0

,

for 1 1, , 180.

G
g g
t t

g

j JTX
ε

εδ
=

=

    Σ + Σ   
    

= =

∑



α

α α

(50) 

Carrying out the differentiations with respect to ε  in Equation (50) and 
subsequently setting 0ε =  in the resulting equations yields the following rela-
tion: 

( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ){ }

0

0

0

0

1

1

1 ,2

1 10

1 ,2

1 10

1 ,2

1 10

, ;

4 d d , ,

4 d d , ,

4 d d , , ,

1 1, , 180.

d

d

d

j

r gG
g tg

g j

r gG
g tg

g j

rG
gg g

t
g j

L

t

r r
t

r r
t

r r
t

j JTX

δ

δψ ϕ

δϕ ψ

δ ψ ϕ

= 4

= 4

=

π

4

π

π

 ∂ 
 

∂  

 ∂Σ = −  
∂  

 ∂Σ −  
∂  

∂
− Σ

∂

=

π

π

=

π

∑ ∫ ∫

∑ ∫ ∫

∑ ∫ ∫

r r

r r

r r



α

α

α

α

α ϕ ψ

α

α

α

Ω Ω Ω

Ω Ω Ω

Ω Ω Ω

        (51) 

Taking into account the facts that: 1) the parameter 1jt  represents the group- 
averaged total microscopic cross sections ,

g
t iσ , with ( )1 1j i G g= − + ,  

1, , 6i I= = , 1, , 30g G= = ; and 2) ( )
6

,
1

I
g g
t i t i

i
N σ

=

=

Σ = ∑t , it follows that the 
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last term on the left-side of Equation (51) is identically zero.  
In Equation (50), the variations ( ),g rδϕ Ω  are the solutions of Equations 

(21) and (22) while the variations ( ) ( )1 , ,gδψ r Ω  are the solutions of the  
G-differentiated 1st-LASS, namely: 

( ) ( ) ( ){ } ( ) ( )( ){ }0 0

1 , 2 1, ; , ; , 1, , ,ggA r Q g g Gδψ δ= = 

α α
α α ψ αΩ      (52) 

( ) ( ){ } 0

1 , , 0 , , 0, 1, , ,g
dr r r g Gδψ =    = ⋅ > =n 

α
Ω Ω           (53) 

where 

( ) ( )( )
( ) ( ) ( ){ }

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 ,

2 1

1 ,

1 ,

1 4

,
; , ;

;
,

;
d , ,

for 1, , .

gg

g
g t

g h
g hG fh s

h

A r
Q g

r
r

r

g G

ψ
ψ δ δ

ψ δ

ν χ
ψ δ δ

π

→

=

 ∂  −
∂

∂Σ
= −

∂
  ∂ Σ′∂Σ →    ′ ′+ + 

∂ ∂ 
 

=

∑ ∫





α
α α α

α
α

α
α

α αα
α α

α α

Ω

Ω

Ω Ω
Ω Ω

(54) 

In matrix-vector form, which will be used in the sequel, Equations (52) and 
(53) are expressed as follows: 

( ) ( ) ( ){ } ( ) ( )( ){ }0 0

1 2 1, , ; ,rδ δ  = A Q
α α

α ψ α ψ αΩ             (55) 

( ) ( )1 , , , 0.dr r rδ =   = ⋅ >n0ψ Ω Ω                  (56) 

where 

( ) ( )

( ) ( )

( ) ( )

( ) ( )( )
( ) ( )( )

( ) ( )( )

2 11 ,1

1 2 1

1 , 2 1

1; , ;,
, , , ; .

, ; , ;G

Qr
r

r Q G

δδψ
δ δ

δψ δ

                 

Q   

α ψ α

ψ α ψ α

α ψ α

Ω
Ω

Ω

 (57) 

The 2nd-order sensitivities expressed by Equation (51) could be computed, in 
principle, if the functions ( ),g rδϕ Ω  and ( ) ( )1 , ,gδψ r Ω  were available. How-
ever, determining the functions ( ),g rδϕ Ω  would require solving Equations 
(21) and (22), while determining the functions ( ) ( )1 , ,gδψ r Ω  would require 
solving Equations (52) and (53), which would altogether amount to twice as 
many large-scale computations as there are parameter variations. To avoid the 
need for performing so many large-scale computations, the right-side of Equa-
tion (50) will be recast in terms of the solutions of a 2nd-Level Adjoint Sensitivity 
System (2nd-LASS) so as to eliminate the appearance of the functions ( ),g rδϕ Ω  
and ( ) ( )1 , ,gδψ r Ω . The requisite 2nd-LASS will be constructed by following the 
general principles introduced by Cacuci [1], which comprise the following se-
quence of steps, all of which are to be carried out at the nominal parameter val-
ues 0α :  

1) Consider a Hilbert space, denoted as ( )2H , comprising block-vector elements 
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( ) ( ) ( )
2

2,r ∈u Ω H  having the structure: ( ) ( ) ( ) ( ) ( ) ( )
†2 2 2

1 2, , , ,r r r 
 u u uΩ Ω Ω , 

where ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
†2 2 ,1 2 , 2 ,, , , , , , , , , 1, 2g G

i i i ir u r u r u r i  = u   Ω Ω Ω Ω ; 
2) Define the inner product in ( )2H , denoted as ( ) ( ) ( ) ( )

( )
2 2

2
, , ,r ru vΩ Ω , of 

two arbitrary elements in ( )2H , denoted as ( ) ( ) ( )
2

2,r ∈u Ω H  and  
( ) ( ) ( )
2

2,r ∈v Ω H , with ( ) ( ) ( ) ( ) ( ) ( )
†2 2 2

1 2, , , ,r r r 
 v v vΩ Ω Ω , and  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
†2 2 ,1 2 , 2 ,, , , , , , , , , 1, 2g G

i i i ir r r r i  = v v v v  Ω Ω Ω Ω , as follows:  

( ) ( ) ( ) ( )
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( ) ( ) ( ) ( )
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( ) ( ) ( ) ( )

2
2 2 2 2
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2
2 , 2 ,2

1 1 0 4
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4 d d , , .
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i i
i

rG
g g

i i
i g

r r r r

r r u r v r

=

= = π

π=

∑

∑∑ ∫ ∫

u v u vΩ Ω Ω Ω

Ω Ω Ω
       (58) 

3) For a 2 × 2 block-matrix linear operator ( )
( ) ( )

( ) ( )

2 2
2 11 12

2 2
21 22

L L

L L

 
 
 
 

L   in the Hilbert 

space ( )2H , use the inner product defined in Equation (58) to define the formal 

adjoint operator, denoted as ( )
( ) ( )

( ) ( )

2 2
2 11 12

2 2
21 22

A A

A A

 
 
 
 

A  , of ( )2L , through the following 

relationship:  

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )2 2 2 2 2 2 2 2 2

2 2
, , ,P  = +  v L u u A v u v ,         (59) 

where ( ) ( ) ( )2 2 2,P  
 u v  denotes the corresponding bilinear concomitant eva-

luated on the domain’s boundary. 
4) Apply the definition provided in Equation (58) to form the inner product 

of Equations (25) and (55) with a yet undefined function  
( ) ( ) ( ) ( ) ( ) ( ) ( )

†2 2 2
1 2 21; , 1; , , 1; ,j r j r j r  ∈ ψ ψ ψΩ Ω Ω H , to obtain the following 

relation, evaluated at 0α : 
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             

    =      
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Q
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α

α ϕ
ψ

α ψ

α α
ψ

α ψ α

Ω
Ω

Ω

Ω

            (60) 

5) Use the relation shown in Equation (59) to recast the left side of Equation 
(60) into the following equivalent form: 

( ) ( )
( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0

0

2
1

2

2
11

2
2 2

2 1 2 2
1 2

,
1; , ,

,

1; ,
, ,

1; ,

, , , ; 1; , , 1; , ,

r
j r

r

j r

j r

P r r j r j r

δ

δ

δ δ

δ δ

             

      =        

 +  

B

A

A

B

α

α

α ϕ
ψ

α ψ

α ψ
ϕ ψ

α ψ

ϕ ψ ψ ψ

Ω
Ω

Ω

Ω

Ω

Ω Ω Ω Ω

      (61) 
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where ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 2 2
1 2, , , ; 1; , , 1; ,P r r j r j rδ δ 

 ϕ ψ ψ ψΩ Ω Ω Ω  denotes the cor- 
responding bilinear concomitant evaluated on the PERP sphere’s outer boun-
dary bS , at dr r= .  

6) Require the first term on the right-side of Equation (61) to represent the 
same functional as the right-side of Equation (51). This requirement will be sa-
tisfied by requiring that the following relations be satisfied by the components of 
the function ( ) ( ) ( ) ( ) ( ) ( ) ( )

†2 2 2
1 2 21; , 1; , , 1; ,j r j r j r  ∈ ψ ψ ψΩ Ω Ω H  for  

1 1,...,j JTX= : 

( ) ( ) ( ){ } ( ) ( ) ( ){ }0 0

2 1
1 1; , 1; , , 1 1, , ;j r j j JTX= − =A S r 

α α
α ψ α ψΩ Ω    (62) 

( ) ( ) ( ){ } ( ) ( ){ } 00

2
2 1; , 1; , ; 1 1, , ,j r j j JTX= − =B S r 

αα
α ψ α ϕΩ Ω     (63) 

where, for each 1 1, ,j JTX=  , ( )1;jS α  is a G G×  diagonal matrix having 
non-zero elements of the form ( ) 1 , 1, ,g

t jt g G∂Σ ∂ = α  on its diagonal, i.e.,  

( )
( )

( )

( )
1

1

1
1

0
1; , 1, , .

0

t j g
t

jG
t j

t
j Diag g G

t
t

 ∂Σ ∂
 ∂Σ 

=   ∂   ∂Σ ∂ 

S


     



α
α

α
α

(64) 

7) Use in Equation (61) the boundary conditions shown in Equations (22) and 
(53). Furthermore, set to zero the remaining terms in the bilinear concomitant 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 2 2
1 2, , , ; 1; , , 1; ,P r r j r j rδ δ 

 Ωϕ ψ ψ ψΩ Ω Ω  in Equation (61) by 
requiring that the components of the function  

( ) ( ) ( ) ( ) ( ) ( ) ( )
†2 2 2

1 2 21; , 1; , , 1; ,j r j r j r  ∈ ψ ψ ψΩ Ω Ω H  satisfy the following 
boundary conditions: 

( ) ( )2
1 1; , , , 0; 1 1, , ;dj r r r j JTX= = ⋅ > =n 0ψ Ω Ω           (65) 

( ) ( )2
2 1; , , , 0; 1 1, , .dj r r j Xr JT= = ⋅ < =n 0ψ Ω Ω           (66) 

8) The above boundary conditions complete the well-posed definition of the 
2nd-level adjoint function ( ) ( ) ( ) ( ) ( ) ( ) ( )

†2 2 2
1 2 21; , 1; , , 1; ,j r j r j r  ∈ ψ ψ ψΩ Ω Ω H  

as the solution of Equations (62) through (66), which are called “the Second- 
Level Adjoint Sensitivity System (2nd-LASS)”. The reason for calling this system 
“Second-Level” (as opposed to “Second-Order”) stems from the fact that this 
system does not involve any “second-order” differential or derivatives of the de-
pendent variables (i.e., state functions) even though the solution of the 2nd-LASS 
is used for computing, efficiently and exactly, the second-order sensitivities of 
the response with respect to the model parameters.  

9) Use Equations (60) through (66) in Equation (51) to obtain the following al-

ternative expression for the differential ( )( ){ } 0

1
1, ; jL tδ ∂ ∂

α
α ϕ ψ  in terms of the  

2nd-level adjoint function ( ) ( ) ( ) ( ) ( ) ( ) ( )
†2 2 2

1 2 21; , 1; , , 1; ,j r j r j r  ∈ ψ ψ ψΩ Ω Ω H : 
( ) ( )( )

0

1 2

1

, ; ;

j

L

t
δ

 ∂ 
 

∂  α

α ϕ ψ ψ
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( ) ( )
( ) ( )

( ) ( )( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )
( )

0

0

0

0

1
2

2 1

2

2 , 12
1

1 0 4

2 , 2 12
2

1 0 4

2

2
2 1 2 1

;
1; , ,

, ;

4 d d 1; , ; , ;

4 d d 1; , ; , ;

, 1 1, ,

d

d

rG
g

g

rG
g

g

TP

j
j j j

j r

r r j r Q g

r r j r Q g

L
j J

t

δ

δ

ψ δ

ψ δ

δα
α

π=

=

=

π

    =      

  =  
  

  +  
  

 ∂ = = 
∂ ∂ 

π



π∑ ∫ ∫

∑ ∫ ∫

∑

Q

Q



α

α

α

α

α α
ψ

α ψ α

α ϕ α

α ψ α

α

Ω

Ω Ω

Ω Ω

.TX

      (67) 

10) It is important to note that the differential expression provided in Equa-
tion (67) comprises all of the 2nd-order partial sensitivities that involve the group- 
averaged microscopic total cross sections. The 2nd-order partial sensitivities 

( )( ){ } 0

12
1 2, ; j jL t α∂ ∂ ∂

α
α ϕ ψ , 1 1, ,j JTX=  , 2 1, ,j TP=  , which involve the 

180 total cross sections ( 1jt ) and the other parameters ( 2jα ), are obtained by re-
placing in Equation (67) the expressions of ( ) ( )1 ; , ;Q g δα ϕ α  and  

( ) ( )( )2 1; , ;Q g δα ψ α  by their definitions provided in Equations (23) and (54), 
respectively, and subsequently identifying the expressions that multiply the cor-
responding parameter variations.  

11) In particular, identifying in Equation (67) the quantities that multiply only 
the variations in the total microscopic cross sections provides the following ex-
pression for the 2nd-order response sensitivities that involve only the group-av- 
eraged total microscopic cross sections:  

( ) ( )( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0

0

1 22

2 1

2 ,2
1

1 0 4

2 , 1 ,
2

2

, ; ;

4 d d 1; , ,

1; , , , 1 1, , ; 2 1, , 1.

d

j j

rG
g g

g

g
g g t

j

L

t t

r r j r r

j r r j JTX j j
t

ψ ϕ

ψ ψ

= π

 ∂ 
 

∂ ∂  

 = −  
∂Σ + = = ∂

π



∑ ∫ ∫

 

α

α

α ϕ ψ ψ

α

Ω Ω Ω

Ω Ω

 (68) 

4.4. Comparison of Computational Requirements 

The numerical results for the 2nd-order sensitivities of the PERP benchmark’s 
leakage response to all 7477 nuclear data parameters that characterize the com-
putational model of the PERP benchmark have been presented in [5]-[10]. The 
2nd-order sensitivities were all computed using the PARTISN code with a S256 
angular quadrature (ISN = 256), using a DELL desktop computer (AMD FX-8350) 
with an 8-core processor. The CPU-time for a typical adjoint computation was 
ca. 160 seconds; 0.046 seconds CPU-time was needed for computing a single 
2nd-order sensitivity, including reading the adjoint functions and the integration 
over the adjoint functions, for ISN = 256. Table 2 presents the comparison of the 
CPU-times required by the finite-difference, FSAM, and 2nd-CASAM, respectively, 
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Table 2. CPU-time needed for computing  
( )2

1 2 , 1 1, 180; 2 1, , 1,j jt t JTX jL j j= =∂ =∂ ∂  α . 

FD-approximation FSAM 2nd-CASAM 

Nr. PARTISN comp. = 64,800 
ISN = 256 

Nr. PARTISN comp. = 16,470 
ISN = 256 

Nr. PARTISN comp. = 361 
ISN = 256 

CPU time ≈ 3006 Hours CPU time ≈ 764 Hours CPU time ≈ 19 Hours 

 
for computing the 2nd-order sensitivities of the leakage response only with re-
spect to the 180 total group-averaged microscopic cross sections. 

The number of 16,470 computations required by the FSAM comprises 180 
large-scale computations for obtaining the first-order derivatives of the flux with 
respect to the total microscopic cross sections plus 180(180 + 1)/2 large-scale 
computations for computing the mixed second-order derivatives of the flux with 
respect to the total microscopic cross sections. The total CPU time needed for 
computing all of the 2nd-order sensitivities using the 2nd-CASAM was ca. 929 
hours, comprising 735 hours used for the 14843 PARTISN computations (S256 
angular quadrature; ISN = 256) and 194 hours used for performing the integra-
tions needed to compute the respective unmixed and mixed second-order sensi-
tivities. It is evident from the comparison of the CPU-times presented in Table 2 
that the 2nd-CASAM is the only practical methodology for computing 2nd-order 
sensitivities for large-scale systems involving many parameters (as illustrated by 
using the PERP benchmark as a paradigm).  

5. Computation of Third-Order Sensitivities  
( ) = =j j jL t t t j JTX j j j jα∂ ∂ ∂ ∂ =3

1 2 3 , 1 1, , ; 2 1, , 1; 3 1, , 2    

Subsection 5.1 presents the finite-difference formulas that can be used to com-
pute approximately the third-order response sensitivities with respect to the 
model parameters. The Forward Sensitivity Analysis Methodology will be dis-
cussed in Subsection 5.2. The 3rd-CASAM will be discussed in Subsection 5.3, 
while Subsection 5.4 will present a comparative discussion of the computational 
resources and times (CPU) which are required by these three deterministic me-
thods. 

5.1. Re-Computations with Finite-Difference Approximation 

The 3rd-order unmixed sensitivities, ( )3 3
jL α∂ ∂α , of the leakage response, ( )L α , 

can be approximately computed by re-computations using the well-known fi-
nite-difference formula presented below: 

( ) ( ) ( )
3

2
2 1 1 23 3

1 2 2 , 1, ,
2 j j j j j

j j

L
L L L L h j TP

hα + + − −

∂
≈ − + − + Ο =

∂


α
,    (69) 

where ( )2 2j j jL L hα+ + , ( )1j j jL L hα+ + , ( )1j j jL L hα− − ,  
( )2 2j j jL L hα− −  and jh  denotes a “judiciously-chosen” variation in the 

parameter jα  around its nominal value 0
jα . The 3rd-order mixed sensitivities, 
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( )3
1 2 3j j jL α α α∂ ∂ ∂ ∂α , can be calculated by using the following finite-difference 

formula: 

( ) (

) ( )

3

1 1, 2 1, 3 1 1 1, 2 1, 3 1 1 1, 2 1, 3 1
1 2 3 1 2 3

1 1, 2 1, 3 1 1 1, 2 1, 3 1 1 1, 2 1, 3 1

2 2 2
1 1, 2 1, 3 1 1 1, 2 1, 3 1 1 2 3

1
8

, , ,

j j j j j j j j j
j j j j j j

j j j j j j j j j

j j j j j j j j j

L
L L L

h h h

L L L

L L h h h

α α α + + + + + − + − +

+ − − − + + − + −

− − + − − −

∂
≈ − −

∂ ∂ ∂

+ − +

+ − + Ο

α

   (70) 

where ( )1 1, 2 1, 3 1 1 1 2 2 3 3, ,j j j j j j j j jL L h h hα α α+ + + = + + + ,  
( )1 1, 2 1, 3 1 1 1 2 2 3 3, ,j j j j j j j j jL L h h hα α α− + + = − + + , etc. The values of the quantities 

on the rights-sides of the expressions shown in Equations (69) and (70) are ob-
tained by re-solving Equations (1) and (2) repeatedly, using the changed para-
meter values ( )1 1j jhα ± , ( )1 2j jhα ±  and ( )3 3j jhα ± . As has also been pre-
viously discussed, the values of 1jh , 2jh  and 3jh , respectively, must be chosen 
“judiciously” by “trial and error” for each of the parameters 1jα , 2jα  and 3jα . 
The finite difference formulas introduce their intrinsic “methodological errors” 
of order ( )2 2 2

1 2 3, ,j j jh h hΟ  which are in addition to, and independent of, the er-
rors that might be incurred in the computation of ( )3

1 2 3j j jL α α α∂ ∂ ∂ ∂α .  

5.2. Forward Sensitivity Analysis Methodology  

The third-order partial sensitivity of ( )L α  to three generic model parameters, 

3 2 1, ,j j jα α α , has the following expression: 

( ) ( )
0 013 2 1 3 2

3

10

3 ,
d d

1 1, , ; 2 1, , 1; 3 1, , 2.

,
b

gG

gj j j j j jS

L r
S

j TP j j j j

α α α α α α
ϕ

= ⋅ >

     ⋅   
      

= = =

∂ ∂
∂ ∂ ∂ ∂ ∂ ∂∑∫ ∫

n

n

  

α α

α

Ω

Ω
Ω Ω

      (71) 

In turn, the third-order derivative ( ) 1
3

2 3,g
j j jr αϕ α α∂ ∂ ∂ ∂Ω  is the solution of 

the third-order G-derivative of Equations (1) and (2) with respect to 3 2 1, ,j j jα α α  
or, equivalently, the solution of the first G-derivative of the 2nd-OFSS comprising 
Equations (47) and (48), which have the following form:  

( ) ( ) ( )
0 0

3

3 2 1 3 2 1

3 , , ,,
,

1, , ; 1 1, , ; 2 1, , 1; 3 1, , 2;

g gg
g

j j j j j j

r rr
B

g G j TP j j j

S

j

α α α α α α

ϕϕ         =    
        

= =

∂∂
∂ ∂ ∂ ∂ ∂ ∂

= =   

α α

α
Ω ΩΩ

      (72) 

( )
0

3

3 2 1

,
0, ; 0,

1, , ; 1 1, , ; 2 1, , 1; 3 1, , 2;

g

d
j j j

r
r r

g G j TP j j j j

α α α
ϕ   =   = ⋅ < 

 

∂
∂ ∂ ∂ 

= = = =

n

   

α

Ω
Ω

        (73) 

where 

( ) ( )
3 2 1

3

3 2

2

1

, , , , , ,
.

g g g g

j j j j j j

r r rS S r

α α α α

ϕ

α α

ϕ  ∂ ∂     ∂  =  
∂ ∂ ∂ ∂ ∂ ∂  

 Ω Ω Ω Ω
       (74) 

Evidently, the computations of all of the distinctive third-order sensitivities  
( ) 3

3
2 1j j jL α α α∂ ∂ ∂ ∂α  require ( )( )1 2 3!TP TP TP+ +  large-scale computa-

tions to solve Equations (72) and (73), followed by ( )( )1 2 3!TP TP TP+ +  small- 
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scale computations for performing the integration represented by Equation 
(71).  

5.3. Third-Order Adjoint Sensitivity Analysis Methodology  
(3rd-CASAM) 

In contradistinction to the FSAM, the 3rd-CASAM does not use Equation (46) as 
the starting point for computing 3rd-order response sensitivities but instead uses 
the expression provided by the 2nd-CASAM of the sensitivities in terms of the 
1st-and 2nd-level adjoint functions ( )1ψ  and ( )2ψ . Thus, the total G-differential 
of the expression given in Equation (68) provides the 3rd-order sensitivities of 
the leakage response involving the group-averaged total microscopic cross sec-
tions, as follows: 

( ) ( )( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0

0

1 22

2 1

2 ,2
1

1 0 4

2 , 2 , 1 ,
1 2

2 , 1 ,
2

2

, ; ;

4 d d 1; , ,

1; , , 1; , ,

1; , , , 1 1, , ; 2 1, , 1,

d

j j

rG
g g

g

g g gg

g
g g t

j

L

t t

r r j r r

j r r j r r

j r r j JTX j j
t

δ

δψ ϕ

ψ δϕ δψ ψ

ψ δψ

= π

 ∂ 
 

∂ ∂  

 = −  

+ +

∂Σ + = = 

π

∂

∑ ∫ ∫

 

α

α

α ϕ ψ ψ

α

Ω Ω Ω

Ω Ω Ω Ω

Ω Ω

 (75) 

where: 1) the functions ( ),g rδϕ Ω  are the solutions of Equations (25) and (26); 
2) the functions ( ) ( )1 , ,g rδψ Ω  are the solutions of Equations (55) and (56); 3) 
the functions ( )2 ,

1,
g

jδψ  and ( )2 ,
2,

g
jδψ  are the solutions of the G-differentiated 2nd- 

LASS defined by Equations (62) through (66), namely: 

( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ }

0

0

2 1
1

3 1 2
1 1

1; , 1; ,

; , ; 1; , ; ,

j r j

j r

δ δ

δ

+

 =  

A S r

Q r

α

α

α ψ α ψ

α ψ ψ α

Ω Ω

Ω Ω
             (76) 

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

0

0

2
2

3 2
2 2

1; , 1; ,

; , ; 1; , ; ,

j r j

j r

δ δ

δ

+

 =  

B S r

Q r

α

α

α ψ α ϕ

α ϕ ψ α

Ω Ω

Ω Ω
              (77) 

( ) ( )2
1 1; , , , 0; 1 1, , ;dj r r r j JTXδ = = ⋅ > =n 0ψ Ω Ω           (78) 

( ) ( )2
2 1; , , , 0; 1 1, , ,drj r r j JTXδ = = ⋅ < =0 nψ Ω Ω           (79) 

where 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
0 0

3
3 3

3 1 2
1 1

1 2
1

3 1 2
1 1

1

; , ; 1; , ;

1;
, 1; ,

; , ; 1; ,
,

TP

j
j j

j r

j
j r

j r

δ

δ δ

δα
α=

 
 
   ∂ ∂      − −      ∂ ∂         

 ∂  
∂∑

Q r

S A
r

Q r





α α

α ψ ψ α

α α
α ψ α ψ

α α

α ψ ψ

Ω Ω

Ω Ω

Ω Ω

    (80) 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )

0 0

3
3 3

3 2
2 2

2
2

3
2

1

; , ; 1; , ;

1;
, 1; ,

.
TP

j
j j

j r

j
j r

δ

δ δ

δα
α=

 
 
   ∂ ∂      − −      ∂ ∂         

∂
=

∂∑

Q r

S B
r

Q



α α

α ϕ ψ α

α α
α ϕ α ψ

α α

Ω Ω

Ω Ω     (81) 

Thus, in order to compute the value of the differential shown in Equation (75), 
it would be first necessary to solve the following system of matrix-equations, 
subject to the boundary conditions shown in Equations (26), (56), (78) and (79): 

( )
( )

( ) ( )
( ) ( )

( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )( )

( ) ( ) ( ) ( )
( ) ( ) ( )

0

0

1

2
1

2
2

1

2 1

3 1 2
1 1

3 2
2 2

1; 1
1; 1

;

, ;
.

; ; 1 ;

; ; 1 ;

j j
j j

j

j

δ

δ

δ

δ

δ

δ

δ

δ

       
                   

  
  
  
  =       
        

B
A

S A
S B

Q

Q

Q

Q

0 0 0
0 0 0
0 0

0 0
α

α

ϕα
ψα

α α ψ
α α ψ

α α

α ψ α

α ψ ψ α

α ϕ ψ α

        (82) 

It is evident that solving Equation (82) amounts to impractically many large- 
scale computations, which can be avoided by recasting the right-side of Equation 
(75) in terms of the solutions of a 3rd-Level Adjoint Sensitivity System (3rd-LASS). 
Following the general principles introduced by Cacuci [12], the construction of 
the 3rd-LASS is similar to the construction of the 2nd-LASS and comprises the 
following sequence of operations, all of which are to be carried out at the no-
minal parameter values 0α :  

1) Consider a Hilbert space, denoted as ( )3H , comprising elements denoted 
generically as ( ) ( ) ( )

3
3,r ∈u Ω H , which have a “four-component block-vector” 

structure of the form ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
†3 3 3 3 3

1 2 3 4, , , , , , , ,r r r r r 
 u u u u uΩ Ω Ω Ω Ω , 

with each of the four vector-components having the following structure:  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

†3 3 ,1 3 , 3 ,, , , , , , , , , 1, 2,3, 4g G
i i i ir u r u r u r i  = u   Ω Ω Ω Ω .  
2) Define the inner product in ( )3H , denoted as ( ) ( ) ( ) ( )

( )
3 3

3
, , ,r ru vΩ Ω , of 

two arbitrary elements in ( )3H , denoted as ( ) ( ) ( )
3

3,r ∈u Ω H  and  
( ) ( ) ( )
3

3,r ∈v Ω H , with ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
†3 3 3 3 3

1 2 3 4, , , , , , , ,r r r r r 
 v v v v vΩ Ω Ω Ω Ω , 

and ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
†3 3 ,1 3 , 3 ,, , , , , , , , , 1, 2,3, 4g G

i i i ir r r r i  = v v v v  Ω Ω Ω Ω , as 
follows:  

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

4
3 3 3 3

3 11

4
3 , 3 ,2

1 1 0 4

, , , , , ,

4 d d , , .
d

i i
i

rG
g g

i i
i g

r r r r

r r u r v r

=

= = π

π=

∑

∑∑ ∫ ∫

u v u vΩ Ω Ω Ω

Ω Ω Ω
       (83) 

3) Apply the definition provided in Equation (83) to form the inner product 
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of Equation (82) with a yet undefined function  
( ) ( ) ( ) ( ) ( ) ( ) ( )

†3 3 3
1 4 32; 1; , 2; 1; , , , 2; 1; ,j j r j j r j j r  ∈  ψ ψ ψΩ Ω Ω H , to obtain the 

following relation, evaluated at 0α : 

( ) ( )

( )
( )

( ) ( )
( ) ( )

( )

( ) ( )
( ) ( )

( )

( ) ( )

( ) ( )
( ) ( )( )

( ) ( ) ( ) ( )
( ) ( ) ( )

( )

0

1
3

2
1

2
2 3

1

2 1

3
3 1 2

1 1

3 2
2 2

3

2; 1; , ,
1; 1

1; 1

;

, ;
2; 1; , ,

; ; 1 ;

; ; 1 ;

j j r
j j

j j

j j r
j

j

δ

δ

δ

δ

δ

δ

δ

δ

                       

        =       
     

B
A

S A
S B

Q

Q

Q

Q

0 0 0
0 0 0
0 0

0 0
α

ϕα
ψα

ψ
α α ψ

α α ψ

α α

α ψ α
ψ

α ψ ψ α

α ϕ ψ α

Ω

Ω

0

.








 
 
 α

(84) 

4) Use the customary definition of the adjoint operator in ( )3H , endowed 
with the inner product defined in Equation (83) to recast the left side of Equa-
tion (84) into the following equivalent form: 

( ) ( )

( )
( )

( ) ( )
( ) ( )

( )

( ) ( )
( ) ( )

( )

( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )
( )

( ) ( )
( )

0

1
3

2
1

2
2 3

† 3
1

1 3
2

2
1

2
2

2; 1; , ,
1; 1

1; 1

2; 1; ,1;
2;1;

,
1

1

j j r
j j

j j

j j rj
jj

j

j

δ

δ

δ

δ

δ

δ

δ

δ

                       

      
   =    
        

B
A

S A
S B

A S
B S

B
A

0 0 0
0 0 0
0 0

0 0

0 0
0 0
0 0 0
0 0 0

α

ϕα
ψα

ψ
α α ψ

α α ψ

ϕ ψα α
ψ ψα α

αψ
αψ

Ω

Ω

( )
( ) ( )
( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( )
0

3
3

3
4 3

3 1 2 3

1; ,

2; 1; ,

2; 1; ,

, ; 1 ; 2; 1 ,

j r

j j r

j j r

P j j jδ δ δ

       
  
  
   

   

 +  

α

ψ

ψ

ϕ ψ ψ ψ

Ω

Ω

Ω

(85) 

where ( ) ( ) ( ) ( ) ( ) ( )3 1 2 3, ; 1 ; 2; 1P j j jδ δ δ 
 ϕ ψ ψ ψ  denotes the corresponding bili-

near concomitant evaluated on the PERP sphere’s outer boundary bS , at 

dr r= .  
5) Require the first term on the right-side of Equation (85) to represent the 

same functional as the right-side of Equation (75). This requirement will be sa-
tisfied by requiring that the following relations be satisfied by the components of 
the function ( ) ( ) ( ) ( ) ( ) ( ) ( )

†3 3 3
1 4 32; 1; , 2; 1; , , , 2; 1; ,j j r j j r j j r  ∈  ψ ψ ψΩ Ω Ω H : 

( ) ( )
( ) ( )

( )
( )

( ) ( )
( ) ( )
( ) ( )
( ) ( ) 0

3
1

3
2
3

3
3

4

2; 1; ,1;
2; 1; ,1;

2; 1; ,

2; 1; ,

j j rj
j j rj

j j r

j j r

                        

A S
B S

B
A

α

ψα α
ψα α

α ψ
α ψ

Ω

Ω

Ω

Ω

0 0
0 0
0 0 0
0 0 0
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( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( ) 0

2
1

2
2

1

2; 1; ,

2; 1; ,
, for 1 1, , ; 2 1, , 1.

2; ,

2; ,

j j r

j j r
j JTX j j

j r

j r

  
  
  

= − = =  
  
  
  

S

S
S

S

 

α

α ψ

α ψ
α ϕ

α ψ

Ω

Ω
Ω

Ω

   (86) 

6) Use in Equation (86) the boundary conditions shown in Equations (26), 
(56), (78) and (79). Furthermore, set to zero the remaining terms in the bilinear 
concomitant ( ) ( ) ( ) ( ) ( ) ( )3 1 2 3, ; 1 ; 2; 1P j j jδ δ δ 

 ϕ ψ ψ ψ  in Equation (85) by requir-
ing the components of the function  

( ) ( ) ( ) ( ) ( ) ( ) ( )
†3 3 3

1 4 32; 1; , 2; 1; , , , 2; 1; ,j j r j j r j j r  ∈  ψ ψ ψΩ Ω Ω H  to satisfy the 
following boundary conditions: 

( ) ( )
( ) ( )

3

3

2; 1; , , ; 0; 2,3; 1 1, , ; 2 1, , 1;

2; 1; , , ; 0; 1, 4; 1 1, , ; 2 1, , 1.
i d

i d

j j r r r i j JTX j j

j j r r r i j JTX j j

= = ⋅ < = = =

= = ⋅ > = = =

n

n

 

 

0

0

ψ

ψ

Ω Ω

Ω Ω
 (87) 

7) The boundary conditions shown in Equation (87) complete the well-posed 
definition of the 3rd-level adjoint function ( ) ( ) ( )

3
32; 1; ,j j r ∈ψ Ω H  as the solu-

tion of Equations (86) and (87), which are called “the Third-Level Adjoint Sensi-
tivity System (3rd-LASS)”. The reason for calling this system “Third-Level” (as 
opposed to “Third-Order”) stems from the fact that this system does not involve 
any 2nd- and/or 3rd-order differentials or derivatives of the dependent variables 
(i.e., state functions) even though the solution of the 3rd-LASS is used for com-
puting, efficiently and exactly, the 3rd-order sensitivities of the response with re-
spect to the model parameters.  

8) Use Equations (84) through (87) in Equation (75) to obtain the following 
alternative expression for the differential ( )( ){ } 0

12
1 2, ; j jL t tδ ∂ ∂ ∂

α
α ϕ ψ  in terms 

of the 3rd-level adjoint function ( ) ( ) ( )
3

32; 1; ,j j r ∈ψ Ω H : 
( ) ( )( )

( ) ( ) ( ) ( )
( ){ }

( ) ( ) ( ) ( )( )
( )

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( )( )

0

0

0

0

0

1 22

2 1

3 1
1 1

3 2 1
2

1

3 3 1 2
3 1 1

1

3 3 1 2
4 2 2

1

1 2 33

3 2

, ; ;

2; 1; , , ;

2; 1; , , , ;

2; 1; , , ; ; 1 ;

2; 1; , , ; ; 1 ;

, ; ; ;

j j

j j

L

t t

j j r

j j r

j j r j

j j r j

L

t t

δ

δ

δ

δ

δ

α

 ∂ 
 

∂ ∂  

=

 +  
 

  +    

  +    

∂
=

∂ ∂ ∂

Q

Q

Q

Q

α

α

α

α

α

α ϕ ψ ψ

ψ α α

ψ α ψ α

ψ α ψ ψ α

ψ α ψ ψ α

α ϕ ψ ψ ψ

Ω

Ω

Ω

Ω

0

3
3 1 1

, 1 1, , ; 2 1, , 1.
TP

j
j j

j JTX j jδα
=

 
  = = 
  

∑  

α

   (88) 

9) It is important to note that the differential expression provided in Equation 
(88) comprises all of the 3rd-order partial sensitivities that involve the group-av- 
eraged microscopic total cross sections, i.e., the 3rd-order partial sensitivities 
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( ) ( ) ( )( )1 2 33
3 2 1, ; ; ; j j jL t tα∂ ∂ ∂ ∂α ϕ ψ ψ ψ , 1 1, ,j JTX=  ; 2 1, , 1j j=  ,  

3 1, ,j TP=  , describes a total of ( )180 180 1 2 7477+ ×    3rd-order response 
sensitivities with respect to the microscopic total cross sections (indices 1jt  and 

2jt ) and with respect to the other parameters ( 3jα ).  
10) In particular, identifying in Equation (88) the quantities that multiply only 

the variations in the total microscopic cross sections will reduce the expressions 
provided in Equations (80) and (81) as follows:  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

3
3 3

3 2
1 13 1 2

1 1
1

3 2 2
1 1 1

; 1; ,
; , ; 1; , ; ,

; 1; , 1; , ,

S
Q r

S

δ δ
=

 ∂    =  ∂

  −Σ 

∑



JTX

j
j j

g
t

j r
j r t

t

j r j r

α ψ
α ψ ψ α

α ψ α ψ

Ω
Ω Ω

Ω Ω

  (89) 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

3
3 3

3 2
2 23 2

2 2
1

3 2 2
2 2 2

; 1; ,
; , ; 1; , ; ,

; 1; , 1; , .

S
Q r

S

δ δ
=

 ∂   
  ∂

  −Σ 

∑



JTX

j
j j

g
t

j r
j r t

t

j r j r

α ψ
α ϕ ψ α

α ψ α ψ

Ω
Ω Ω

Ω Ω

   (90) 

11) Inserting the results from Equations (89) and (90) into Equation (88) and 
identifying the specific quantity that multiplies the specific variation 

3j
tδ  pro-

vides the following expression for the 3rd-order response sensitivities which in-
volve only the group-averaged total microscopic cross sections: 

( ) ( ) ( )( )

( ) ( ) ( ) ( )
( ){ }

( ) ( ) ( ) ( ) ( )
( ){ }

( ) ( ) ( ) ( ) ( )
( ){ }

( ) ( ) ( ) ( ) ( )
( ){ }

0

0

0

0

0

1 2 33

3 2 1

3
1 1

3 1
2 1

3 2
3 1 1

3 2
4 2 1

, ; ; ;

2; 1; , , 3; ,

2; 1; , , 3; ,

2; 1; , , 3; 1; ,

2; 1; , , 3; 1; , ,

for 1 1, , ; 2 1, , 1; 3 1, , 2.

j j j

L

t t t

j j r j r

j j r j r

j j r j j r

j j r j j r

j JTX j j j j

 ∂ 
 

∂ ∂ ∂  

= −

−

−

−

= = =

S

S

S

S

  

α

α

α

α

α

α ϕ ψ ψ ψ

ψ α ϕ

ψ α ψ

ψ α ψ

ψ α ψ

Ω Ω

Ω Ω

Ω Ω

Ω Ω

          (91) 

In component form, Equation (91) can be written as follows: 

( ) ( ) ( )( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0

0

1 2 33

3 2 1

3 ,2
1

1 0 4

3 , 1 , 3 , 2 ,
2 3 1

3 , 2 ,
4 2

3

, ; ; ;

4 d d 2; 1; , ,

2; 1; , , 2; 1; , 1; ,

2; 1; , 1; , ,

for 1 1, , ; 2 1,

d

j j j

rG
g g

g

g g g g

g
g g t

j

L

t t t

r r j j r r

j j r r j j r j r

j j r j r
t

j JTX j

ψ ϕ

ψ ψ ψ ψ

ψ ψ

π=

 ∂ 
 

∂ ∂ ∂  

 = −  

+ +

∂Σ 

π

+  ∂ 
= =

∑ ∫ ∫

α

 

α

α ϕ ψ ψ ψ

α

Ω Ω Ω

Ω Ω Ω Ω

Ω Ω

, 1; 3 1, , 2.j j j= 

    (92) 
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5.4. Comparison of Computational Requirements 

As has already been discussed, the number of sensitivities of the PERP leakage 
response which involve solely the group-averaged total microscopic cross sec-
tions are as follows: 1) 180 first-order sensitivities; 2) 32,400 second-order sensi-
tivities, of which 16,290 are distinct; and 3) 5,832,000 third-order sensitivities, of 
which 988,260 are distinct; 4) 1,049,760,000 fourth-order sensitivities, of which 
45,212,895 are distinct. Numerical results for these sensitivities have been ob-
tained by using the code PARTISN with a S32 angular quadrature (ISN = 32). 
The computer used for these computations is a DELL computer with an 8-core 
processor (AMD FX-8350). 

The CPU-time for a typical adjoint computation using ISN = 32 is ca. 26 
seconds, while the CPU-time computing the integrals over the various adjoint 
functions which appear in the definition of the respective sensitivity, cf. Equa-
tion (92), is ca. 0.002 seconds.  

The CPU-time for computing the 1st-, 2nd- and 3rd-order sensitivities of the 
leakage response with respect to the 180 microscopic total cross sections are as 
follows: 

1) The total CPU-time required for computing the 1st-order sensitivities is ca. 
30 Seconds (1 adjoint PARTISN computation, plus 180 integrations over the 
adjoint functions); 

2) The total CPU-time required for computing twice (for verification purpos-
es) the 2nd-order sensitivities is ca. 3 hours (2 h 55 min for 180 forward-like + 
180 adjoint-like PARTISN computations for determining the 2nd-level adjoint 
functions, plus 5 minutes for computing the 32,400 integrations over the adjoint 
functions); 

3) The total CPU-time required for computing twice (for verification purpos-
es) the 3rd-order sensitivities is around 338 hours (2 h 55 min for computing 
2nd-level adjoint functions, 332 hours for computing the 3rd-level adjoint func-
tions + 3 h 24 min for computing the 180 × 180 × 180 integrals over these func-
tions to obtain the 3rd-order sensitivities). 

Table 3 presents the comparison of the CPU-times for all of the distinct 
third-order sensitivities  

( ) 3
3

2 1 1 1, , ; 2 1, , 1; 3 1, ,, 2j j jL j JTX j j jt jt t =∂ =∂ =∂ ∂   α  required by ap-
plying the 3rd-CASAM, versus using the FSAM procedure using Equation (71) 
and/or the FD-approximations shown in Equations (69) and (70). 

 
Table 3. Comparison of CPU-times for computing  

( ) ( ) ( )( )1 2 33
3 2 1, ; ; ; , 1 1, , ; 2 1, , 1; 3 1, , 2j j jL t t t j JTX j j j j∂ ∂ ∂ ∂ = = =  α ϕ ψ ψ ψ . 

FD-approximation FSAM 3rd-CASAM 

Nr. Forward comp. = 7,905,360 
ISN = 32 

Nr. Forward comp. = 1,004,730 
ISN = 32 

Nr. Adjoint comp. = 33,301 
ISN = 32 

CPU time ≈ 98,817 Hours CPU time ≈ 12,559 Hours CPU time ≈ 175 Hours 
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Based on Equations (69) and (70), the number of forward computations needed 
to obtain all of the distinct third-order sensitivities by the FD-approximation 
method is 7,905,360 [= 180 × 4 forward PARTISN computations for the 180 
unmixed 3rd-order sensitivities + (988,260 − 180) × 8 forward PARTISN compu-
tations for the 988,080 mixed 3rd-order sensitivities]. 

Based on Equations (72) and (73), the number of forward computations 
needed to obtain all of the distinct third-order sensitivities ( ) 3

3
2 1j j jt tL t∂ ∂ ∂ ∂α  

by the FSAM method is  
( ) ( )( )1 2 1 2 3! 1004730JTX JTX JTX JTX JTX JTX+ + + + + = . 

Based on Equation (86), a total number of 33,301 adjoint computations is 
needed to obtain all of the distinct third-order sensitivities ( ) 3

3
2 1j j jt tL t∂ ∂ ∂ ∂α  

by the 3rd-CASAM method, comprising the following large-scale computations:  
1) 1 adjoint PARTISN computations to obtain ( ) ( )1 ,rψ Ω ; 
2) 180 adjoint-like PARTISN computations to obtain ( ) ( )2

1 1; ,j rψ Ω ; 
3) 180 forward-like PARTISN computations to obtain ( ) ( )2

2 1; ,j rψ Ω ; 
4) 16,290 adjoint-like PARTISN computations to obtain ( ) ( )3

1 2; 1; ,j j rψ Ω ; 
5) 16,290 forward-like PARTISN computations to obtain ( ) ( )3

2 2; 1; ,j j rψ Ω ; 
6) 180 forward-like PARTISN computations to obtain ( ) ( )3

3 2; 1; ,j j rψ Ω ; 
7) 180 adjoint-like PARTISN computations to obtain ( ) ( )3

4 2; 1; ,j j rψ Ω . 
The computation of each of the adjoint functions ( ) ( )3

1 2; 1; ,j j rψ Ω  and 
( ) ( )3
2 2; 1; ,j j rψ Ω , respectively, requires ( )180 180 1 2 16290+ =  PARTISN com-

putations, respectively, since the source terms for the equations satisfied by these 
functions depend on both indices j1 and j2. However, the computation of each 
of the adjoint functions ( ) ( )3

3 2; 1; ,j j rψ Ω  and ( ) ( )3
4 2; 1; ,j j rψ Ω , respectively, 

requires only 180 PARTISN computations (per function), because the source 
terms for the equations satisfied by these functions only depend on the index j2, 
as shown in Equation (86). 

The results presented in Table 3 evidently indicate that the 3rd-CASAM is the 
only methodology capable of computing 3rd-order sensitivities, without intro-
ducing methodological errors. 

6. Concluding Remarks 

This work has presented the derivation of the exact mathematical expressions of 
the following sensitivities of the PERP leakage response with respect to the group- 
averaged total microscopic cross sections: 1) 180 first-order sensitivities; 2) 
32,400 second-order sensitivities, of which 16,290 are distinct; and 3) 5,832,000 
third-order sensitivities, of which 988,260 are distinct.  

Using a DELL computer with an 8-core processor (AMD FX-8350), the total 
CPU-time required for computing the 1st-order sensitivities of the PERP leakage 
response with respect to all of the PERP benchmark’s parameters by applying the 
1st-CASAM is 95 seconds. By comparison, the forward sensitivity analysis me-
thodology (FSAM) would require 694 hours CPU-time, while a 2-point fi-
nite-difference (FD) approximate scheme would require 1,388 hours CPU-time.  
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Using the same DELL computer (AMD FX-8350), the computations of the 
2nd-order sensitivities of the PERP leakage response with respect to the PERP 
benchmark’s total microscopic cross sections by applying the 2nd-CASAM re-
quired 19 hours CPU-time. By comparison, the FSAM would require 764 hours 
CPU-time, while the FD-scheme would require 3006 hours CPU-time. 

Finally, using the AMD FX-8350 DELL computer, the computations of the 
3rd-order sensitivities of the PERP leakage response with respect to the PERP 
benchmark’s total microscopic cross sections by applying the 3rd-CASAM re-
quired 175 hours CPU-time. By comparison, the FSAM would require 12,559 
hours CPU-time, while the FD-scheme would require 98,817 hours CPU-time. 
These results make it abundantly evident that the CASAM is the only practical 
method for computing sensitivities exactly for large-scale problems involving 
many parameters. 

The formulas derived in this work are valid not only for the PERP benchmark 
but can also be used for computing the 3rd-order sensitivities of the leakage re-
sponse of any nuclear system involving fissionable material and internal or ex-
ternal neutron sources. Subsequent works [16] [17] will use the adjoint-based 
mathematical expressions obtained in this work to further derive the expressions 
for the 4th-order sensitivities, and to compute exactly and efficiently the numeri-
cal values of the 1,049,760,000 fourth-order sensitivities, of which 45,212,895 are 
distinct. 
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Appendix 

The dimensions and material composition of the polyethylene-reflected pluto-
nium (PERP) metal sphere considered in this work are presented in Table A1. 

The quantities appearing in Equations (1) through (3) are defined as follows:  
1) The quantity ( ),g rϕ Ω  is the customary “group-flux” for group  
, 1, ,g g G=  , and is the unknown state-function which is obtained by solving 

Equations (1) and (2). The group boundaries of the G=30 energy groups are 
provided in Table A2. 

2) The source ( )gQ q  depends on the vector of model parameters q , de-
fined as follows: 
 
Table A1. Dimensions and material composition of the PERP benchmark. 

Materials Isotopes Weight Fraction 
Density 
(g/cm3) 

Zones 

Material 1 
(plutonium 

metal) 

Isotope 1 (239Pu) 9.3804 × 10−1 

19.6 
Homogeneous sphere of radius 

1 3.794 cmr = , designated as  

“material 1” and assigned to zone 1 

Isotope 2 (240Pu) 5.9411 × 10−2 

Isotope 3 (69Ga) 1.5152 × 10−3 

Isotope 4 (71Ga) 1.0346 × 10−3 

Material 2 
(polyethylene) 

Isotope 5 (C) 8.5630 × 10−1 

0.95 

Homogeneous spherical shell of inner 
radius 1 3.794 cmr =  and outer 

radius 2 7.604 cmr = , designated as 

“material 2” and assigned to zone 2 
Isotope 6 (1H) 1.4370 × 10−1 

 
Table A2. Group boundaries, [ ]MeVgE , of the 30G =  energy groups used in the PAR- 

TISN forward and adjoint neutron transport computations. 

g 1 2 3 4 5 6 

gE  1.50 × 101 1.35 × 101 1.20 × 101 1.00 × 101 7.79 × 100 6.07 × 100 

1gE −  1.70 × 101 1.50 × 101 1.35 × 101 1.20 × 101 1.00 × 101 7.79 × 100 

g 7 8 9 10 11 12 

gE  3.68 × 100 2.87 × 100 2.23 × 100 1.74 × 100 1.35 × 100 8.23 × 10−1 

1gE −  6.07 × 100 3.68 × 100 2.87 × 100 2.23 × 100 1.74 × 100 1.35 × 100 

g 13 14 15 16 17 18 

gE  5.00 × 10−1 3.03 × 10−1 1.84 × 10−1 6.76 × 10−2 2.48 × 10−2 9.12 × 10−3 

1gE −  8.23 × 10−1 5.00 × 10−1 3.03 × 10−1 1.84 × 10−1 6.76 × 10−2 2.48 × 10−2 

g 19 20 21 22 23 24 

gE  3.35 × 10−3 1.24 × 10−3 4.54 × 10−4 1.67 × 10−4 6.14 × 10−5 2.26 × 10−5 

1gE −  9.12 × 10−3 3.35 × 10−3 1.24 × 10−3 4.54 × 10−4 1.67 × 10−4 6.14 × 10−5 

g 25 26 27 28 29 30 

gE  8.32 × 10−6 3.06 × 10−6 1.13 × 10−6 4.14 × 10−7 1.52 × 10−7 1.39 × 10−10 

1gE −  2.26 × 10−5 8.32 × 10−6 3.06 × 10−6 1.13 × 10−6 4.14 × 10−7 1.52 × 10−7 
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1 2 1 2 1 2 1 2 1

††
1 2, ; , ; , ; , ; ,, , , 10.SF SF

J
S SF

Q
FF F a Ja bq q b Qλ λ ν ν  =    q       (93) 

3) As indicated in Table A1, the PERP benchmark comprises 2 materials: 
“material 1” comprises 4 isotopes, numbered 1 through 4, while “material 2” 
comprises 2 isotopes, numbered 5 and 6. In principle, PARTISN allows the same 
isotope to appear in different materials, in which case the atomic number densi-
ty ,i mN  of an isotope i in a material m would be computed by using the formu-
la , ,i m m i m A iN w N Aρ= , where mρ  denotes the mass density of material m, 

1,2m = , ,i mw  denotes the weight fraction of isotope i in material m; iA  de-
notes the atomic weight of isotope i, and AN  denotes Avogadro’s number. 
However, the two materials in the PERP benchmark contain only isotopes that 
are distinct from each other, so the subscript m will not be needed if the formula 
for the atomic number density iN  of an isotope i, 1, , 6i I= = , is interpreted 
as follows:  

1 ,1 2 ,2; for 1,2,3,4; ; for 5,6.i A i A
i i

i i

w N w N
N i N i

A A
ρ ρ

= = 
        (94) 

The atomic number densities 1, , 6,iN i I= =  will be considered to be 
components of the vector N , defined below: 

[ ]†
1 2 3 4 5 6, , , , , .N N N N N NN                       (95) 

4) The scattering transfer cross section from energy group , 1, ,g g G′ ′ =   
into energy group , 1, ,g g G=   is denoted as ( ); ,g g

s r′→ ′Σ →α Ω Ω  and is 
computed in terms of the l-th order Legendre coefficient , ,

g g
s l iσ ′→  using the fol-

lowing 3rd-order expansion in Legendre functions: 

( ) ( ) ( )
6 3

1 0
, ,; , 2 1 ( ) , , 1, ,

I ISCT

s l i
g g g g
s i l

i l
r N l r P g g Gσ

= =
′ ′→ →

= =

′ ′ ′Σ → = + ⋅ =∑ ∑ α Ω Ω Ω Ω , (96) 

where ISCT = 3 denotes the order of the expansion in Legendre polynomials. 
The microscopic scattering cross sections , ,

g g
s l iσ ′→  for isotope i, and from energy 

group g ′  into energy group g, are tabulated parameters. The zeroth-order (i.e., 
0l = ) scattering cross sections must be considered separately from the higher 

order (i.e., 1l ≥ ) scattering cross sections, since the former contribute to the 
total cross sections (as noted below), while the latter do not. Aiming at reducing 
the proliferation of superscripts and subscripts when defining response sensitivi-
ties with respect to the microscopic scattering cross sections , ,

g g
s l iσ ′→ , these cross 

sections will be considered to be components of a vector sσ  defined below:  

[ ]

( ) ( )

†
1

†1 1 2 1 1 1 2 2 2
, 0, 1 , 0, 1 , 0, 1 , 0, 1 , 0, 1 , , , ,

, ,

, , , , , , , , , ,

0, , ; 1, , ; , 1, , ; 1 .

s JSX

g g g g g G g g g g g g g G G
s l i s l i s l i s l i s l i s l i s ISCT i I

s s

l ISCT i I g g G JSX G G I ISCT

σ σ σ σ σ σ σ′ ′ ′ ′ ′ ′= → = = → = = → = = → = = → = → →
= = = = = = = = = = =  

′= = = = × × × +

 

   

  

σ

(97) 

5) The total cross section for energy group , 1, ,g g G=   is denoted as 
( );g

t rΣ α  and is computed using the following expression: 

( ) ( ) ( ) ( ), , , , , 0,
11

; ; .
G

g g
t i t i

I
g g g g

f i c i s l i
g

g
t i

i
r N r r rσ σ σ σ σ ′→

=
′==

 
Σ = +


+=  


∑∑α        (98) 
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In Equation (98), the quantities ,
g
t iσ , ( ),

g
f i rσ  and ( ),

g
c i rσ  denote, respec-

tively, the total microscopic cross section, the tabulated group microscopic fis-
sion, and the neutron capture cross sections for isotope i and group g. Other 
nuclear reactions in the PERP benchmark are negligible. The total microscopic 
cross sections ,

g
t iσ  involve three indices, which will proliferate exponentially 

when determining the higher-order (up to and including the 4th-order) sensitivi-
ties of the PERP leakage response with respect to these cross sections. In order to 
reduce as much as possible the proliferation of indices, it is useful to consider 
that the cross sections ,

g
t iσ  are the components of a vector t , having T G I×  

components and defined as follows: 

[ ] †† 1 2 1
1 , 1 , 1 , 1 , , ,, , , , , , , , , , , ,

for 1, , 6; 1, , 30; .

G g G
JTX t i t i t i t i t i I t i It t

i I g G JTX I G

σ σ σ σ σ σ= = = = =  
= = = = ×

      

  

t
   (99) 

6) PARTISN [5] computes the quantity ( ) ( );g
f rνΣ α  for each isotope i and 

energy group g, as follows: 

( ) ( )
1

,

2
1, ,; 3, 0g

f i
i

NF
g g
f i i g Gr N σν ν

=

=

= =Σ = ∑ α ,          (100) 

where ,
g
f iσ  denotes the microscopic fission cross section for isotope i and 

energy group g, g
iν  denotes the average number of neutrons per fission for 

isotope i and energy group g, and NF  denotes the total number of fissionable 
isotopes.  

[ ]
† †1 2 1

, 1 , 1 , 1 , , , 1, , , , , , , , , , , ,

1, , ; 1, , ; ;
f

G g G
f f i f i f i f i f i N f i NF JFXf f

i NF g G JFX G NF

σ σ σ σ σ σ= = = = =
 
 

= = = ×

      

 

σ
(101) 

[ ]
† †1 2 1

1 1 1 1, , , , , , , , , , , ,

1, , ; 1, , ; .
f

G g G
i i i i i N i NF JFX JFX JNUf f

i NF g G JNU G NF

ν ν ν ν ν ν= = = = = + +
 
 

= = = ×

      

 

ν
 (102) 

7) The quantity ( );g rχ α  quantifies the fission spectrum in energy group g. 
The fission spectrum is considered to depend on the vector of parameters p , 
defined as follows: 

†† 1 2
1 1 1 1, , , , , , , , , ,

for 1, , ; 1, , ; .

g g G g G
J i i i i NFp p

i NF g G J G NF
χ χ χ χ χ χ

χ

= =
= = =     

= = = ×

p      

 

      (103) 

8) In summary, the model parameters characterizing the PERP benchmark 
can all be considered to be the components of the following “vector of model 
parameters” denoted as [ ]†

1, , TPα α α , where the subscript “TP” stands for 
“Total number of model and response Parameters”, and is defined below: 

[ ]† †
1, , ; ; ; ; ; ; ,

where .
TP s t f

TP JQ I JSX JTX JFX JNU J

α α

χ

  
+ + + + + +

q N p  



σα σ σ ν
        (104) 

9) The numerical model of the PERP benchmark contains 7477 parameters 
which have nonzero values and are subject to uncertainties, as follows: 1) 10 ex-
ternal neutron source parameters jq ; 2) 6 isotopic number densities iN ; 3) 
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7101 group-averaged microscopic scattering cross sections , ,
g g
s l iσ ′→ ; 4) 180 group- 

averaged microscopic total cross sections ,
g
t iσ ; 5) 60 group-averaged micro-

scopic fission cross sections ,
g
f iσ ; 6) 60 average-number of neutrons per fission 

g
iν ; 7) 60 group-averaged fission spectrum parameters g

iχ . The vector α , 
which appears in the expression of the Boltzmann-operator ( )gB α , represents 
the “vector of uncertain model parameters.” The nominal values of the model 
parameters qre denoted by using the superscript “zero”, i.e.,  

†0 0 0
1 , , TPα α   α . 

Nomenclature 

Symbols 
A : adjoint operator; 

iA : atomic weight of isotope i; 

ka , kb : parameters used in Watt’s fission spectra approximation for isotope 
k; 

B: forward operator; 
gE : boundary of energy group g; 
SF

kF : fraction of isotope k decays that are spontaneous fission events; 
G: total number of energy groups; 
I: number of isotopes; 
J χ : total number of parameters in vector p ; 
JQ : total number of parameters in vector q ; 
JFX : total number of parameters in vector fσ ; 
JSX : total number of parameters in vector sσ ; 
JTX : total number of parameters in vector tσ  
JNU : total number of parameters in vector ν ; 
l : variable for the order of Legendre-expansion of the microscopic scattering 

cross sections, 1, ,l ISCT=  ;  
( ),L L α : total neutron leakage from the PERP sphere; 

m: materials;  

AN : Avogadro’s number; 

fN : total number of fissionable isotopes;  

iN : atomic number density for isotope i; 
( )lP ′ ⋅Ω Ω : spherical harmonics 
( )gQ r : source term in group g; 

r : spatial (radial) variable; 

dr : external radius of the PERP benchmark; 

bS : outer surface of the PERP sphere; 

1 2,j jt t : parameters in vector tσ  indexed by j1 and j2;  
TP: total number of parameters in vector α ; 

,i mw : weight fraction of isotope i in material m;  
Vectors and Matrices 
α : vector of imprecisely known model parameters:; 
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0α : nominal values of the parameters in the vector α ; 
t : vector of uncertain parameters characterizing the microscopic total cross 

sections;  

sσ : vector of uncertain microscopic scattering cross sections; 

fσ : vector of uncertain microscopic fission cross sections;  
ν : vector of uncertain average number of neutrons per fission; 
N : vector of uncertain atomic number densities; 
n : the outward unit normal vector at each point on the sphere’s outer boun-

dary;  
p : vector of uncertain fission spectrum parameters;  
q : vector of uncertain source parameters; 
Greek symbols 

,i jα α : parameters in vector α  indexed by i and j; 
δ : variations; 

kλ : decay constant for isotope k;  
g
iν : ave. number of neutrons produced per fission by isotope i and energy 

group g; 
SF
kν : spontaneous emission of an average neutron of an isotope k 

( )g
fνΣ : macroscopic fission cross section for energy group g; 

mρ : mass density of material m; 
σ : cross sections; 

,
g
c iσ : microscopic capture cross section in group g of isotope i; 

,
g
f iσ : microscopic fission cross section in group g of isotope i;  

, ,
g g
s l iσ ′→ : the thl  order Legendre-expanded microscopic scattering cross sec-

tion from energy group g ′  into energy group g for isotope i;  

,
g
t iσ : microscopic total cross section in group g of isotope i;  
g
tΣ : macroscopic total cross section for energy group g;  
g
fΣ : macroscopic fission cross section for energy group g; 

( );g g
s

′→ ′Σ →s Ω Ω : macroscopic scattering transfer cross section from energy 
group g ′  into energy group g; 

( ),g rϕ Ω : forward angular flux in group g at point r in direction Ω ; 
gχ : fission spectrum in energy group g 
( ) ( )1 , ,g rψ Ω : adjoint angular flux in group g at point r in direction Ω ;  
( ) ( ) ( ) ( )2 , 2 ,
1, 2,, , ,g g

j jr rψ ψΩ Ω : 2nd-level adjoint functions in group g at point r in 
direction Ω  associated with the parameter indexed by j (e.g., jt ); 

, ′Ω Ω : directional (solid angle) variables; 
Subscripts, superscripts 
f: fission; 

,g g ′ : energy group variable , 1, ,g g G′ =  ;  
i: variable index; 
j: variable index; 
k: variable index; 
l : order of Legendre expansion associated with the microscopic scattering 
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cross section; 
m: index variable for materials, 1,2m = ;  
t: total; 
s: scattering; 
Abbreviations 
1st-CASAM: 1st-Order Comprehensive Sensitivity Analysis Methodology; 
1st-LASS: 1st-Level Adjoint Sensitivity System;  
2nd-CASAM: 2nd-Order Comprehensive Sensitivity Analysis Methodology; 
2nd-LASS: 2nd-Level Adjoint Sensitivity System; 
3rd-CASAM: 2nd-Order Comprehensive Sensitivity Analysis Methodology; 
3rd-LASS: 3rd-Level Adjoint Sensitivity System; 
4th-CASAM: 4th-Order Comprehensive Sensitivity Analysis Methodology; 
4th-LASS: 4th-Level Adjoint Sensitivity System; 
FD: finite-difference; 
FSAM: Forward Sensitivity Analysis Methodology; 
ISCT: order of the finite expansion in Legendre polynomial; 
PERP: polyethylene-reflected plutonium. 
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