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Abstract 
We review two important fields of application for the method of Variable 
Projections (VARPRO): Seismic Prospecting and Medical Imaging. We cover 
the period since 2002 when a first review was published. Variable Projections 
is a method for the solution of nonlinear least squares problems where the 
model is a linear combination of nonlinear functions. Its success is based on 
the fact that the reduced functional, where the linear parameters are elimi-
nated converges always faster than if the same method of solution is applied 
to the original problem. More importantly, many of these problems are very 
hard to solve in their original format and VARPRO has shown its value in 
many different applications. 
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1. Introduction 

We consider nonlinear data fitting problems that have as their underlying model 
a linear combination of nonlinear functions. Models of this type are very com-
mon inasmuch as many inverse problems can be viewed as nonlinear data fitting 
problems [1]. 

Given a set of observations { }iy , a separable nonlinear least squares problem 
is defined in [1] where the ith component of the residual vector is written as 
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Here the it  are independent variables associated with the observations iy , 
while the ja , and the k-dimensional vector α  contains the parameters to be 
determined by minimizing the functional ( ) 2
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2.  stands for the 2l  vector norm. We can write 
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this functional using matrix notation as 

( ) ( )2 2

2 2
, ,α α= −r a y aΦ  

where the columns of the matrix ( )αΦ  correspond to the nonlinear functions 
( );j itφ α  of the k parameters α  evaluated at all the it  values, and the vectors 

a  and y  represent the linear parameters and the observations respectively. 
Now it is easy to see that if we knew the nonlinear parameters α , then the li-

near parameters a  could be obtained by solving the linear least squares prob-
lem: 

( ) ,α +=a yΦ                           (1) 

which stands for the minimum-norm solution of the linear least squares prob-
lem for fixed α , where ( )α +Φ  is the Moore-Penrose generalized inverse of 
( )αΦ . By replacing this a  in the original functional the minimization prob-

lem takes the form 

( ) ( )( ) 2

2

1min ,
2α

α α +−I yΦ Φ                    (2) 

where the linear parameters have been eliminated. 
We define ( ) ( ) ( )( )2 α α α += −r I yΦ Φ , which will be called the Variable 

Projection (VP) of y . Its name stems from the fact that the matrix in paren-
theses is the projector on the orthogonal complement of the column space of  
( )αΦ , which we will denote in what follows by ( )P α

⊥
Φ . We will also refer to 

( ) 2
2 2

1
2

αr  as the Variable Projection functional. 

This is a more powerful paradigm than the simple idea of alternating between 
minimization of the two sets of variables (such as the NIPALS algorithm of 
Wold and Lyttkens [2]), which can be proven theoretically and practically not to 
result, in general, in the same enhanced performance. 

In [3] you can find a full survey of applications of VARPRO in many different 
fields. The purpose of the current excerpt is to tell the story of these develop-
ments and applications since the first review in 2003 [4] in two important fields: 
geophysics and medical imaging. The common thread for the majority of the 
papers is the use of variable projections for separable models in a least squares 
context, while a small percentage uses only the results on the derivatives of 
pseudoinverses and projectors. 

2. Geophysics, Petroleum Engineering 

This is an area of particular interest to one of the authors, who has worked many 
years in exploration geophysics, mainly on geological modeling, seismic ray 
tracing and inverse problems [5] [6] [7]. In the past few years VARPRO has been 
discovered as one of the keys for solving the fundamental earth imaging problem 
using full waveform inversion [8]. This is a notoriously expensive procedure (it 
requires many solutions of the wave equation in 3D) and it leads also to multi-
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modal optimization problems, where local optimization algorithms have diffi-
culties in avoiding sub-optimal minima. It turns out that several different appli-
cations within this area can be stated as separable problems, making them ame-
nable to the use of VARPRO, which tends to deliver much better behaved opti-
mization problems in the reduced space of the nonlinear variables. It turns out 
that Bill Symes had foreseen this early on with his related method of differential 
semblance [9]. 

For instance, in [10] the authors tackle the well-known global convergence is-
sue associated to any full waveform inversion (FWI) approach by solving an ex-
tended-image space least-squares migration problem to remove any local mini-
ma present in the FWI objective function. They discuss the connection between 
the reflectivity and migration velocity inversion and show the importance of 
combining the two problems using one objective function. Moreover, they show 
the full separability of the two inverse problems by using the variable projection 
method. 

Furthermore, in [11], the same authors indicate that the main issue inherent 
to full waveform inversion (FWI) is its inability to correctly recover the Earth’s 
subsurface seismic parameters from inaccurate starting models. This behavior is 
due to the presence of local minima in the FWI objective function. To overcome 
this problem, they propose a new objective function in which they modify the 
nonlinear modeling operator of the FWI problem by adding a correcting term 
that ensures phase matching between predicted and observed data. This addi-
tional term is computed by demigrating an extended model variable and its con-
tribution is gradually removed during the optimization process while ensuring 
convergence to the true solution. Since the proposed objective function is qua-
dratic with respect to the extended model variable, they make use of the variable 
projection method. They refer to this technique as full waveform inversion by 
model extension (FWIME) and illustrate its potential on two synthetic examples 
for which FWI fails to retrieve the correct solution. 

In [12] the authors consider planar waves events recorded in a seismic array 
that can be represented as lines in the Fourier domain. However, in the real 
world, seismic events usually have curvature or amplitude variability, which means 
that their Fourier transforms are no longer strictly linear but rather occupy conic 
regions of the Fourier domain that are narrow at low frequencies but broaden at 
high frequencies, where the effect of curvature becomes more pronounced. One 
can consider these regions as localized “signal cones”. In this work, the authors 
consider a space-time variable signal cone to model the seismic data. The varia-
bility of the signal cone is obtained through scaling, slanting, and translation of 
the kernel for cone-limited (C-limited) functions (functions whose Fourier 
transform lives within a cone) or C-Gaussian function (a multivariate function 
whose Fourier transform decays exponentially with respect to slowness and fre-
quency), which constitutes their dictionary. The authors find a discrete number 
of scaling, slanting, and translation parameters from a continuum by optimally 
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matching the data. This is a non-linear optimization problem, which is solved by 
a fixed-point method that utilizes a variable projection method with 1l  con-
straints on the linear parameters and bound constraints on the non-linear para-
meters. 

3. Medical and Biological 

Many applications to imaging and spectroscopy in biological and medical sys-
tems can be found in this section. Again, identification problems are common. A 
software tool which appears in several articles is the open source package, TIMP 
[13]. TIMP is a problem solving environment for fitting separable nonlinear 
models to measurements arising in Physics and Chemistry written in R. It has 
been extensively tested for time-resolved spectroscopy and FLIM-FRET data 
(FLIM: Fluorescent Lifetime Imaging Microscopy; FRET: Forster resonance ener-
gy transfer). 

In [14], a tool for the processing and automatic quality grading in the fish in-
dustry is developed based on diffuse reflectance imaging and the subsequent 
unmixing of the absorption spectra using a constrained least squares model to 
detect hemoglobin concentration. It is common for the absorption lines to have 
a Gaussian or Lorentzian distribution shape, so VARPRO is used in the decom-
position of the spectra. 

In [15], a dynamical model, described by the equations of motion of a spring- 
mass-damper system, was set up to estimate the impedance (force-position) for 
the human elbow. Then, a system identification technique based on prediction- 
error minimization (PEM) was developed of this non-parametric time-domain 
model augmented with a parametric noise model. VARPRO is used in the ap-
proximation. 

The paper [16] describes a methodology to determine the Forster resonance 
energy transfer in live cells as measured using fluorescence imaging microscopy. 
The parameters of the nonlinear quantitative model can be computed using a 
variable projection type of algorithm. In [17] VARPRO is used to fit NMR spec-
tra to depict small and highly oblique nerves of the lumbosacral plexus. The aim 
is to use the methodology for diagnostics of pathologies. 

The articles [18] [19] [20] [21] are all about compartmental analysis, a ma-
thematical modeling tool that originated in pharmacokinetics and is now used 
widely in medical and biological applications. The compartment model is formed 
by separate homogeneous compounds, the so called compartments. These may 
represent a certain space (blood, brain, etc) or a compound in a specific form 
(for example in a different chemical binding). The important point is that each 
compartment is assumed to be homogeneous. They interact with each other by 
exchanging material and for most medical and biological systems this exchange 
is assumed to obey a linear differential equation with constant transfer coeffi-
cients, so that the system behavior in time is modeled by a linear system of dif-
ferential equations. Although the equations are linear the solution is not. It can 
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be fitted by a linear combination of nonlinear functions (basis functions), and 
the parameters can then be obtained through a variable projection algorithm. 

For medical imaging applications, a radioligand (a radioactive biochemical 
substance, in particular a radiolabelled substance) or tracer is introduced, usual-
ly intravenously. The transport and the binding rate of the tracer are assumed to 
depend linearly of the difference of the tracer concentration between two com-
partments, so defining the system of ODE in the tracer concentrations. Often the 
data measured are sums of the concentrations. 

3.1. Spectroscopy 

After obtaining expressions for the identification of relaxation times associated 
with kinetic fluorescence decay and those associated with the dynamic evolution 
of fluorophores (chemical compounds that can re-emit light upon light excita-
tion), the author of [22] suggests the use of variable projection algorithms in the 
evaluation of photochemical bioimaging, when the fluorophores are used as the 
probe molecules. In these studies a multi-exponential decay surface can be as-
cribed to each pixel, where the fluorescence decay times and the corresponding 
emission or excitation wavelength dependent amplitudes can be recovered by 
the VARPRO algorithm. 

The first part of [23] is a survey of the adaptation of the variable projection 
algorithm to the case of matrix data and of constraints on the linear parameters. 
This form of least squares approximation to fit linear combination of nonlinear 
functions is common in the applications considered in the paper, namely, spec-
troscopy, microscopy and mass spectrometry. The authors emphasize the im-
portance of forming the residual vector in a particular manner to avoid storing 
and operating with tensor products, and describe a way to compute the cova-
riance for the linear parameters using less memory resources. 

The application to spectroscopy involves determining the kinetics of a com-
partmental model of a photo-system for conversion of photons into chemical ener-
gy, using the time-resolved fluorescence measurements. This is a separable non-
linear least squares problem with matrix data Ψ  and unknown kinetic model 
( ) TC z E , where z are the non-linear parameters and the spectra is represented 

by the (non-negative) linear coefficient matrix TE : ( ) TC z EΨ  . It is solved 
using the software package TIMP. 

In the application to microscopy the authors consider the detection of a pro-
tein-protein interaction by the simultaneous analysis of multiple FLIM images. 
FLIM counts the photons detected at several time intervals and over many loca-
tions. The data analysis gives rise to a separable nonlinear problem with the 
same nonlinear parameters but different linear ones, and multiple right hand 
sides (also termed global analysis problem) and with a matrix data: 

( ) T

2
min .

z
C z E

∈
Ψ −





 

The kinetic processes of the fluorescence decays are exponential and are 
represented in the columns of ( )C z  convolved with an instrumental response 
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function (IRF). The rows of E are the amplitudes corresponding to each kinetic 
process. 

An additional point to consider here is the distribution of errors in the FLIM 
data, a count of number of photons detected at a given position and time. If the 
count is large, then to assume that the data errors have a Gaussian distribution 
with mean 0 and variance 2σ  is valid and the least squares criteria acceptable. 
For smaller counts, the errors have a Poisson distribution and the least squares 
estimates are not very good. One possible correction is to weight the data points  

[ ],i jΨ  with the factor 
[ ]
1

,i jΨ
. 

The third area of application considered is mass spectrometry (MS), in con-
junction with gas (GC/MS) or liquid (LC/MS) chromatography. These are ana-
lytical chemistry techniques that combine the physical separation of the different 
molecules in the chromatography column with the separation of the ions ac-
cording to their mass-to-charge ratio in the MS step. In the GC or LC step the 
sample molecules passing through a column, elute or come off at different times 
according to their affinity with the chemical in the column. In the MS step the 
sample is ionized and the resulting ions separated according to mass-to-charge 
ratio by deflection due to an electric or magnetic field. 

The GC/MS or LC/MS measurements of a sample can be modeled by TCEΨ ≈ . 
Here C are the elution profiles and E the mass spectra resolved with respect to 
the mass-to-charge ratio. When several samples of the same compound are con-
sidered, the elution profiles are different but the mass spectra is considered the 
same. Often C can be well represented by choosing columns of exponentially 
modified Gaussians with 4 parameters, width, location, decay rate and amplitude. 
The problems can be solved with variable projections algorithms. 

The performance of three gradient type algorithms: alternating least squares, 
VARPRO and the Kaufman simplification are compared in the case of a mul-
ti-exponential model of a photo-physical system [24]. Corroborating results of 
other authors, alternating least squares where the linear and nonlinear parame-
ters are alternatively fixed and the problem minimized over the complementary 
set, is found to be the least efficient. The Fisher information matrix computation 
enables the authors to determine a lower bound for the covariance estimate of 
the precision of the nonlinear parameters, and conclude that in the present case 
the Kaufman simplification is the most cost efficient. 

MEG or magneto-encephalogram is an imaging tool that can measure changes 
in the neural activity on a very small time scale (of the order of milliseconds). In 
[25] the authors compare several algorithms that solve the inverse problem: giv-
en magnetic field values at a number of measurement points, reconstruct the 
sources, i.e., compute the location and moment parameters of the set of dipoles 
whose fields best approximates the data in the least squares sense. This is a large 
nonlinear optimization problem with a complex objective function and many 
local minima. However, the model is a separable function, i.e., a linear combina-
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tion, with coefficients depending on the dipole moment parameters, of nonlinear 
functions of the location parameters, amenable to variable projection. The au-
thors compare several gradient-free algorithms for the reduced nonlinear prob-
lem: simulated annealing, genetic algorithms and a tabu search, and conclude 
that for the given problem, the best algorithm is a local genetic algorithm. 

In 2D spectroscopy, contrary to conventional 1D, the third order optic signal 
at given population times is a function of two frequencies. In [26] the authors 
propose a method to analyze the 2D signals using a global analysis method based 
on the variable projection algorithm. To reduce the dimensionality, the 3D com-
plex valued data arrays containing the signal as a function of the excitation and 
emission frequency and time, are reorganized into a matrix Y, each of its col-
umns representing the evolution in time of a specific pair of frequencies. A mul-
ti-exponential model is then defined by M E A= , where each column of E con-
tains a complex exponential function n kb t

nkE e=  and the amplitudes are found 
in the matrix A. 

The data analysis can also be extended to fit rephasing and non-rephasing da-
ta simultaneously by building appending blocks of data to form the matrix Y. As 
this problem is computationally challenging due to its size, the authors suggest 
using in the minimization step a subsample of the data in the frequency dimen-
sions, reporting that even using only 5% of the data gives satisfactory results. 

3.2. Tomography 

The next articles concern tomography: the imaging by sectioning of objects, or 
more generally, 2 and 3D imaging of the inside of objects using different signals 
and the reconstruction techniques employed to recover the information about 
these objects from the imaging data. For some of the medical imaging methods, 
a radiation source is used and the data acquired are multiple 2D images or pro-
jections taken from different angles. In transmission tomography, such as com-
puterized tomography (CT), the radiation source is outside the object: a rotating 
X-ray tube generates X-rays that travel through the object. The detector meas-
ures the line integral of the beam intensity and the quantity to be reconstructed 
is the attenuation coefficient of the medium. In emission tomography (ECT), 
like PET and SPECT, the radiation source is inside: a radioactive tracer is intro-
duced into the body. In the case of SPECT, the tracers emit gamma radiation 
that is measured. PET tracers emit positrons that when colliding with nearby 
electrons produce two gamma photons. The gamma radiation is detected by a 
rotating gamma camera that acquires multiple 2D images from different angles. 
The quantity to be reconstructed in both cases is the distribution and concentra-
tion of the radioactive tracer in the different parts of the body. Finally, pho-
to-acoustic tomography is based on the PA effect, the formation of sound waves 
following light absorption. The PA signals are acquired at several locations 
around the object using a transducer array, while the goal of the photo-acoustic 
imaging reconstruction is to retrieve the local pressure rise inside the tissue. 
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Article [27] evaluates reconstruction techniques applied to data obtained from 
CT scans. Incidentally, these techniques could also be used in other applications, 
for example seismic tomography. For medical tomography, there are two differ-
ent reconstruction procedures: the direct inversion methods that reverse the Ra-
don transform (the line integral of the beam intensity) by, for example, filtered 
back projection, and the algebraic reconstruction methods, more adequate when 
the data have not been regularly sampled. 

The data produced by a CT scan of an unknown object 3∈u  are a finite 
number of samples ( )1, m

i i ip s η  of the intensity integral of a X-ray defined by its 
so called acquisition parameters, origin s  and direction η : 

( ) ( ), d .p t t= +∫s u sη η  

The reconstruction problem is then reduced to solving the linear rectangular 
system W =u p , where W is the m n×  projection matrix, depending on the 
parameters ( ),i is t . This can be computed by least squares methods. In practice 
though, often the geometry of the imaging system, i.e., the acquisition parame-
ters ( ),s η  are not known accurately, for example due to faulty calibration, and 
this produces alignment errors. One option would be to consider the problem as 
a Total Least Squares problem, i.e., a linear problem where the errors are not 
only restricted to the observations p  but also the matrix W is not known ex-
actly. 

Instead the authors suggest a method belonging to the class of projection 
matching methods. Basically they solve the nonlinear model, 

( ) ,W =a u p  

where the unknown l∈a  contains the parametrization of possible rigid mo-
tions, three shifts and three rotations, for each projection image. The authors 
note that this is a possible severely ill-conditioned problem and since its para-
meters separate, into the nonlinear a  and the linear u , they suggest an alter-
nating optimization procedure. After solving analytically for the linear parame-
ters u , i.e., eliminating the reconstruction part of the problem, they describe 
several gradient-descent algorithms to solve the resulting nonlinear optimization 
problem, and state their convergence behavior, considering when approximate 
derivatives are used and in case of constraints on the alignment parameters. 

The articles [27] [28] [29] consider the case of SPECT tomography. SPECT 
imaging methods are governed by the photon transport equation and the recon-
struction involves the attenuated Radon transform. Two unknown quantities 
must be estimated simultaneously: the radioactive emission source (the distribu-
tion of the radionuclides) ( ),f x E  and the photon attenuation coefficient of 
the tissue ( )xµ , from the acquired data ( ),p s θ  on the line defined by ( ),s θ . 
The variables x and E are position and energy. The attenuated Radon transform 
is: 

( ) ( ) ( )( ) ( ), exp d d , .
t

R f s f s t s t p sµ θ θ θ µ θ τθ τ θ
∞ ∞⊥ ⊥

−∞
= + − + =∫ ∫  

https://doi.org/10.4236/ajcm.2019.94020


V. Pereyra, G. Scherer 
 

 

DOI: 10.4236/ajcm.2019.94020 269 American Journal of Computational Mathematics 
 

Under the assumption that the emission data follow a Gaussian distribution, a 
nonlinear least squares problem can be defined including a regularization term 
to avoid irregular distributions of ( ),f µ , 

[ ]2

2,
min , .

f
R f p I fµµ

α µ− +  

Bronnikov exploits the fact that the variables f and µ  are respectively linear 
and nonlinear to design a variable projection algorithm along the lines of 
VARPRO that works well. On the other hand, Gourion et al. use nonlinear op-
timization methods directly. They also consider that a Poisson distribution is 
more appropriate for the data. 

Finally, articles [30] and [31] study the newest field in biomedical imaging: 
photo-acoustic computed tomography (PACT). In this imaging technique, short 
laser pulses are directed at the object. The absorption of the optical energy pro-
duces local heating causing expansion of the tissue and consequent photo-acoustic 
wave-fields that can be measured outside the body using piezoelectric ultrasonic 
transducers. The signals that they receive are convolved with their acoustic-electric 
impulse response (EIR). In [31] the authors choose to incorporate the effect of 
EIR into the reconstruction. This results in an inverse model with separable li-
near and nonlinear parameters: 

( ) .=u H h θ  

Here, the matrix H  contains the approximations to the function  
( ) ( )j jθ φ= ∑A r r  which represents the absorbed optical density of the object 

under study. H  also depends on the sampled EIR values represented by h . 
The image reconstruction is now formulated as an optimization problem in h  
and θ  with regularization terms: 

( ) ( ) ( )2
1 2min .R Rλ α− + +u H h hθ θ  

To estimate the parameters, the authors alternate the minimization between 
the linear and the nonlinear parameters. 

3.3. Nuclear Magnetic Resonance (NMR) Spectroscopy and  
Imaging 

This is one of the most important applications of VARPRO as explained in [4] 
and we keep seen strong use as many more specific and new results come out for 
practical applications. 

The physical phenomenon associated with NMR involves a sample that is 
placed in a magnetic field and is irradiated with a radio-frequency (RF) pulse of 
a determined resonant frequency. The nuclei in the sample emit a signal that can 
be recorded and interpreted. NMR can be used to identify what molecules are 
present because the resonant frequency (Larmor frequency) depends among 
other factors, on the molecules. In imaging applications, hydrogen is typically 
the molecule of interest. 

In more detail, the 1
2

-protons in the hydrogen nuclei have two eigenstates 
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( 1
2

m = ± ), which in the absence of a magnetic field have the same energy. After  

a strong external static magnetic field is applied, most of the protons fall into the 
lower of the two states (for most isotopes used in NMR: 1 2m = + ). When the 
RF pulse is applied some protons are excited back into higher energy state 
( 1 2m = − ) and when they decay back to the lower state an electromagnetic 
radiation is emitted that can be measured. In the literature, 1T  or relaxation 
time, defines the equilibrium recovery time needed by the sample after the RF 
excitations. To produce images of the interior of the sample, i.e., to localize the 
NMR signals, spatial variations in the magnetic field strength across the sample 
are generated, the gradient fields. 

Already in our 2003 review article we listed a number of articles with applica-
tions in which the data obtained through NMR was evaluated using the variable 
projection algorithm. An important area of application is still in vivo MR spec-
troscopy. In [32] contrast enhanced MR imaging is used to obtain a time-series 
of the contrast concentration in the blood plasma and the extra-vascular, ex-
tra-cellular space (EES) of prostate tissue, both cancerous and non-cancerous. 
The perfusion model, i.e., the pharmacokinetic model of the passage of fluid 
between the capillaries and the capillary bed (EES) used is a two-compartment 
model (Tofts), with the contrast concentration in each voxel given (after discre-
tization) by ( ) trans

i i p i epv k K= +p a Ah . Here, the linear parameters are the 
transfer constant transK  and the vascular fraction pv , while the nonlinear pa-
rameter is the rate constant epk . The arterial input function a  is a known 
function of time. This model can be fitted voxel-wise to the MR image data in 
the least squares sense. 

The authors have compared two different algorithms to obtain the perfusion 
parameters: using Levenberg-Marquardt to estimate all the parameters and ap-
plying the variable projection separation of variables idea to define a nonlinear 
LSQ problem in the parameter pk , followed by the solution of the linear LSQ 
problem in the two linear parameters. To solve the nonlinear optimization prob-
lem in one variable they use Golden Section Search. Their accuracy and noise 
sensitivity comparisons included numerical simulations using parameter values 
in the range reported both for normal and malignant tissue to generate simu-
lated MR signals that were later converted back into concentration functions af-
ter the determination of the parameters by the two optimization algorithms 
mentioned above. The results were comparable, but the VP based technique was 
three times as fast as LM for all the variables. More important for the medical 
application were the clinical trials with 20 patients. Here the LM failed to con-
verge in approximately 15% of the tissues, including normal and cancerous, 
whereas the VP technique converged in 100% of cases. 

In article [33], global and target analysis of the time-resolved spectra obtained 
in bioenergetic applications are reviewed. Spectroscopy is used here as a tool to 
investigate the dynamic properties of complex biological systems through the 
application of a short pulse of high energy that produces reactions like absorp-
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tion or fluorescence. Often the data collected depend on two parameters, one va-
riable is the wave length and the second is the time after excitation. 

To analyze the measurements and estimate the physicochemical parameters, 
both the kinetics (the compartmental model determined by transitions between 
the states) and the spectra must be modeled. One assumption is that the system 
is separable, meaning that the spectroscopic data of a complex compound is the 
superposition of the spectroscopic properties of the components weighted by 
their concentration. The simplest unidirectional kinetic model is used in global 
analysis, when the response is considered to be a sum of a few (2 - 4) exponential 
decays convolved with the instrument response function (IRF), i.e., the data at 
different wavelengths are all approximated with a single set of exponentials. 
Target analysis is used when the problem requires a more complicated kinetic 
model involving for example forward and reversible reactions, independent de-
cays, etc. 

In both cases the parameters in the final model (both the kinetic and the spec-
tra) must be fitted. Assuming normally distributed noise, a nonlinear least squares 
fit gives the maximum likelihood estimator. The nonlinear least squares approxi-
mation leads to a separable nonlinear problem that is solved using the variable 
projection algorithm. Results for the application to the study of ultrafast dynam-
ics of the photoactive yellow protein are presented. 

In [34] a complementary approach to global analysis is described, the so called 
lifetime density analysis (LDA). It is a technique used in ultrafast (femto- and 
pico-second) spectroscopy, when investigating energy and charge transfer in 
complex photosystems. Instead of using a small set of exponential decays to fit 
the data, one assumes that they are better represented by the integral of a conti-
nuous distribution of decays. This integral is discretized using a sum of a large 
(~100) lifetimes distributed along the time of the experiment. The resulting ap-
proximation problem in matrix notation is: 

( ) 2
, 2

min .x nD x Aτ τ −  

Here, nA  is the ( )m n×  measurement matrix at the m time delays and n 
wavelengths, D is the matrix of the IRF convoluted with the exponential delays 
and x contains the amplitudes associated with the lifetimes. Again, it is a separa-
ble nonlinear least squares problem and it is solved by the variable projection 
algorithm. 

Contrary to the global analysis strategy, the LDA approach has a large number 
of parameters and overfitting must be considered. The authors suggest the use of 
the well-known regularization techniques, truncated SVD and Tikhonov regula-
rization. They also discuss briefly several other methods which they have in-
cluded into the software, an open source Python package with GUI, that can be 
downloaded from the web. 

Article [35] describes a technique to obtain more accurate estimates of spec-
tral parameters when evaluating MR spectroscopic imaging (MRSI). One of the 
difficulties in spectral quantification is that the problem is not well conditioned. 
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A way to avoid the large uncertainties is to incorporate the spatial smoothness 
information contained in the tissue properties. So, instead of computing the 
spectral parameters for each voxel independently, the idea is to work with a joint 
formulation: 

( ) ( ) ( )2

2,
ˆˆ, arg min , .= − +

a
a d K a R a

θ
θ θ θ               (3) 

Here ,a θ  are the linear and nonlinear parameters, d  the data, and ( ),R a θ  
is a two-term penalty function added for regularization: 

( ) 2

2 1
, .Wλ η= + aR a θθ  

The terms in Wθ  and a  are designed to impose smoothness of all the pa-
rameters across the voxels. The proposed algorithm reformulates the optimiza-
tion problem (3) as two consecutive subproblems, the first is the nonlinear least 
squares problem (3) but only with the 2l  penalty term of R , while the second 
subproblem is again equation (3), now only with the 1l  penalty term of R . 
The first subproblem is solved using the variable projection strategy to compute 
an updated value for the nonlinear parameters θ , which is then fed into the 
second subproblem. This is then a linear least squares problem in the parameters 
a  with an 1l -norm regularization term and is solved by an alternating direc-
tion method of multipliers. 

The technique was tested using several data sets, both from simulated and 
from in vivo experiments, and its performance was compared with QUEST, 
another method. The conclusion is that the accuracy is considerably improved, 
which was also confirmed by a Cramer-Rao bound analysis. The drawback is the 
cost of the computations, ( )2 2P N , with P the number of voxels and N the 
parameters for each voxel. This compares unfavorably with a voxel by voxel ap-
proach, where the cost is ( )2PN . 

For long echo-time MRS signal modeling, VARPRO is used to fit a sum of 
complex damped exponentials. In [36] and [37] data quantification of metabo-
lites in the case of short echo-time is considered. The in vivo short echo-time 
MRS are richer and therefore a more efficient solution is to create first a data-
base of in vitro spectra measurements kv  of the individual metabolites. The in 
vivo signals ( )y t  are then fitted with a combination of these kv , corrected by 
parameters kα , kς , and kη  to be determined in order to allow for specific scans. 
A baseline term ( )b t  that globally represents the signals of other non-dominant, 
non-specified metabolites possible present, may also be added. This term is ap-
proximated by splines. The approximation problem considered is a non-linear 
least squares problem with a regularizing term: 

( ) ( ) ( ) ( ) ( )( )
2

0

2
2

, , , 1
min .

mt K t t H H
k k k k

t t k
y t v t A t D Dα ς η λ

= =

− − +∑ ∑
a c

c c c
ς η

 

Here, the matrix D is a discrete differential operator acting as a regularization 
matrix. The parameters kα  have the form ( )expk k ka iα φ=  with ka  the real 
amplitudes and kφ  the phase shifts. The kς  and kη  are nonlinear in the 
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damping correction parameters. The coefficients of the spline approximation of 
the baseline c  are always linear. If the amplitude parameters kα  are linear, 
the problem can be computed with VARPRO for complex problems. This is also 
the case even when constrains on the nonlinear parameters are imposed. 

However, if there are constraints on the linear parameters kα  there is a dif-
ficulty because it is not possible, as is done in the variable projection technique, 
to write a closed-form solution for the linear problem part. One common oc-
currence for the approximation in MRS data quantification is that it requires 
equal phase corrections kφ  and non-negative real amplitudes ka . 

The algorithm described in the articles approaches this case by optimizing 
the nonlinear problem with the nonlinear parameters augmented by a common 
phase correction 0φ . At each iteration of the nonlinear optimization an approx-
imate value for the linear parameters is computed from the constrained linear 
least squares problem with the fixed nonlinear parameters of the last iteration 
step. 

It is shown in [37], by numerical tests, that this algorithm is more efficient 
and more accurate than a “full” LS solution, where the linear and nonlinear pa-
rameters are optimized together. An open source software package AQSES based 
on the above techniques is described and tested. See [36]. In article [38] this soft-
ware is further improved by taking into account the effect of inhomogeneities in 
the applied magnetic field and heterogeneities of the tissue. These cause distor-
tions of the NMR signals, for example a broadening of the frequency-domain 
line with a consequent possible spectral overlap, thereby impeding a correct me-
tabolite quantification. 

The components of an NMR signal in the time-domain are the resonance 
frequencies multiplied by the natural damping function (Lorentzian, Gaussian 
or Voigt), in turn multiplied by an instrumental broadening function and all 
with an added noise. The line-shape (actually damping function because it is 
done in the time-domain) correction algorithm described in [38] is an iterative 
procedure: A first step is a nonlinear least squares approximation via VARPRO 
of the signals ( )ty  with a model ( )y t , where line-shape distortions and base-
line are ignored: 

( ) ( ) ( )2

1
exp 2 .

K

k k k k k
k

y t d t g t if t v tα π
=

= − − +∑  

Using the spectral parameters thus obtained, an undisturbed signal ( )ˆ ty   

without the damping part is constructed. Then, from the quotient ( )
( )ˆ

y t
y t

 a cor-

rection of the damping function ( )g t  is constructed. After smoothing ( )g t ,  

eliminating any numerical instability and noise, a nonlinear least squares ap-
proximations step via VARPRO is again performed of ( ) ( )

denoised
ŷ t g t⋅   . This 

process is continued until convergence of the spectral parameters or the damp-
ing function. The authors have validated the efficiency of this technique in im-
proving the quantitation results using Monte Carlo simulations. 
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The articles [39] [40] [41] consider how to estimate the 1T  relaxation time 
parameter using the variable projection technique. The 1T  parameter is an in-
trinsic magnetic property of tissue and of importance in many clinical applica-
tions. For in vivo determination of 1T , multiple datasets of signal intensity at 
different timings are obtained. The signal intensity can be modeled by the ra-
tional function: 

( ) 1
1

1

exp
, , , , , 1, , .

1 exp

i

i
i

tA B
T

S t A B C T i N
tC
T

 
+ − 

 = =
 

− − 
 


 

If the radio-frequency pulse flip angles are almost perfect (Ernst angle), then 
the parameter C in the above rational model is close to zero and the model is a 
very simple one where the linear parameters can easily be separated from the 
nonlinear one. This model is used in [39] and [41]. The rational model is consi-
dered in [40] and the parameters are again determined using VARPRO. 

The two articles [42] and [43] describe a software for the quantification of 
brain metabolites using data obtained from 2D J-resolved magnetic resonance 
spectroscopy, a technique developed to reduce the spectral overlap common 
when using clinical strength 3T NMR. The ProFit tool described in the articles 
implements a variable projection algorithm that also takes into account possible 
linear relations between parameters of different metabolites, differences between 
parameters of different spins in the same metabolite and the fixing of specific 
parameters. 

The Dixon technique is a chemical shift imaging method that allows to create 
fat only or water only images, and can therefore be used when fat or water conceal 
the signal of interest. In [44], in order to reconstruct the images from a dual-echo 
Dixon, a voxel-wise cost function is defined in the linear parameters, water and 
fat magnitudes Wν , Fν  and the nonlinear ones, initial phase shared by water 
and fat 0ν

Φ  and νω , the phase induced by the inhomogeneity of the static 
magnetic field. To determine the maximum likelihood estimates of these para-
meters, a variable projection technique is used to solve a simplified nonlinear 
least squares problem. The method is applied to in vivo studies of foot/ankle and 
CE-MRA of thighs. 

The following study [45], on the effect of intra-or-extracellular water accu-
mulation and intracellular acidification in muscles on the rate of transverse 
relaxation was performed using spectroscopy before and after exercise. The 
resulting imaging data was modeled by a sum of exponentials and the maxi-
mum likelihood fit, a nonlinear least squares approximation, was solved using 
VARPRO. 

The subject of article [46], diffusion MRI (dMRI) uses the diffusion of water 
molecules in the generation of MRI tissue images. Molecular diffusion in tissues 
is constrained by interactions with obstacles such as macromolecules, fibers or 
membranes. In this paper, MIX, a method to characterize the tissue microstruc-
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ture of white matter fibers is developed. It uses a multi-compartmental model 
(intra-axonal, extra-axonal, isotropic) and allows for multiple fiber orientations. 
The data are fitted in the least squares sense to a combination of exponentials 
with constraints on the linear coefficients. In a first step, the algorithm con-
structs good initial values both of the linear and the nonlinear parameters. This 
is accomplished by applying the variable projection technique to separate linear 
from nonlinear parameters disregarding for the time being the fact that there are 
constraints on the linear parameters. The reduced nonlinear problem is solved 
using a stochastic method, a genetic algorithm, and the linear problem with con-
strained parameters is solved by CVX (Convex programming Matlab program 
designed by S. Boyd). In a second step, a trust region method is used to estimate 
all the parameters. The method was tested on synthetic and ex-vivo and in-vivo 
brain data. 

An interesting technique for quantitative MRI inspired by Compressed Sens-
ing and developed recently, Magnetic Resonance Fingerprinting (MRF), is the 
subject of the article [47]. The aim is to acquire enough magnetic resonance sig-
nal information in a reasonable short time to be able to deduce multiple tis-
sue-specific parameters such as 1T  and 2T  times and spin density ( )ρ x . Given 
the time restriction, and based on the assumption that the image can be approx-
imated by a low-dimensional model, MRF opts for an under-sampled k-space 
using incoherent data acquisition schemes. 

The data model has the form: ( ),= 1 2d FS T TΦ ρ , with Φ  and ρ  includ-
ing the parameters that are of interest, S  contains data-acquisition informa-
tion (coil sensitivities) and Φ  is the Fourier encoding matrix. If the noise is 
Gaussian, a maximum likelihood estimation leads to a nonlinear least squares 
problem to determine the optimum times ,1 2T T  and spin density ρ . One of 
the complications of using optimization methods to solve the problem is the fact 
that, since there is no analytic expression for the elements of Φ , then Bloch 
equation simulations have to be performed at each iteration. The algorithm 
proposed by the authors is an iterative method of a reformulated problem ob-
tained by the introduction of auxiliary variables and the subsequent splitting in-
to three subproblems, two of them linear least squares problems. The third is a 
nonlinear separable variables least squares problem solved using variable projec-
tion techniques. The time consuming Bloch equation solutions needed here are 
substituted by dictionary values computed in advance. 

Wilson [48] considers a new method for spectral registration. In contrast to 
previous approaches, the registration problem is formulated as a variable-pro- 
jection (VARPRO) in the frequency domain. The use of VARPRO allows the 
incorporation of baseline modeling, whilst also reducing the iterative optimiza-
tion complexity from two parameters (phase and frequency) to one (frequency). 
The approach is compared with TDSR (time-domain spectral registration), and 
found to be more robust to large frequency shifts (>7 Hz), baseline distortions 
and edited-MRS frequency misalignment. In his Ph. D. Thesis, Zhou [49] dis-
cusses and compares various methods for exponential fitting associated with 
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NMRI, including VARPRO. In [50] the authors consider an interesting applica-
tion to the assessment of myofascial trigger point via MRI for patients with mi-
graine. 

3.4. Brain Imaging 

This is an interesting area with great future potential as more brain research with 
electro-magnetic methods is performed. 

In [51] the authors consider diffusion MRI to map the brain microstructure. 
For this purpose they introduce a novel data fitting procedure based on mul-
ti-compartment models. Their model is separable and they use VARPRO and a 
global search algorithm in the nonlinear phase. They show that the algorithm is 
faster than the commonly used linear search without separation. The accuracy 
and robustness is demonstrated on synthetic and real data. 

Data-acquisition time length is a factor in the applicability of in-vivo spec-
troscopic imaging. Short data-acquisition time is possible when applying echo- 
planar spectroscopy imaging (EPSI) but with the disadvantage of a poor sig-
nal-to-noise ratio. The approach taken in [52] to obtain a high spatiotemporal 
resolution is to use a hybrid technique using a first step of double-echo chemical 
shift imaging (CSI) followed by an EPSI step. In the CSI step, the data sets 1sD  
and 1LD  with a limited number of spatial values but with high temporal resolu-
tion are acquired. In the second EPSI stage, a data set 2D  with extended space 
coverage but limited temporal sampling is obtained. The algorithm uses the un-
ion-of-spaces idea, namely that the measured signals are a sum of nuisance, 
baseline (macromolecules) and metabolite signals. It also assumes partial sepa-
rability of each sub-signal, i.e., that it can be modeled by a linear combination of 
temporal basis functions ( )l tϕ  with spatial components ( )lc k . In a first pre-
liminary step of the data processing, the nuisance signals are removed from the 
measured data. In a second step, the temporal basis functions of the baseline and 
the metabolite signals are determined from the information in the data sets ob-
tained from CSI. Finally, the spatial components are obtained from the signals 
measured with EPSI. The two last steps involve the solutions of a nonlinear least 
squares problems and are computed using VARPRO. 

In his Ph. D. Thesis [53], J-B Poullet is concerned with the quantification and 
classification of MRS data for brain tumor diagnosis. MR Spectroscopy is a com-
plementary technique to MR Imaging for brain cancer diagnosis. It provides me-
tabolic information that is not available with MRI. One of the steps in the long 
and complicated overall process involves AQSES, a time domain quantification 
method designed for short echo time MR spectra. The model involves a linear 
combination of corrected in vitro metabolic profiles and therefore VARPRO is a 
natural tool that is used with advantage. Although the use of VARPRO in MRS is 
not new, the author points out that the previous work was restricted to long echo 
time MRS signals and the use of complex damped exponentials. He found that 
the advantages of VARPRO are even larger than in the previous applications, 
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since now there are a large number of linear parameters that get eliminated. Also, 
initializing the nonlinear variable to zero provides a good starting point for the 
optimization process. 

4. Conclusion 

We have reviewed in detail the application of the Variable Projection method for 
two important areas: Geophysical and Medical Imaging. The common thread 
among these applications is the solution of separable nonlinear least squares 
problems. These are problems in which the model is a linear combination of 
nonlinear functions. The Variable Projection method proceeds to eliminate ana-
lytically the linear variables from the problem. This leads to a much improved 
behavior that has been analyzed quantitatively in [54]. The bottom line is that 
problems that hitherto have been very difficult to solve, become much tamer 
under the VP transformation. The reason for this behavior is an area that de-
serves more scrutiny in the future. 
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