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Abstract 
This study presents a comprehensive numerical investigation of fourth-order 
nonlinear boundary value problems (BVPs) using an efficient and accurate 
computational approach. The present work focuses on a class of nonlinear 
boundary value problems that commonly emerge in scientific and engineering 
applications, where the underlying models are often governed by complex 
nonlinear differential equations. Due to the difficulty of obtaining exact ana-
lytical solutions for such problems, numerical techniques become essential for 
reliable approximation. In this work, the Finite Difference Method (FDM) is 
adopted as the core numerical tool due to its robustness and effectiveness in 
solving such problems. A carefully designed finite difference scheme is devel-
oped to discretize the governing fourth-order nonlinear differential equations, 
converting them into a system of nonlinear algebraic equations. These systems 
are subsequently solved numerically using Maple software as the computa-
tional tool. The article includes two illustrative examples of nonlinear BVPs to 
demonstrate the applicability and performance of the proposed method. Nu-
merical results, including graphical representations, are provided for various 
step sizes. Both absolute and relative errors are calculated to assess the accu-
racy of the solutions. The numerical findings are further validated by compar-
ing them with known analytical or previously published approximate results. 
The outcomes confirm that the finite difference approach yields highly accu-
rate and reliable solutions. 
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1. Introduction 

Nonlinear boundary value problems (BVPs) involving ordinary differential equa-
tions (ODEs) play a vital role in both theoretical and applied mathematics. These 
problems frequently arise in fields such as physics, engineering, and computa-
tional science, where systems are modeled by nonlinear differential equations with 
constraints imposed at the boundaries of a domain. Examples include the bending 
of elastic beams, steady-state heat distribution, nonlinear electrical circuits, chem-
ical reaction kinetics, and mechanical systems under external forces. Unlike initial 
value problems (IVPs), BVPs often require boundary conditions at multiple 
points, making traditional step-by-step methods like Euler or Runge-Kutta less 
suitable. Moreover, the nonlinear nature of these problems introduces additional 
challenges, such as the lack of closed-form analytical solutions, structural com-
plexity, and sensitivity to initial guesses when iterative methods are used. These 
complexities highlight the necessity of accurate and efficient numerical tech-
niques. Despite significant progress in numerical analysis, solving nonlinear BVPs 
remains a challenging task due to potential issues with stability, convergence, and 
computational efficiency. Among the many available methods, the Finite Difference 
Method (FDM) stands out due to its simplicity, flexibility, and effectiveness in dis-
cretizing differential equations. However, when applied to nonlinear problems, 
FDM must be carefully tailored to maintain accuracy and ensure numerical stability. 

This study aims to investigate the numerical behavior and performance of FDM 
in solving selected nonlinear BVPs. By constructing a suitable finite difference 
scheme and applying iterative techniques, the study evaluates how effectively 
FDM can approximate solutions to the nonlinear boundary value encountered in 
applied mathematics and engineering. 

The specific objectives of this research are: 
1) To formulate representative nonlinear boundary value problems arising in 

real-world applications. 
2) To discretize these problems using appropriate finite difference schemes. 
3) To solve the resulting nonlinear algebraic systems numerically using the 

computational software, Maple. 
4) To compare the numerical solutions with known analytical or benchmark 

solutions. 
5) To assess the limitations of the method and suggest improvements or alter-

natives. 
6) To demonstrate the practical utility of the method in modeling nonlinear 

physical systems. 
Through this work, we aim to contribute to the advancement of reliable and 

computationally efficient techniques for solving nonlinear BVPs and to support 
their broader application in scientific computing and engineering practice.  

This paper is organized as follows: Section 2 reviews the literature; Section 3 
outlines assumptions and limitations; Section 4 describes the study; Section 5 pre-
sents the finite difference scheme; Section 6 discusses accuracy analysis; Section 7 
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provides numerical examples; Section 8 examines the rate of convergence; Section 
9 discusses the results; and Section 10 concludes the paper. 

2. Literature Review 

The numerical analysis of nonlinear boundary value problems (BVPs) arising 
from ordinary differential equations (ODEs) has become a crucial area of research 
in mathematics and applied sciences. These problems frequently emerge in real-
world systems such as fluid dynamics, heat transfer, chemical reactions, popula-
tion models, elastic structures, and other engineering applications, where the gov-
erning models are nonlinear and defined over specific boundary conditions. How-
ever, solving these BVPs analytically is often challenging or even impossible due 
to their inherent nonlinearity and complexity. To overcome such challenges, re-
searchers have developed and employed a variety of numerical methods aimed at 
obtaining approximate yet accurate solutions. One of the most widely used tech-
niques is the finite difference method (FDM), which converts differential equa-
tions into systems of algebraic equations using discrete approximations. Due to 
its conceptual simplicity, computational efficiency, and strong adaptability, the 
FDM has become a popular choice for solving linear and nonlinear BVPs. 

Over the past several decades, a significant body of literature has been dedicated 
to the development and improvement of numerical techniques for BVPs. In par-
ticular, the fourth-order and higher-order nonlinear BVPs, which frequently arise 
in modeling beam deflection, viscous flows, and biological processes, have re-
ceived considerable attention. For instance, Noor and Mohyud-Din applied the 
variational iteration method (VIM) to effectively handle fourth-order boundary 
value problems [1]. Hashim employed the Adomian decomposition method 
(ADM) to tackle both linear and nonlinear fourth-order integro-differential equa-
tions [2]. Similarly, Pandey used the finite difference method to develop numeri-
cal solutions for sixth-order linear BVPs [3]. Salama and Mansour proposed a fi-
nite difference scheme for third-order nonlinear BVPs [4], while Wang and Guo 
designed a compact finite difference method with a non-isotropic mesh to solve 
two-dimensional fourth-order nonlinear elliptic BVPs [5]. In another approach, 
Dang and Luan introduced an iterative technique to solve nonlinear fourth-order 
boundary problems [6]. Momani and Moadi utilized both the classical and mod-
ified forms of the Adomian decomposition method to obtain numerical solutions 
of BVPs with two-point boundary conditions [7]. Mohyud-Din and Noor inves-
tigated the homotopy perturbation method (HPM) for similar problems [8], while 
Liang and Jeffrey developed the homotopy analysis method (HAM) to find series 
solutions of fourth-order two-point boundary problems [9]. Xu contributed to the 
field by solving fourth-order BVPs using the variational iteration method [10], 
and Hayani and Casasus addressed similar problems through an approximate an-
alytical approach using decomposition methods [11]. Additional researchers have 
applied spline methods, collocation techniques, and shooting methods to solve 
nonlinear boundary value problems effectively [12]-[15]. These studies demon-
strate the continuing evolution of numerical tools and the increasing focus on im-
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proving the accuracy, stability, and computational efficiency of solutions. 
In summary, the existing literature clearly highlights the wide range of tech-

niques developed for solving BVPs and emphasizes the importance of efficient 
numerical approaches for tackling nonlinear ODEs. The finite difference method, 
in particular, remains a powerful and reliable tool in this domain. Therefore, this 
study focuses on using an efficient version of the finite difference method to solve 
nonlinear BVPs modeled by ordinary differential equations, aiming to obtain ac-
curate numerical results while ensuring computational efficiency and robustness. 

3. Assumptions and Limitations 
3.1. Assumptions 

1) The nonlinear boundary value problems under consideration are assumed to 
be well-posed, meaning they have solutions that are unique and continuously de-
pend on the boundary value. 

2) The differential equations and boundary conditions are sufficiently smooth 
to allow for discretization and numerical approximation using finite differences. 

3) The resulting system of algebraic equations is solved using by a Maple soft-
ware. 

4) It is assumed that rounding and truncation errors introduced during numer-
ical computation are within acceptable limits. 

3.2. Limitations 

1) The study is restricted to one-dimensional or simplified forms of nonlinear 
BVPs to make the implementation and analysis manageable. 

2) Only stationary (time-independent) problems are considered; time-depend-
ent PDEs are outside the scope of this research. 

3) The numerical method may suffer from convergence issues for problems 
with strong nonlinearities or discontinuities. 

4) The quality of the results depends on the step size used in discretization; very 
fine meshes increase accuracy but also computational cost. 

5) Only Dirichlet or simple boundary conditions are considered; more complex 
boundary types such as Neumann or Robin conditions may require additional 
analysis. 

4. Description of the Study 

This study employs a quantitative research design, focusing on the application of 
numerical methods to solve nonlinear boundary value problems (BVPs) for ordi-
nary differential equations (ODEs). The research aims to investigate the effective-
ness and efficiency of finite difference methods (FDM), among other numerical 
approaches, for obtaining approximate solutions to these problems. 

The study follows a structured procedure: 
1) Problem Formulation: Initially, a set of representative nonlinear boundary 

value problems (both linear and nonlinear) is selected, modeled as ODEs with 
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appropriate boundary conditions. 
2) Discretization of the Domain: The continuous domain of the differential 

equations is discretized using a grid-based approach. The chosen method, finite 
difference, approximates the derivatives using finite differences at discrete grid 
points. 

3) Numerical Implementation: The nonlinear boundary value problems are 
discretized using the finite difference method, and the resulting system of equa-
tions is solved using Maple software to obtain numerical approximations. 

4) Error Analysis: The absolute error and relative error are calculated by com-
paring the numerical solutions to exact solutions (if available) or results from 
other established numerical methods.  

5) Programming Tools: The numerical simulations and computations are im-
plemented using MATLAB and Maple. These programming environments are 
well-suited for solving differential equations and performing numerical analysis, 
with built-in libraries for matrix operations and algebraic solvers. 

6) Validation Techniques: To ensure the reliability of the results, numerical 
solutions are compared with known exact solutions (for cases where they exist) or 
validated using other numerical methods from the literature. 

5. Finite Difference Scheme for Fourth Order Boundary 
Value Problem 

The primary objective of this research is to investigate nonlinear ordinary differ-
ential equations subject to boundary conditions. Finite difference methods serve 
as powerful numerical tools for solving boundary value problems by replacing dif-
ferential equations with corresponding difference equations through mathemati-
cal discretization. To demonstrate the fundamental concepts and implementation 
of the finite difference technique, we consider a general fourth-order non-linear 
boundary value problem (BVP) of the form: 

 ( ) ( ) ( ) ( )( )
4

4
d , , , , ;
d

y f x y x y x y x y x a x b
x

= ′′ ′′ ≤′ ≤′  (5.1) 

With boundary conditions: 

 ( ) 0y a α= ; ( ) 0y a β′ = ; ( ) 1y b α= ; ( ) 1y b β′ =  (5.2) 

or 

 ( ) 0y a α= ; ( ) 0y a β′′ = ; ( ) 2y b α= ; ( ) 2y b β′′ =  (5.3) 

where f  is a continuous function on [a, b] and the parameters iα  and iβ , 
where, 0,1,2i =  are real constants. let us consider,  

0 1 3 1               n na x x x x x b−= ≤ ≤ ≤ ≤ ≤ =  represents a regular partition of the interval [a, 

b], that is, ; 0,1,2, ,ix a ih i n= + =   and b ah
n
−

= . The points  

1 2 1 1, , , n nx a h x x h x x h−= + = + = +  are called interior mesh points of the inter-
val a x b≤ ≤ . 
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Also, for finding numerical approximate solutions we consider, ( )i iy y x=  
and, second order central difference approximations to the first four derivatives 
of y(x) are as follows: 

( ) 1 1

2
i iy yy x

h
+ −−′ ≈  

1 1
2

2i i iy y yy
h

+ −− +′′ ≈  

2 1 1 2
3

2 2
2

i i i iy y y yy
h

+ + − −− + −′′′ ≈  

2 1 1 2
4

4 6 4i i i i iy y y y y
y''''

h
+ + − −+ − +−

≈  

In this method, the derivatives in the differential equation and boundary con-
ditions are replaced with their corresponding finite difference approximations. 
The resulting system of algebraic equations is then solved using a Maple software. 
The solutions obtained at the discrete grid points represent the approximate val-
ues of the required solution to Equation (5.1) at the pivotal nodes. 

6. Accuracy Analysis Scheme 

The accuracy of the numerical solution obtained using the proposed finite differ-
ence method largely depends on the choice of the step size h . As h  becomes 
smaller, the approximation generally becomes more accurate, thereby reducing 
the numerical error. A numerical solution ( )ny x  is said to converge to the exact 
solution ny  if, for any given 0δ > , there exists a sufficiently large positive inte-
ger N  such that ( )n ny x y δ− <  for all n N≥ . 

When an exact analytical solution is available, the numerical error is measured 
using the absolute error formula: 

( ) .r n ne y x y= −  

This approach provides a quantitative assessment of the method’s accuracy and 
demonstrates the effect of mesh refinement on the convergence of the numerical 
solution. 

7. Numerical Examples 

In this section, two nonlinear boundary value problems (BVPs) are considered to 
evaluate the accuracy of the proposed finite difference method. Numerical results 
are computed and presented in Tables 1-6, while the corresponding errors are 
illustrated graphically in Figures 1-6. 

Example 1: We consider a fourth-order simplified forms of nonlinear beam 
deflection boundary value problem is given by 

( ) 2 2  sin cosivy y y y x x′′′ ′′+ + = − ⋅  

subject to the boundary conditions: 

( ) ( ) ( ) ( ) ( ) ( )0 0, 1 sin 1 , 0 0, 1 sin 1y y y y′′ ′′= = = = −  
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The exact solution of the problem is ( ) siny x x= . The approximate numerical 
results and the associated errors are computed using the proposed finite difference 
method and are presented in Tables 1-3. Graphical representations of the numer-
ical solution and error behavior are shown in Figures 1-3. 

 
Table 1. Numerical results for step size 0.1h = . 

Values of x Exact Solution Numerical Solution Absolute Error Relative Error (%) 

0.1 0.09983341665 0.09795969559 0.187372106e−2 1.876847576 

0.2 0.1986693308 0.1950699157 0.35994151e−2 1.811761828 

0.3 0.2955202067 0.2904877281 0.50324786e−2 1.702921995 

0.4 0.3894183423 0.3833794515 0.60388908e−2 1.550746368 

0.5 0.4794255386 0.4729198838 0.65056548e−2 1.356968763 

0.6 0.5646424734 0.5582886701 0.63538033e−2 1.125279022 

0.7 0.6442176872 0.6386646358 0.55530514e−2 0.8619836913 

0.8 0.7173560909 0.7132190523 0.41370386e−2 0.5767064158 

0.9 0.7833269096 0.7811088751 0.22180345e−2 0.2831556624 

 
Table 2. Numerical results for step size 0.05h = . 

Values of x Exact Solution Numerical Solution Absolute Error Relative Error (%) 

0.1 0.09983341665 0.09795584209 0.187757456e−2 1.880707506 

0.2 0.1986693308 0.1950632166 0.36061142e−2 1.815133813 

0.3 0.2955202067 0.2904797130 0.50404937e−2 1.705634195 

0.4 0.3894183423 0.3833717268 0.60466155e−2 1.552730019 

0.5 0.4794255386 0.4729137642 0.65117744e−2 1.358245207 

0.6 0.5646424734 0.5582849144 0.63575590e−2 1.125944168 

0.7 0.6442176872 0 .6386633057 0.55543815e−2 0.8621901588 

0.8 0.7173560909 0.7132195041 0.41365868e−2 0.5766434345 

0.9 0.7833269096 0.7811098828 0.22170268e−2 0.2830270188 

 
Table 3. Numerical results for step size 0.025h = . 

Values of x Exact Solution Numerical Solution Absolute Error Relative Error (%) 

0.1 0.09983341665 0.09983425936 8.42710000E−07 8.44116157E−04 

0.2 0.1986693308 0.1986709614 1.63060000E−06 8.20760806E−04 

0.3 0.2955202067 0.2955225166 2.30990000E−06 7.81638598E−04 

0.4 0.3894183423 0.3894211707 2.82840000E−06 7.26314016E−04 

0.5 0.4794255386 0.4794286752 3.13660000E−06 6.54241326E−04 

0.6 0.5646424734 0.5646456609 3.18750000E−06 5.64516513E−04 

0.7 0.6442176872 0.6442206248 2.93760000E−06 4.55994931E−04 

0.8 0.7173560909 0.7173584375 2.34660000E−06 3.27117875E−04 

0.9 0.7833269096 0.7833282879 1.37830000E−06 1.75954634E−04 
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Figure 1. Comparison of exact and numerical solutions. 

 

 
Figure 2. Comparison of absolute errors for different step sizes. 

 

 
Figure 3. Comparison of relative errors (%) for different step size. 
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Example 2: We consider a fourth-order nonlinear boundary value problem for 
an exponential growth in biological model is given by 

( ) 2 2 416e 5eiv x xy y y y′′+ ⋅ + = +  

subject to the boundary conditions: 

( ) ( ) ( ) ( )2 20 1, 1 e , 0 4, 1 4ey y y y′′ ′′= = = =  

The exact solution of this problem is ( ) 2e xy x = . The approximate numerical 
results and corresponding errors are computed using the proposed finite differ-
ence method. The outcomes are presented in Tables 4-6, and the graphical illus-
trations of the solution and errors are shown in Figures 4-6. 
 

Table 4. Numerical results for step size 0.1h = . 

Values of x Exact Solution Numerical Solution Absolute Error Relative Error (%) 

0.1 1.221402758 1.221761296 0.358538e−3 0.2935460868e−1 

0.2 1.491824698 1.492468218 0.643520e−3 0.4313643559e−1 

0.3 1.822118800 1.823019279 0.900479e−3 0.4941933534e−1 

0.4 2.225540928 2.226696784 0.1155856e−2 0.5193595793e−1 

0.5 2.718281828 2.719693034 0.1411206e−2 0.5191536747e−1 

0.6 3.320116923 3.321753038 0.1411206e−2 0.4250470790e−1 

0.7 4.055199967 4.056959712 0.1759745e−2 0.4339477743e−1 

0.8 4.953032424 4.954693538 0.1661114e−2 0.3353731326e−1 

0.9 6.049647464 6.050806089 0.1158625e−2 0.1915194244e−1 

 
Table 5. Numerical results for step size 0.05h = . 

Values of x Exact Solution Numerical Solution Absolute Error Relative Error (%) 

0.1 1.221402758 1.221494266 0.91508e−4 0.7492041376e−2 

0.2 1.491824698 1.491989170 0.164472e−3 0.1102488786e−1 

0.3 1.822118800 1.822349033 0.230233e−3 0.1263545494e−1 

0.4 2.225540928 2.225836254 0.295326e−3 0.1326985257e−1 

0.5 2.718281828 2.718641859 0.360031e−3 0.1324480031e−1 

0.6 3.320116923 3.320533517 0.416594e−3 0.1254757015e−1 

0.7 4.055199967 4.055647093 0.447126e−3 0.1102599141e−1 

0.8 4.953032424 4.953453606 0.421182e−3 0.8503517925e−2 

0.9 6.049647464 6.049940651 0.293187e−3 0.4846348514e−2 

 
Table 6. Numerical results for step size 0.025h = . 

Values of x Exact Solution Numerical Solution Absolute Error Relative Error (%) 

0.1 1.221402758 1.2205299837 8.72774300E−04 7.14567160E−02 

0.2 1.491824698 1.4911096461 7.15051900E−04 4.79313622E−02 
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Continued 

0.3 1.822118800 1.8213228028 7.95997200E−04 4.36852526E−02 

0.4 2.225540928 2.2248593792 6.81548800E−04 3.06239616E−02 

0.5 2.718281828 2.7175128204 7.69007600E−04 2.82902086E−02 

0.6 3.320116923 3.3193584258 7.58497200E−04 2.28454966E−02 

0.7 4.055199967 4.0546528928 5.47074200E−04 1.34906837E−02 

0.8 4.953032424 4.9526132169 4.19207100E−04 8.46364538E−03 

0.9 6.049647464 6.0488979234 7.49540600E−04 1.23898228E−02 

 

 
Figure 4. Comparison of exact and numerical solutions. 

 

 
Figure 5. Comparison of absolute errors for different step sizes. 
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Figure 6. Comparison of relative errors (%) for different step sizes. 

8. Rate of Convergence 

To evaluate the efficiency and accuracy of the proposed numerical scheme, we 
performed a convergence analysis based on two test problems using three differ-
ent step sizes: 0.1h = , 0.05h = , and 0.025h = . The aim is to measure how the 
error decreases as the step size becomes smaller. This is quantitatively expressed 
through the order of convergence, calculated using the standard logarithmic for-
mula: 

1

1

log

log

k

k

k

k

e
e

p
h
h

+

+

 
 
 =
 
 
 

 

where ke  and 1ke +  are the maximum errors (absolute or relative) correspond-
ing to step sizes kh  and 1kh + , respectively. This formula provides the empirical 
convergence rate, indicating how closely the method approaches its theoretical 
accuracy. 

For Problem 1, the method showed no observable convergence between 
0.1 0.05h = →  both absolute and relative errors stagnated, with convergence or-

ders near zero. However, a significant drop in error was observed between 
0.05 0.025h = → , resulting in extremely high convergence orders 10.996p ≈  

for absolute error and 11.12p ≈  for relative error indicating rapid convergence 
once the asymptotic regime is reached. In contrast, Problem 2 exhibited smoother 
and more predictable behavior. Absolute errors decreased steadily, yielding a 
moderate convergence order of 1.98p ≈ . However, when the step size was fur-
ther refined from 0.05 0.025h = →  the convergence order dropped to  

0.9649p ≈ −  indicating a breakdown in convergence likely due to numerical in-
stability or stiffness in the problem. In terms of relative error, the method initially 
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exhibited near-quadratic convergence with 1.97p ≈  between 0.1 0.05h = → , 
but the order significantly declined to 2.4289p ≈ −  for 0.05 0.025h = → , re-
flecting numerical saturation or divergence at finer grids. Despite these challenges, 
the method retains acceptable accuracy at moderate resolutions, and its effective-
ness may be enhanced with stabilization techniques when applied to stiff or highly 
nonlinear problems. 
 
Table 7. Table of convergence behavior. 

Problem Error Type Step Interval Order p Behavior 

1 Absolute 0.1 0.05h = →  –0.0014 No convergence 

1 Absolute 0.05 0.025h = →  10.996 High convergence 

1 Relative 0.1 0.05h = →  –0.0030 No convergence 

1 Relative 0.05 0.025h = →  11.12 Rapid convergence 

2 Absolute 0.1 0.05h = →  1.98 
Moderate  

convergence 

2 Absolute 0.05 0.025h = →  –0.9649 No convergence 

2 Relative 0.1 0.05h = →  1.97 
Near quadratic 

convergence 

2 Relative 0.05 0.025h = →  –2.4289 
No significant  

convergence at the 
finer grid 

9. Discussion of Results 

The results of the numerical solution of the nonlinear boundary value problem 
(BVP) using the proposed finite difference method are presented in Tables 1-3 
and Tables 4-6, with corresponding graphical illustrations shown in Figures 1-3, 
and Figures 4-6. The convergence behavior associated with these results is sum-
marized in Table 7. Numerical solutions were computed for step sizes 0.10h = , 

0.05h =  and 0.025h = , and were compared against the exact solution to assess 
the performance and accuracy of the method. The graphical representations 
clearly demonstrate that the numerical solutions closely approximate the exact 
solution, with improved accuracy observed for the smaller step size 0.025h = . 
As the step size decreases, the numerical values align more closely with the exact 
values, indicating a higher level of precision and better convergence. This is a typ-
ical characteristic of well-behaved numerical schemes. To quantitatively evaluate 
the accuracy of the method, both absolute error and relative error have been cal-
culated. The absolute error, defined as the direct difference between the exact and 
numerical solutions, shows a noticeable reduction as the step size becomes 
smaller. This suggests that finer discretization leads to better local approximations 
at each node. 

In addition, the relative error, which provides a percentage-based measure of 
accuracy, has been analyzed and illustrated in Figure 3 and Figure 6. The relative 
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error values consistently decrease across the solution domain when the smaller 
step size 0.025h =  is used. However, while the proposed finite difference method 
generally demonstrates a high rate of convergence and accuracy as the step size 
decreases, certain cases exhibit stagnation or divergence, particularly at finer 
grids. This observation suggests that although the method performs well for a 
wide range of nonlinear boundary value problems, its accuracy and stability may 
be affected by factors such as problem stiffness, round-off errors, or numerical 
saturation when the grid becomes excessively refined. Overall, the results confirm 
that the proposed method is effective, with convergence towards the exact solu-
tion validated through both tabular data and graphical evidence. The method’s 
performance supports its practical applicability to nonlinear BVPs, while also 
highlighting the importance of addressing potential limitations in stiff or highly 
nonlinear cases. 

10. Conclusions 

In this study, we have explored the numerical solution of fourth-order nonlinear 
boundary value problems (BVPs) using the finite difference method (FDM). The 
primary objective was to develop an efficient and reliable numerical scheme capa-
ble of approximating solutions to nonlinear BVPs, particularly in situations where 
analytical methods are intractable due to the complexity of the equations. 

The proposed finite difference method was successfully formulated and imple-
mented to discretize the governing differential equations. Numerical solutions 
were obtained for various step sizes, and their accuracy was assessed through com-
parison with known exact solutions. Both absolute and relative errors were evalu-
ated to quantify deviations, while the analysis of convergence behavior demon-
strated that the accuracy of the solution improves as the step size decreases. The 
graphical and tabular comparisons further confirmed the stability, consistency, 
and reliability of the approach. Overall, the results validate the effectiveness of the 
finite difference method as a practical and efficient computational tool for solving 
nonlinear BVPs. Its simplicity, adaptability, and low computational overhead 
make it highly suitable for a wide range of applications in mathematical modeling, 
engineering, and the physical sciences. 

As a direction for future research, this method can be extended to more com-
plex and higher-dimensional nonlinear problems, including time-dependent sys-
tems. Investigating adaptive mesh strategies, hybridizing FDM with other numer-
ical schemes (e.g., finite element or spectral methods), and applying the method 
to stiff or singularly perturbed BVPs are promising areas. Moreover, the integra-
tion of parallel computing can significantly enhance performance for large-scale 
simulations. These advancements will further strengthen the role of FDM as a ro-
bust tool in computational mathematics. 
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