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Abstract 
A system of ordinary differential equations (ODEs) is produced by the semi-
discretize method of discretizing the advection diffusion equation (ADE). 
Runge-Kutta methods of the second and fourth orders are used to solve the 
system of ODEs. We compute the ADE numerically for initial and boundary 
conditions, for which the exact solution is known. In the semi-discretization 
approach, we estimate the error for both the second and fourth-order Runge-
Kutta schemes. The semi-discretization method’s outcome is contrasted with 
the ADE’s numerical solution derived from the complete discretization ex-
plicit centered difference scheme. 
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1. Introduction 

The semi-discretization method (SDM) is used to derive numerical solutions for 
time-dependent partial differential equations (PDEs). The numerical solution 
procedure is known as space semi-discretization, in which the time variable is left 
continuous while the space variable is discretised and time integration is applied 
to transform the PDEs into a system of ordinary differential equations (ODEs). 
We look at the mathematical model of advection diffusion, which may be used to 
simulate natural processes in a variety of natural science and engineering applica-
tions. Many scholars have tried to solve this equation and apply it in their simu-
lations [1]-[8]. A finite difference approach is used to solve the advection diffusion 
problem. It is well known that the optimal approach to solving the advection dif-

How to cite this paper: Ara, K.N.I., Alam, 
M.S. and Andallah, L.S. (2025) Higher Or-
der Approximation of Advection Diffusion 
Equation by Semi-Discretization Method. 
American Journal of Computational Math-
ematics, 15, 246-258. 
https://doi.org/10.4236/ajcm.2025.153013 
 
Received: May 19, 2025 
Accepted: July 27, 2025 
Published: July 30, 2025 
 
Copyright © 2025 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/ajcm
https://doi.org/10.4236/ajcm.2025.153013
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/ajcm.2025.153013
http://creativecommons.org/licenses/by/4.0/


K. N. I. Ara et al. 
 

 

DOI: 10.4236/ajcm.2025.153013 247 American Journal of Computational Mathematics 
 

fusion problem is usually to use an FDS (finite difference scheme) [7]-[10]. The 
researcher explored the operator splitting approach for the numerical solution of 
the Advection Diffusion Equation [2]. The Crank-Nicolson (CN) finite difference 
scheme and the characteristic method with cubic spline interpolation (MOC-CS) 
were used to implement these techniques [2]. The results were compared to the 
analytical solution. It is evident that even with large time steps; the applied method 
yields correct results and has a smaller error than other methods. Explicit finite 
difference techniques are used in this study to solve the advection diffusion prob-
lem [8]-[10]. We look into an alternative method that produces a system of ODEs 
with a time independent variable: the semi-discretization method on spatial vari-
ables [1]. We use Runge-Kutta’s second and fourth order methods as well as Eu-
ler’s method to solve this system of ODEs. In order to calculate the unknown con-
centration ( ),u x t , we create an algorithm that combines the Euler and Runge 
Kutta methods for the system of ODEs. 

2. The Semi-Discretization Techniques 
2.1. Advection Diffusion Equations (ADE) 

Advection Diffusion equations have both advective and diffusive terms together, 
represented as a partial differential equation below: 

 ( ) ( ) ( )2

2

, , ,u x t u x t u x t
c D

t x x
∂ ∂ ∂

+ =
∂ ∂ ∂

 (1) 

with initial condition 

( ) ( )0, ;u x t f x a x b= < < ; 

and boundary condition 

( ) ( ) 0, ;au a t u t t t T= < <  

( ) ( ) 0, ;bu b t u t t t T= < <  

where, c  is the velocity of the medium in the x  direction, D  is the diffusion 
coefficient. An advection diffusion problem whose general solution [1] is given in 
Figure 1. 
 

 
Figure 1. Analytical solution of advection diffusion equation. 
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2.2. Finite Difference Discretization 

Among the discretization methods for partial differential equations, the finite dif-
ference method (FDM) is the most traditional. Numerous contemporary numer-
ical methods for transport phenomena have their roots in finite difference approx-
imations that were created between the late 1950s and the early 1980s. FDM is 
especially easy to derive and apply to structured meshes, which are topologically 
equal to a uniform Cartesian grid. The nodal value of the approximate solution at 
node m . 

 ( ) ( ),m mu t u x t≅  (2) 

is a pointwise approximation to the true solution of the partial differential equa-
tion. 

3. Numerical Method 
3.1. Semi-Discretization Euler Methods 

Our aim is to introduce several numerical methods of solving ODEs to obtain 
approximate solutions [1]. We consider some simple space discretization on a 
uniform grid. We divide the spatial interval [ ]0, L  into 1M +  equal sub-inter-
val such that 1 2 3 ,x x x L< < < <  with ( )1mx m x= − ∆ , 1,2,3, , 1m M= +  

and Lx
M

∆ = . Approximations ( ) ( )0
,mu t u x t≈  are found by replacing the 

spatial derivatives by difference quotients. This gives a finite difference discretiza-
tion in space. Setting 

( ) ( ) ( )( )T
1 , , mu t u t u t=  . 

Therefore, we get a system of ordinary difference equations (ODEs) of (1) 

 ( ) ( )( ) ( ) 0, , 0, 0u t F t u t t u u′ = > =  (3) 

with a given initial value ( )0u . To approximate (1.1) with we also divide the time 

interval [ ]0,T  into 1N +  equal sub-interval such that 1 2 3t t t T< < < <  

with ( )1nt n t= − ∆ , 1, 2,3, , 1n N= + , and Tt
N

∆ = . For purpose of the nota-

tion t k∆ = . So, the following approximations are constructed 0 1 1, , , ,n nu u u u +
 . 

Where nu  is an intended approximation of ( )nu t . Now, with time step t∆  
for the numerical solution of advection diffusion equation with the Euler method 
is- 

 ( )1 ,n n n
nu u t F t u+ = + ∆  (4) 

3.2. Full Discretization of Explicit Centered Difference Scheme 
(ECDS) 

To approximate the solution to Equation (1) using the Explicit Centered Differ-
ence Scheme, we use the following approximations 
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( )
1

,
n n

n m m
t m

u uu x t
t

+ −
≅

∆
 

( ) 1 1,
2

n n
n m m

x m
u uu x t

x
+ −−

≅
∆

 

( )
( )

1
1 1

2
2,

n n n
n m m m

xx m
u u uu x t

x

+
+ −− +

≅
∆

 

where, x∆  is the spatial step, t∆  is the time step, m  and n  is spatial and 
temporal node respectively. Substituting these above equations in (1) and solving 

for unknown 1n
mu + . We obtain, ( )1

1 11 2
2 2

n n n n
m m m mu u u uα αγ γ γ+

− +
   = + + − + −   
   

 

Where, c t
x

α∆
=

∆
 and 2

D t
x

γ∆
=

∆
. Stability condition 1c t

x
∆

≤
∆

 & 2
1
2

D t
x
∆

≤
∆

. 

3.3. Semi-Discretization Runge-Kutta Methods 

Euler method and ECDS both are first order methods. In order to develop efficient, 
highly accurate approximation algorithm, higher-order difference methods are 
designed. Assume 1n nt t t+ = + ∆  , then we use the Runge-Kutta 2nd order method 
and obtain  

 ( ) ( )( )1 1
1, ,

2
n n n n

n n
tu u F t u F t u+ +

+
∆

= + +  (5) 

This is called the Runge-Kutta 2nd order for ADE. 
The formula of fourth-order Runge-Kutta method is given by where  
1

2
n n tt t+ ∆

= +  

( )1 , n
nK F t u=  

( )1
2 1 1, n

nK F t u hK+
+= +  

( )1
3 1 2, n

nK F t u hK+
+= +  

( )4 1 3, n
nK F t u K+= +  

 ( )1
1 2 3 42 2

6
n n hu u K K K K+ = + + + +  (6) 

Which are two simplest methods for the semi-discretization of  
( ) ( ),F t u Au b t= + . 

4. Numerical Results and Discussion 
4.1. Discussion Semi-Discretization Methods 

The general solution for the advection diffusion Equation (1) this study, we as-
sume that spatial length, 50 ml = ,   0.6 m sc = , 20.09 m sD = , 0.1x∆ = , 

0.08t∆ =  total time 10 sect =  to 50 sect = . The advection diffusion equation 
for this problem t x xxu cu Du+ =  is to be solved with initial and boundary condi-
tions 
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( ) ( ),0u x f x= . 

( ) ( )00,u x t f x= =  

( ) ( ), ; 0lu x l t f x t T= = ≤ ≤  

A computer programing code and various values of time steps are to be used to 
investigate the numerical schemes [9]-[12] (Table 1). 

 
Table 1. Elapsed time with different temporal grid point. 

t∆  x∆  nt  nx  
ECDS 

(E.T.sec) 
Euler 

(E.T. sec) 

Runge Kutta 

2nd order (E.T) 4th order (E.T) 

0.0020 0.0667 20000 600 1.742224 20.768796 43.015423 341.596993 

0.0027 0.0667 15000 600 1.454636 28.784721 77.852146 256.830589 

0.0040 0.0667 10000 600 1.397545 18.871882 53.445049 152.704436 

0.0050 0.0800 8000 600 1.475086 14.689404 28.975703 118.589866 

0.0080 0.0800 5000 600 1.010213 9.434639 25.819919 61.982884 

4.1.1. Case 1: Euler Method 

For this case the time step is increased to 0.008t∆ = , x∆ = , c t
x

α∆
=

∆
 known 

as advection equation number and 
( )2  D t

x
γ∆

=
∆

 known as diffusion term. 

Numerical implementation of semi-discretization method our solving Equation 
(1): 

t x xxu cu Du+ =  

Initial condition: ( ) ( )0 , 0m mu f x u x t= = = . 

Boundary condition: ( ) ( )0 10, n
nu x t u f t= = = ; ( ) ( ), n

b b nu x b t u f t= = =  

We can write out the matrix system of equation we will solve numerically for 
the concentration u . Suppose we use 4 grid points 1 2 3 4 1, , , mx x x x x +=  i.e. 

3m =  in this example. 2

3

n
n

n

u
u
 

=  
 

u , solution for concentration vector nu  at 

time nt . The boundary condition gives ( )1 0,n
nu u x t= =  and  

( )1 4 ,n n
m bu u u x b t+ = = = . 

We can rewrite general nth term grid point in equation as 

1 2 2 2 1 1

3 3 3 4 4

0 1 2 1
1 0 1 2

n n n n n
n

n n n n n

u u u u u
u u u u u

α λ α λ+          −   
= + + − +            − −            

u  

1 2 2 2 1 1

3 3 3 4 4

n n n n n
n

n n n n n

u u u u u
t A B

u u u u u
α λ α λ+

           = + ∆ − + − +          
          

u  

where, 
0 1
1 0

A  
=  − 

 and 
2 1

1 2
B

− 
=  − 
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( )
1 2

2
3

; &
2

n
n

n

u c Dt
xu x

α γ+  
= + ∆ = = 

∆ ∆ 
u F  

( ) ( ){ }1
1 1 1 12n n n n n n n

m m m m m m mu u t u u u u uα γ+
+ − + −= + ∆ − + − + ; 

In the matrix form 

 ( )1
, ,n n n

m m m n nu u t F t u+∴ = + ∆  (7) 

4.1.2. Case II: Runge-Kutta Method 
We consider the semi-discretize form in Equation (4), so we can write from the 
case 1: 

( ) ( )
( )

( )

1

1

1

, 0n
n

M

u
F t u A B

u

α γ
α γ

α γ +

+ 
 = = + +  
 + 

K u  

( ) ( )( )
( )( )

( )( )

1
1

2 1 1

1 1

, 0n
n

M

h
F t u A B h

u h

α γ
α γ

α γ

+
+

+

+ + 
 = = + + +  
 + + 

u K
K u K

K
 

( )

( )

1
2

1
3

4

0 1 2 1
0

1 0 1 2

n
n

n
n

u
u
u

u

α λ
α λ

α λ

 +
  −       = + +       − −        − + 

K  

( )( )

( )( )

1 1

2 1
2

3 1
4 1

0 1 2 1
0

1 0 1 2

n

n

n
n

u hK
u hK
u hK

u hK

α λ

α λ

α λ

 + +
   −  +      = + +     − − +        
− + +  

K  

where, 
0 1
1 0

A  
=  − 

 and 
2 1

1 2
B

− 
=  − 

 

Now we get, 

 ( )1
1 22

n n tu u K K+ ∆
= + +  (8) 

Equation (8) is the semi-discretized Runge-Kutta 2nd order method of advec-
tion diffusion equation. Similarly, we calculate 3K  and 4K  Runge Kutta 4th 
order method of advection diffusion equation. 

5. Error Analysis and Convergence 
5.1. Error Analysis 

Figure 2 shows that the comparison of relative error for two finite difference 
schemes. The relative error for ECDS which remains below 0.0010 and for Runge-
Kutta 4th order the relative error is 0.0004. 

Figure 3 shows that the comparison of relative error for two finite difference 
schemes. The relative error for RK2 and Rk4 which remains below 0.00041 and 
for Runge-Kutta 4th order the relative error is 0.0004. 
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Figure 2. Relative error of 1D ADE for ECDS and RK4 scheme. 

 

 
Figure 3. Relative error of 1D ADE for Runge-Kutta 2nd and 4th order scheme. 

 
The following Figure 4 shows that the comparison of relative error with full 

discretization and semi-discretization in finite difference schemes. The relative 
error for ECDS which remains below 0.00001. The relative error for Euler and 4th 
order the relative error is 0.00009 and 0.000003 respectively. 

5.2. Convergence 
5.2.1. Convergence of Relative Error for ECDS Method 
The following Figure 5 shows the convergence of relative error by the ECDS. This 
figure shows a very good rate of convergence of full discretizing method. 

5.2.2. Convergence of Relative Error for Euler Method 
The following Figure 6 shows the convergence of relative errors by the Euler 
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method. This figure shows a very good rate of convergence of semi-discretizing 
method. 
 

 
Figure 4. Relative error of 1D ADE for ECDS, Euler, Runge-Kutta 4th order scheme. 

 

 
Figure 5. Convergence of relative error ECDS. 

5.2.3. Convergence of Relative Error for Runge-Kutta 2nd Order Method 
The following Figure 7 shows the convergence of relative error by the 2nd order 
Runge-Kutta method. This figure shows a very good rate of convergence of semi-
discretizing method. 

5.2.4. Convergence of Relative Error for Runge-Kutta 4th Order Method 
The following Figure 8, Table 2 show the convergence of relative error by the 4th 
order Runge-Kutta method. This figure shows a very good rate of convergence of 
semi-discretizing method. 
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Figure 6. Convergence of relative error Euler. 

 

 
Figure 7. Convergence of relative error Runge-Kutta 2nd order method. 

 

 
Figure 8. Convergence of relative error Runge-Kutta 4th order method. 
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Table 2. Error analysis of the three different schemes at different spaces and time steps size. 

t∆  x∆  Error for ECDS Error for Euler 
Error for Runge Kutta 

RK 2nd order RK 4th order 
0.0020 0.0400 31.15 10−×  31.16 10−×  30.058 10−×  30.056 10−×  
0.0027 0.0667 32.4 10−×  32.4 10−×  32.5 10−×  31.2 10−×  
0.0040 0.0667 33.2 10−×  33.4 10−×  31.6 10−×  31.2 10−×  
0.0050 0.0800 34 10−×  34.4 10−×  31.5 10−×  31.4 10−×  

0.0080 0.0800 36.4 10−×  36.5 10−×  31.7 10−×  31.6 10−×  

5.3. Problem Discussion 

Here we can see in Figure 9 that the semi-discretization method Runge-Kutta 4th 
order method is the better one. The following Figure 10 shows concentration dis-
tribution by semi-discretization method for different velocities and for different 
diffusion coefficients. Figure 11 shows concentration distribution for varying dif-
fusion rate a time t = 30 sec. 
 

 
Figure 9. Concentration distribution of full discretization ECDS 
and semi-discretization Runge-Kutta 4th order method. 

 

 
Figure 10. The figure demonstrated varying advection & diffusion 
rate a time t = 20 secs. 
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Figure 11. The plot demonstrated varying diffusion rate a time t = 30 sec. 

 
The “red curved” in Figure 12 below indicates a high concentration for 20 sec-

onds, whereas the green curve indicates a concentration for 30 seconds. The “blue” 
curve indicates that concentration is high for 40 seconds. The figure indicated by 
“black” shows that concentration is high for 50 seconds, and as time increases, we 
can observe that the concentration profile decreases. 
 

 
Figure 12. The figure demonstrated different time. 
 

In Figure 13, the “black curved” indicates that the concentration is high for 8 
meters, while the green curve indicates that the concentration is lower for 16 me-
ters. The red curve indicates 40 m, the blue curve indicates 24 m, and the plot 
indicated by “deep red” indicates 32 m of high concentration. With regard to time, 
we may observe that when focus is raised while in a motionless position. 

Figure 14, Concentration distributions for varying diffusion rates and velocities 
over time It is evident that the concentration distribution varies with velocity and 
diffusion rate. The “Green” curve, for instance, indicates that concentration be-
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gins at 0.85 and drops to zero at 2 meters. Comparably, the “Black” curve begins 
at about 0.82 and drops to zero and 4 m, while the “Red curve” begins at concen-
tration 1 and drops directly to less than 0.8 concentration at 0 m before beginning 
to decrease to zero at 6 m. 
 

 
Figure 13. Concentration distribution for different time for RK4. 

 

 
Figure 14. The figure demonstrated a different position. 

6. Conclusion 

In this work, we investigate higher-order approximations of ADE by a semi-dis-
cretization method with initial and boundary conditions. Numerical results of 
ADE are briefly discussed, along with the relative error for both semi-discretiza-
tion and full discretization methods. Both schemes show a good rate of conver-
gence. We observe that the higher-order semi-discretization method gives better 
results than ECDS. The 4th order R-K method gives less error than the 2nd order 
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R-K method. 
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