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m veloped with the help of the method of decomposition in invariant structures. For

the aim of completeness, experimental and theoretical, deterministic, random,

chastic chaos of random exponential oscillons and pulsons, which have been de-

and time-complementary, scalar and vector, kinematic structures are briefly dis-
cussed. We also define and study experimental and theoretical, determinis-
tic-deterministic, deterministic-random, random-deterministic, and random-
random, scalar dynamic structures together with experimental and theoretical,
deterministic-deterministic, deterministic-random, random-deterministic, and
random-random, vector dynamic structures of the mth and nth families. The
Helmholtz decomposition is used to expand the Dirichlet problems for the
turbulent Navier-Stokes equations into the Archimedean, the turbulent
Stokes, and the turbulent Navier problems. The kinematic structures are used
to find solutions to the deterministic, random, and turbulent Stokes prob-
lems, which include the Dirichlet boundary conditions and conditions at in-
finities. The dynamic structures are employed to compute necessary and
sufficient conditions of existence of the exact solution for wave turbulence
of exponential oscillons and pulsons with the help of experimental and
theoretical programming in Maple. The cumulative pressure field of the
turbulent Navier-Stokes problem is derived in the scalar, kinematic, and dy-
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namic structures, as well. Concluding remarks deal with the most interesting
properties of the invariant structures and the exact solution and briefly review
open problems.
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1. Introduction

The decomposition of a velocity field of a turbulent flow into a mean value and a
turbulent fluctuation was originally proposed by Osborne Reynolds in 1895.
This decomposition is considered to be the beginning of the systematic mathe-
matical analysis of the turbulent flow, while the mean values of the turbulent
flow are taken as deterministic variables and the turbulent fluctuations are re-
garded as random variables. The Navier-Stokes equations are then reduced to an
open chain of nonlinear equations, which requires a phenomenological hypo-
thesis for closure of the perturbed Navier-Stokes equations. Numerous closure
methods have been proposed, while truncation of higher-order terms is the sim-
plest one. Other opportunities are connected with empirical relations between
terms of higher and lower orders. However, none of these methods resulted in a
satisfactory description of turbulence for all Reynolds numbers [1].

The statistical theory of isotropic and homogeneous turbulence of vortex
flows at high Reynolds numbers was initialized in three dimensions by Kolmo-
gorov [2] [3] [4] [5] [6], developed by Obukhov [7] [8], and constructed in two
dimensions by Batchelor [9]. The famous energy spectrum function of the Kol-
mogorov theory earned considerable experimental evidence [8]. In spite of this
success, this theory is at present under revision since the existence of the Kol-
mogorov flow is still an open problem [10] [11]. Modern developments of the
statistical theory of vortex turbulent flows [12] are also limited by the closure
problem for higher-order moments of the statistical Navier-Stokes equations
[13].

There are two well-known theories of wave turbulence: statistical wave turbu-
lence and resonance wave turbulence. The statistical theory of wave turbulence
[14], which continues the Kolmogorov theory, inherits the success and the open
problems of the statistical theory of vortex turbulence. Solutions of this theory
describe a turbulent wave system by kinetic equations and result in the Kolmo-
gorov-Zakharov (KZ) energy spectra. The KZ energy spectra does not depend on

an initial distribution of the kinetic energy of the turbulent wave system. Re-
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sonance wave turbulence [15] is focused on exact and quasi-resonances of tur-
bulent waves, which are characterized by resonance clustering. This theory de-
velops both integrable and chaotic dynamics, which are represented via the non-
linear resonance diagrams. So, nonresonant interactions of turbulent waves are
outside of the realm of resonance wave turbulence.

A novel theoretical approach to wave turbulence, which may be called exact
wave turbulence, is developed in the current paper. Exact wave turbulence deals
with an exact solution for nonlinear (both resonant and nonresonant) interac-
tions of turbulent waves, which are governed by the nonstationary Navier-Stokes
equations in three dimensions. Represented results are focused on the derivation
and justification of the exact solution, which may be later used to explore the
Eulerian, Lagrangian, and Kolmogorovian (statistical) properties of wave turbu-
lence. Thus, the effect of an initial distribution of the kinetic energy of the tur-
bulent wave system may be treated, as well.

The exact solution for wave turbulence continues the exact solutions for de-
terministic chaos of exponential oscillons and pulsons [16] and for stochastic
chaos of random exponential oscillons and pulsons [17], which have been de-
veloped with the help of the method of decomposition in invariant structures
[18]. Theoretical and experimental quantizations of the kinetic energy of deter-
ministic chaos have been studied for the Fourier set of wave parameters in [19]
and for the Bernoulli set of wave parameters in [20], where it was shown that the
Bernoulli set gives an opportunity to model turbulization of deterministic chaos.
Theoretical quantization of the kinetic energy of stochastic chaos has been
treated in [17].

Studies [16] [17] [18] [19] [20] in stochastic chaos and deterministic chaos
were initiated by papers [21] and [22], respectively, which are devoted to the
conservative interaction of two- and three-dimensional internal waves governed
by the Navier-Stokes equations. The family of kinematic Euler-Fourier functions
of the later paper produces an ultimate sophistication of the exact solution,
which was computed using experimental and theoretical programming in Maple.
This circumstance stipulated the development of the invariant structures in [16]
[17] [18] to derive robust exact solutions of the Navier-Stokes equations.

The contents of this paper are as follows. For the aim of completeness, theo-
retical Deterministic Scalar Kinematic (tDSK) structures and experimental De-
terministic Scalar Kinematic (eDSK) structures of [16], theoretical Random Sca-
lar Kinematic (tRSK) structures, experimental Random Scalar Kinematic (eRSK)
structures, time-complementary tRSK (tRSKt) structures, and time-complemen-
tary eRSK (eRSKt) structures of [17] are briefly reviewed in Section 2. In Section
3, we continue the deterministic scalar kinematic structures by experimental
Deterministic Vector Kinematic (eDVK) structures and theoretical Determinis-
tic Vector Kinematic (tDVK) structures of [16]. The random scalar kinematic
structures are complemented by experimental Random Vector Kinematic (eRVK)

structures, theoretical Random Vector Kinematic (tRVK) structures, time-com-
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plementary eRVK (eRVKt) structures, and time-complementary tRVK (tRVKt)
structures of [17], as well. Alternative derivation of main results and multidi-
mensional composition of the scalar and vector structures are also provided in
Sections 2-3. The deterministic, random, and time-complementary, scalar and
vector, kinematic structures are used to find scalar and vector variables of the
turbulent Stokes problem of Section 6.

Section 4 deals with experimental Deterministic-Deterministic Scalar Dynam-
ic (eDDSD) structures and theoretical Deterministic-Deterministic Scalar Dy-
namic (tDDSD) structures, experimental Deterministic-Random Scalar Dynamic
(eDRSD) structures and theoretical Deterministic-Random Scalar Dynamic
(tDRSD) structures, experimental Random-Deterministic Scalar Dynamic
(eRDSD) structures and theoretical Random-Deterministic Scalar Dynamic
(tRDSD) structures, experimental Random-Random Scalar Dynamic (eRRSD)
structures and theoretical Random-Random Scalar Dynamic (tRRSD) structures,
which are required to describe scalar variables of the turbulent Navier problem
of Section 7. To express vector variables of this problem, experimental Determi-
nistic-Deterministic Vector Dynamic (eDDVD) structures and theoretical De-
terministic-Deterministic Vector Dynamic (tDDVD) structures of the mth and
nth families, experimental Deterministic-Random Vector Dynamic (eDRVD)
structures and theoretical Deterministic-Random Vector Dynamic (tDRVD)
structures of the mth and nth families, experimental Random-Deterministic
Vector Dynamic (eRDVD) structures and theoretical Random-Deterministic
Vector Dynamic (tRDVD) structures of the mth and nth families, experimental
Random-Random Vector Dynamic (eRRVD) structures and theoretical Ran-
dom-Random Vector Dynamic (tRRVD) structures of the mth and nth families
are defined and studied in Section 5.

Formulation of the turbulent Navier-Stokes problem and the Helmholtz de-
composition of the turbulent Navier-Stokes problem into the Archimedean, the
turbulent Stokes, and the turbulent Navier problems are treated in Section 6,
where kinematic solutions of the deterministic Stokes problem, the random
Stokes problem, and the turbulent Stokes problem, which are subjected to the
Dirichlet boundary conditions and conditions at infinities, are derived. To find a
dynamic pressure field of the turbulent Navier problem, expansion, potentializa-
tion, and reduction of the turbulent Navier field are computed in Section 7. The
proof of a necessary condition of existence of the exact solution for wave turbu-
lence is represented in Sections 7.1-7.3. The dynamic pressure field of the turbu-
lent Navier problem and the cumulative pressure field of the turbulent Navi-
er-Stokes problem are also treated in Section 7.4. Section 7 is concluded with the
justification of the turbulent Navier problem in terms of the tDDVD, tDRVD,
tRDVD, tRRVD, tDDSD, tDRSD, tRDSD, and tRRSD structures. Thus, Section
7.5 includes the proof of a sufficient condition of existence of the exact solu-
tion for wave turbulence. The most interesting properties of the invariant ki-

nematic and dynamic structures are discussed in Section 8 together with impor-
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tant properties of the exact solution. A short list of open problems is also out-
lined there.

2. Scalar Kinematic Structures
2.1. Definitions of the tDSK and eDSK Structures

In agreement with (13) of [16], the tDSK structures of the [ m] family for tur-

bulent systems Sqim Saxim Sdyim Sdxpim are defined in a modified notation as

follows:
Sd.im :[Sd,l,m’sd,Z,m’Sd,3,m’sd,4,m] :[ad,m’bd,m'cd,m'dd,m]’
Sd xim :[Sd,x,l,m'Sd,x,z,m'Sd,x,3,m’sd,x,4,m] :[bd,m'ad,m'dd,mlcd,m]' "
Sd.y.im :I:Sd,y,l,m'Sd,y,Z,m’Sd,y,3,m’sd,y,4,m] :[Cd,m'dd,m’ad,m’bd,m]'

Sd,x,y,i,m = |:Sd,x,y,1,m ' Sd,x,y,z,m ! Sd,x,y,S,m ’ Sd,x,y,4,m:| = [dd,m'cd,m ! bd,m ' ad,m]'

where a4 bam Cam dimare the eDSK structures of the mth family, /=1, 2, ...,
I=1,2, 3, 41is an index of deterministic wave groups, and m=1, 2, ..., Mis an
index of deterministic internal waves, M is a total number of internal waves in a
deterministic wave group.

The tDSK structures are [1, 4, M, 1] arrays, which are displayed by 1 x 4 rows
(1) of the eRSK structures. The tDSK structures may be also shown as M x 4

matrices, e.g.
Sq,im = Ay m bd,m Cam dd,m . (2)

Analogous to (1) of [16], the eDSK structures of the mth family for turbulent

systems are specified in terms of the following relations:
Qg =+AV, , SS€,  + BV,  csey ., +Cvy . scey . + Dy, ccey
By = —BVy p SS€4 m + AVy 1, €€y, — Dy sC8y  +Cvy  Cegy 5
Cym =—CVy 5S4 , — DV, CS€y , + AV, | SCE  + BV,  CCe, 1, ®
dy,=+Dvy , sse, , —Cv, cse,, —Bvy , scey , +Av,  CCe; .,

where AVinm BVim CVim Dvim are functional amplitudes of a deterministic

harmonic variable vdx, y; z 0. If Avym =1, Bvym = CVym = DVan = 0, then the

eDSK structures are reduced to the eDSK functions, i.e.

ad,m = Ssed,m’ bd,m zcsed,m' Cd,m = Sced,m’ dr,m zcced,m' (4)

In agreement with (1) and (2), the eDSK structures are [A4, 1] arrays, which

are displayed via M x 1 columns:
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841 by 1 Cqa dgs
ad,m a'd m |1 bd,m = bd m | Cd,m Cd,m ’ dd,m = dd,m . (5)
ad,M bd,M Cd,M dd,M

The three-variables (3-v) eDSK functions [sseym CS€im SC€ims CCCm|(Xims

Yam z) are products

SS€4m = SXyq,m SYa,m €Zg,mr  CS€4 m = CXy i SYq,m €Zg,m>
Sced'm = SXd,m Cyd,m eZd‘m, Ccedvm = de,m Cyd,m eZd'm

(6)

of the following one-variable (1-v) eDSK functions [sXim Xqml(Xam)> [SVam,

Yaml(Yam), and eZym = €24m(2):
Xy =SIN(Ky 0 Xy ), Xy = €08 (K X ),
Yom =SIN(Zgn¥an)r  OVam =C0(A4nYen ), )
&2 =eXP((-1)' Hy 2),

where Xym = Xam(x, €) and Ygn = Yau(y; ) are two-variables (2-v) deterministic

propagation variables defined by
Xom =X=Ugnt+Xgn00 Yom =Y =Van Y mo (8)

In Equations (1)-(8), (x, y; 2) is the Cartesian coordinate of a motionless frame of
reference, tis time, (Xym Yim 2) is the Cartesian coordinate of a frame of reference
moving with the mth deterministic internal wave, [Uzm Vim 0] is a celerity of
propagation of the mth deterministic internal wave, and [Xymo, Yimo] is a reference
value of [Xym Yym] at =0, x=0, y=0. A sign parameter 7=0for z< 0 and =1
for z> 0, Kym» Agm Mam are wave numbers of the mth deterministic internal wave

in the x-, y~, z-directions such that

,ud,m :\IKdz,m +ﬂdz,m' (9)

2.2. Definitions of the tRSK and eRSK Structures

The tRSK, eRSK, tRSK, eRSK, eRVK, tRVK, eRVK, tRVK, eRRSD, tRRSD, eRRVD,
and tRRVD structures for stochastic systems have been meticulously considered in
Sections 2-5 of [17]. To demonstrate a deterministic-random invariance, we will
briefly review their definitions and algebraic properties in the current paper.

Similar to (1), we also construct the tRSK structures of the [4 m] family for

stochastic and turbulent systems Sy;m Sexim Spyim Sexpim in the following form:

Seim :|:Sr,1,m'Sr,z,mlsr,3,m’sr,4,m] :I:ar,m'brm'crm'dr m]'
Sroxim :[Sr,x,l,m'Sr,x,z,m’Sr,x,3,m’sr,x,4,m:| :|:brm' r.m? rm’Crm:| (10)
Sr,y,i,m :|:Sr,y,l,m'Sr,y,z,m'Sr,y,s,mlsr,y,A,m:I _[Crm' r,m? rm'br m]
Sr,x,y,i,m = [Sr,x,y,l,m’sr,x,y,z,m'sr,x,y,S,m ’ Sr,x,y,4,m:| |:dr ms Cr.mo r mo A, m:l
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where a.m, bim» Com» dpm are the eRSK structures of the mth family, i1=1, 2, ...,
I=1,2, 3, 4is an index of random wave groups, and m=1, 2, ..., Mis an index
of random internal waves, M is a total number of internal waves in a random
wave group.

The tRSK structures are [1, 4, M, 1] arrays, as well, which are represented by 1 x 4

rows (10) of the eRSK structures and by M x 4 matrices. For example,

ar,1 br,l Cr,l dr,l
Sim=| &, b C,, don | (11)

a'r,M br,M Cr,M dr,M

Parallel to (3), the eRSK structures of the mth family may be written as

a,,=+Av,  sse +Bv, cse +Cv  sce +Dv.  cce .,

r,m?

=-Bv,,sse , +Av,  cse —Dv  sce +Cv_  cce
=—Cv

r,m

br,m
Com sse, , — Dv, ,cse . +Av,  sce  +Bv  cce .,
d,,=+Dv,  sse —Cv  cse  —Bv  sce +Av  cce

r,m?
where functional amplitudes of a random harmonic variable v.(x, y; z £

Av, = AV, (t), Bv,, =Bv, . (t), Cv,,=Cv,,,(t), Dv,, =Dy, (t) (13)

are smooth random functions of time from C=. If Av,,,= 1, BVy,n = CVim = DV

=0, the eRSK structures are transformed into the eRSK functions, viz.

d

r,

b

r

a, ., =sse.., b =cse , c. =sce,., d  =cce,. (14)

In agreement with (11), the eRSK structures are [, 1] arrays, which are ex-

posed as M x 1 columns. Explicitly,

ar,l br,l Cr,l dr,l
a'rm = arm ) br,m brm ' Cr,m = Crm ' dr,m = drm (15)
ar,M br,M Cr,M dr,M

The 3-v eRSK functions [sseé;m ¢S€sm SCCsm cCm|(Xem Yem 2z) are specified
by products

Sser,m = er,m Syr,m ezr,m’ Cser,m = CXr,m Syr,m ezr,ml
SCer,m = er,m Cyr,m ezr,m' CCer,m = CXr,m Cyr,m ezr,m

(16)

of the following 1-v eRSK functions [sX;m Xom|(Xem)s [SVem cVoml(Yim), and

€Zym = €Z,m(2):
er,m :Sin(Kr,er,m)l CX , :COS(Kr,er,m)l

Yy m =SIN(4 Y, ), Y, =COS( A Y, ). (17)

r,m r,m r,m r,m

ez, , = exp((—l)” 7. z),
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where X = Xonm(x, ©) and Y = You(p; 0 are 2-v random propagation variables,

which are given by the following relationships:

Xim=X-U t+X =y-V t+Y (18)

rmO'

In Equations (10)-(18), (Xsm Yim» 2) is the Cartesian coordinate of a frame of
reference moving with the mth random internal wave, [U,m, Vim, 0] is a celerity
of propagation of the mth random internal wave, and [X;mo, Yzmo] is a reference
value of [ X, Yim] at £=0,x=0, y=0, and Kym» Apm» Mm are wave numbers of

the nith random internal wave in the x-, y-, z-directions, while

Py =Ko+ A (19)

The wave numbers are random constants since otherwise the temporal deriva-
tive of the velocity potential does not commutate with the gradient. Propagation

parameters

Ur,m :Ur,m (t)’ Vr,m :Vr,m (t)' Xr,m,O = Xr‘m,O (t)' Yr,m :Yr,m,o (t) (20)

together with (13) are smooth random functions of time from C=.

2.2. Definitions of the tRSK; and eRSK; Structures

The tRSK; structures of the [4 m] family for stochastic and turbulent systems are

specified by
Sr,t.i,m :[Sr,t,l,m'Sr,t,Z,m'Sr,t,3,m’sr,t,4,m:| [artm'brtm' rit,m? rtm
sr,><,t,i,m :I:Sr,x,t,l,m’Sr,x,t,z,m'Sr,x,t,3,m’sr,x,t,4,m]

Srytim :[Srytlm'sryth’srthm’sryt4m] :[Crtm’drtm’ r,t,m? r ,m

J
:[br,t,mlar,t,m’ rtm? r m:| (21)

I

)

erytlm [erytlmlsrxyIZm’Srxyt3mlsrxyt4m] |:drtm’crtmY rt,m? rtm

where a,,m Dyym Copm dyym are the eRSK, structures of the mth family.
Similar to (11), the tRSK, structures are [1, 4, M, 1] arrays, which are displayed

as 1 x 4 rows (21) of the eRSK, structures and M x 4 matrices, e.g,

ar,t,l br,t,l Cr,t,l dr,t,l

Sr,t,i,m ar,t,m r,t,m cr,t,m r,t,m (22)
artM br,t,M CrtM drtM
Likewise (3) and (12), the eRSK; structures are defined as follows:

a n=*Av .sse . +Bv cse  +Cv  sce +Dv.  cce,,

B m=—BV, S ,+AV,  cse —Dv.  sce +Cv, cce .,
(23)

Cotm="CV (nSS€ »n — DV, Cse .+ AV  sce +Bv.  cce .,

dr,t,m = +Dvr,t,m Sser,m _Cvr,t,m Cser,m - BVr,t,m SCer,m + Avr,t,m Ccer,m'

where functional amplitudes
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dAv dBv
Avr't'm = Avrvtvm (t) = d—;ml Bvr,t,m = Bvr,t,m (t) = —dtr'm ,
24
dCVr,t m dDVr'm ( )
Cvr,t,m = CVryt,m (t) = T, Dvr,t,m = DVr,t,m (t) — dt

are the first derivatives of (13). Along with (13) and (20), functional amplitudes
(24) are smooth random functions of time from C=.
In the view of (21), the eRSK, structures are [/, 1] arrays, which are visualized

by M x 1 columns,

a'r,t,l br,t,l Cr,t,l dr,t,l
& tm & tm | br,t,m = br,t,m v Coom =| Cram |s dr,t,m = dr,t,m . (25)
ar,t,M br,t,M cr,l,M dr,t,M

2.4. Differentiation Tables

Computing first spatial derivatives of the eDSK functions (6)-(8) gives the fol-

lowing differentiation table:

0SS€ 0SS€4 0556, ;
M — 4k, CS€ ., — =], sce,,, —=(=1)" u,  SS€, .,
X d,m d,m ay d,m d,m oz ( ) d,m d,m
ocsey , ocsey , ocsey .
o= KanSSen, T‘zwld,mccedvm, & =(-1)" 1ty nCS€Y s
0 0 0 (26)
SCEy SCEy SCEy "
—=+K, CC& ., ———=—A; SS€y 1, —=(-1)" g4, ,SC& 11s
X d,m d,m ay d,m>°%d,m oz ( ) d,m d,m
oceey |, oceey , occee,
M — g, SCe ., — " =—] CSe,, ., M —(-1)" . CCe, .
X d,m d,m ay d,m d,m oz ( ) d,m d,m

Differentiation table (26) demonstrates the completeness of the eDSK func-
tions with respect to differentiation in (x; y; 2) of any order. The first derivatives
of eDSK functions in (x, y) are covariant as they are proportional to cofunctions
in the x- and y~directions, correspondingly. The first derivatives with respect to z
are invariant since they are proportional to themselves.

We then compute the first spatial derivatives of the eRSK functions (16)-(20)

in x, y; and zin the form of a differentiation table:

osse, 0sse, osse

—0 =4k, CSE, . L0 =44, .SCe, ., P = (1) 1, SS€s s
OX ’ ' oy ‘ ' 0z ’ ‘

acse ocse acse

- = —K mSS€ ) Az_"ﬂr mCCe ﬁ:(_l)” My CSE

X ’ ' oy ’ ' 0z ' ‘

0 0 0 @7)

SCe, SCe, SCe, .

———=+x,cCCe, ——=-A4 sse ., ——=(-1)" u .SCe ,
6X rm rm ay r,m rm az ( ) rm rm

occee, |, occee, , occee,

— M -k sce ., —t=-1 cse , —"=(-1)" pu  cce
aX r,m r,m ay r,m r,m 82 ( ) rm rm

that shows the completeness of the eRSK functions with respect to differentia-
tion in (x, y; 2) of any order. In agreement with differentiation table (27), the

first derivatives of eRSK functions in x and y are covariant and the first deriva-
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tives with respect to zare invariant.

It is a straightforward matter to show the completeness of the eDSK structures

(3) with respect to differentiation in (x, y; z) of any order for the reason that a

table of the first spatial derivatives becomes

oa,

: :+Kd,mbd,m'
OX
ob,

— ==Ky Ay
OX d,m*d,m
0Cy

: _+Kd,mdd,m’
OX
ody .

— ==Ky Cy s
X d,m~d,m

oa, ., oa,
8(; =+ mCym #:(_1)77 Hy g o
ab, ob, .
;y‘ - +ld'mdd m #: (_1)77 /ud,mbd,m’
o (28)
a(;m o d,mad,m1 %:(_1)77 /ud,mcd,m'
ad, od, ,
a(; :_ﬂ’d,mbd,m' %:(_1)]/ud,mdd,m'

In accordance with differentiation table (28), the first derivatives of the eDSK

structures in xand yare covariant as they are proportional to eDSK costructures

in the x and y-directions, correspondingly. The first derivatives of the eDSK

structures with respect to zare invariant.

We also find the first spatial derivatives of the eRSK structures (12)-(13) as

follows:
0a
-t = +Kr mbr m?
OX '
ab,
ox __Kr,mar,m'
acr m
8x :+Kr,mdr,m'
od, .
7: _Kr,mcr,m'

0a, oa
r,m — l , r,m — _1 n ,
ay + r,mcr,m 62 ( ) 'urymarvm
ob ab
= :+ﬂ'r,mdr,m' arzm :(_1)'7 :ur,mbr,m'
v (29)
acr m acr m n
‘ :_lrmarm’ ) :(_1) He mCrmo
oy o 0z o
ad ad
— % =—A.b ﬂ:(_l)" ,ur,mdr,m'

ay r,m~r,m? az

Differentiation table (29) manifests the completeness of the eRSK structures

with respect to differentiation in (X, y; z) of any order, as well. The first deriva-

tives of the eRSK structures in (x, y) are covariant because they are proportional

to costructures in the x- and y~directions, correspondingly. The first derivatives

of the eRSK structures with respect to z are invariant as they are proportional to

themselves.

Analogously, the completeness of the eRSK, structures (23)-(24) with respect

to spatial differentiation of any order follows from the following table of the first

spatial derivatives:

oa, oa oa
D e B =4 A e = (<)
8X r,m>r,t,m ay r,m>r,t,m 82 ( ) r,m>r.t,m
abr,t,m abr,t,m =+1 d abr,t,m _ 1 n b
ox - r,mar,t,m' ay =+ r,mYr.tm? oz _(_ ) /ur,m rt,m?
0 0 0 (30)
Crtm Crtm Crlm n
=2 =i, A =—A & 0 =2 = (=1)" 4, Cppns
6X r,m-r,tm ay r,m“r.t,m 62 ( ) r,m>r,tm
adr,t,m _ c adr,t,m — —ﬂ, b adr,t,m _ (_1)71 ,U d
8X r,m>r,tm? ay r,mer,t,m? 6Z r,mYr,tm
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In agreement with (30), the first derivatives of the eRSK,in x and y are cova-
riant as they are proportional to eRSK, costructures in the x- and y-directions,
respectively. The first derivatives of the eRSK, structures with respect to z are
invariant.

Comparison of differentiation tables (26) and (27) for the eDSK and eRSK
functions and differentiation tables (28), (29), and (30) for the eDSK, eRSK, and
eRSK, structures exhibits the deterministic-random invariance with respect to
the spatial differentiation in (X, y; 2) of any order since differentiation table (26)
becomes identical to differentiation table (27) after substituting
rme Agm = e Hym = Hems
SS€y , = SS€, ,, CSEy, =CSe ., SC& , =SCe ., CCe . =CCe .

Fam =5 (31)
In similar fashion, differentiation table (28) is converted into differential table
(29) and differential table (30) by substitutions

Kym = Kemo Agm = }“r,mv Hom = Hems

d,m
‘ (32)
a'd,m :ar,m' bd,m :br,m' Cd,m :Cr,m’ dd,m :dr,m
and
Kd,m :Kr,m' ﬂ’d,m :/lr,ml /ud,m :/ur,m’ (33)
ad,m = ar,t,m' bd,m = br,t,m' Cd,m = Cr,t,m’ dd,m = dr,t,m'

respectively. For brevity, further differentiation results in spatial differentiation
will be shown only for the eDSK and tDSK structures. However, the eDSK, tDSK,
eRSK, and tRSK structures will be treated separately in the case of temporal dif-
ferentiation.

A differentiation table of the tDSK structures (1) in x; y; and zbecomes

oS im a '
—;x :+(_1) Kd,mSd x,im oy :+(_1)ﬂ Adymsdvyvivm’
0s X,i,m a; 08 X, i,m i
—d@X :_(_1) Kg,mSd,im d@y - (_1)ﬂ ﬂ'd,msdvxvyvivm’
Sy vim “ Sayim i
—da;,( =+(—1) Ka.mSd x.y.im EZTV :_(_1)ﬂ ﬂd,msd,i,m’ (34)
0s X,y,i,m a;j 0s XY, 0,m i
Bt (1) sy (Y Dy
os im s X,i,m 7
—;Z =+(—l)’] Hy mSd im da—z :+(_1)7,ud,msd,x,i,m’
5. OSy s vi

dc'é;lm =+(-1) HymSd yims dgzyy"m =+(-1)' Ha.mSd,xyims

where sign parameters
o = [y, 0.05.0,] =[0,1,0,1], (35)

B = [ﬂl’ﬁ21ﬂ31ﬂ4] = [01011.1]-

Due to the deterministic-random invariance of spatial differentiation, differentiation
tables for the tRSK and tRSK, structures follow from (34) with the help of the

following substitutions:
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Kd,m :Kr,m' ﬂ’d,m :j’r,m! :ud,m ::ur,m’ (36)
Sd,i,m :Sr,i,m' sd,x,i,m :Sr,x,i,m’ Sd,y,i,m :Sr,y,i,m' Sd,x,y,i,m :Sr,x,y,i,m’
and
Kym = Kems j'd,m = ﬂ'r,m' Hom = Hems (37)
sd,i,m = Sr,t,i,m' Sd,x,i,m = sr,x,t,i,m’ Sd,y,i,m = Sr,y,t,i,m’ Sd,x,y,i,m = sr,x,y,t,i,m'

correspondingly. The differentiation tables for the tRSK and tRSK, structures
obtained by substitutions (36)-(37) coincide with differentiation tables (20) and
(22) that are computed by differentiation in [17].

Similar to the eDSK structures (28), the eRSK structures (29), and the eRSK,
structures (30), the first derivatives of the tDSK, tRSK, and tRSK; structures in x
and yare covariant because they are proportional to tDSK, tRSK, and tRSK; co-
structures in the x- and y-directions. The first derivatives of the tDSK, tRSK, and

tRSK; structures with respect to z are invariant as they are proportional to them-

selves.
A sequence of the first spatial derivatives of each tDSK, tRSK, and tRSK, struc-
ture in the x-, y=, and zdirections for /=1, 2, ..., [is equivalent to the differentia-

tion tables of eDSK (28), eRSK (29), and eRSK, (30) structures, correspondingly.
Analogous to [16] and [17], we see quadrality of the theory: there are four equiva-
lent theoretical ways of explaining the experimental results. For brevity, further
theoretical results of Section 2 will be demonstrated mainly via the tDSK struc-
ture 4. the tRSK structure s, and the eRSK, structure s,;,, that are sufficient
for the generalization of experimental results.

Similarity of the differentiation tables for the eDSK and eRSK functions and
the eDSK, eRSK, eRSK, tDSK, tRSK, and tRSK, structures is displayed in terms
of a differentiation diagram in Figure 1. The differentiation diagram demon-
strates the transformation of the eDSK functions, the eRSK functions, the eDSK
structures, the eRSK structures, the eRSK, structures, the tDSK structures, the
tRSK structures, the tRSK, structures, the eDVK structures, the eRVK struc-
tures, the tDVK structures, and the tRVK structures (see Section 3 for vector
kinematic structures) produced by spatial differentiation. Spatial differentiation
is displayed with the help of blue arrows for derivatives in x;, green arrows for
derivatives in y; and red arrows for derivatives in z The length of arrows show-
ing derivatives in x, y; and z are proportional to differentiation scales xym, Kym,
Adns Apms (=1)"gm, and (=1)"u,., which are visualized with colors corresponding
to those of arrows.

Differentiation in x, y; and (x, y) moves elements of a given list of functions
and structures

SS€4 1 SS€, s 8y s

a S S

r,t,m'Sd,i,m’ ri,m?rtim’

S

r,m? (38)
ay . a

r,m'sd,i,m’ r.i,m

from one corner of the differentiation rectangle to another one, whereas diffe-
rentiation in z does not alter the locations of elements of the given list. For the

given list of functions and structures, there are three lists of cofunctions and
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(-1)n Kam (-1)n Hrm (-1)m Ham (-1)n Hem
(‘\—Kd/m K m K m +K,,m/>
+}\d‘m J SCeym SCe,m, ccey, cce,n, \ +7‘d,m
+}\'nm Cam Crm  Crtm dd,m dr,m dr,r,m +Kﬁm
sd,y,i,m Sr,y,i,m Sny,t,f,m sd,x,y,i,m sr,x,y,i,m Sr,x,y,t,i,rn

cd,m cr,m dd,m d!,m

Sdyim Sryim Sdxy,im Srxyim

SS€4m SS€rm CS€yy, CSem

ad,m ar,m ar,t,m bd,m br,m br,t,m

Sdim  Spim  Srtim Sdxim  Srxim Srxtim
'}d,m ad,m ar,m bd,m br,m '}"d,m
-A”m \ sdl’a’" s’:/’m sd,x,i,m sr,x,i,m r _)Lr,m

C/ _Kd,m _Kr,m +Kd,m +Kr,m

(-1 Hom (-1 Hem (-1 Ham (-1)n Hem

Figure 1. A differentiation diagram of the first spatial derivatives
of the eDSK and eRSK functions and the eDSK, eRSK, eRSK,
tDSK, tRSK, tRSK;, eDVK, eRVK, tDVK, and tRVK structures.

costructures. First, a list of cofunctions and costructures in the x-direction

b, .

d,m?™~r,m? r,t,m'sd,x,i,m’sr,x,i,m1sr,x,t,i,m1

b S

CS€y 11 CSE, 1, b

(39)
bd,m’ r,m’sd,x,i,m' r,x,i,m?

which are located on the same horizontal leg as the elements of the given list at dis-
tances Kgm» and k.. Second, a list of cofunctions and costructures in the y-direction

Sced,m’Scer,m’cd,m!C C Sr,y,i,m’sr,y,t,i,m’

Cym:C

r,m? r,t,m’sd,y,i,m'

(40)
S

r,m’Sd,y,i,m' r,y,i,m?

which are placed on the same vertical leg as the elements of the given list at
distances Ay, and A, ,. Third, a list of cofunctions and costructures in the
(x, y)-direction

CCed,mlccer,m'd d d Sr,x,y,i,m'sr,x,y,t,i,m'

d

d,m?

d

r,m? r,t,m’sd,x,y,i,m'

(41)
s

d,m? r,m'Sd,x,y,i,m’ r,x,y,im?

which are set in opposite corners with respect to the elements of the given list.
Using table (28) of the first spatial derivatives of the tDSK structures, we
compute the second spatial derivatives of the tDSK structure s4;,in x; y; and z

azsd im azsd i,m aj+p;
Té’ :_Kﬁ.msd‘i.m’ W :(_1) Kd.mld,msd,x.y.i,m'
0%sy %84, wr
ay—vzl’m = _ﬂ’dz,msd,i,m' Talzm = (_1) 7 Ky mMg mSq xim (42)
623 f 625 i Bi+1
T (A S

A corresponding table for the tRSK structures, which follows from (42) by
substitution (36), coincides with differentiation table (23) of [17].
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The differentiation diagram in Figure 1 evidently justifies the invariance of the
repeated second spatial derivatives. The second-order differentiation shifts the tDSK
and tRSK structures from a corner to an adjacent corner of the differentiation rec-
tangle, transforming them into the tDSK and tRSK costructures, and then re-
turns the tDSK and RSK costructures back both in the x- and y-directions, rees-
tablishing the original tRSK and tRSK structures. Alike physical oscillation, this
effect of differentiation is termed the scalar structural oscillation of the tDSK [16]
and tRSK [17] structures.

In agreement with the differentiation diagram, the second derivatives of the
tDSK and tRSK structures in (X, y) are converted into the tDSK and tRSK co-
structures covariant in (x;, y), which are found at an opposite vertex of the
differentiation rectangle to that of the original tDSK and tRSK structures. The
second derivatives of the tDSK and tRSK structures in (x, z) and (y; 2) are trans-
formed into the tDSK and tRSK costructures in the x- and y-directions, respec-
tively, since differentiation in zis invariant.

We sum up the repeated second derivatives of (42) to show that the tDSK

structure s4;,, and the eDSK structures are harmonic since

2 2 2
a 5d,i,m + a Sd,i,m + a Sd,i,m
2 2 2
OX oy oz

= Asy;n =[0,0,0,0] (43)

due to (9). Harmonicity of the tRSK structure s;;» and the eRSK structures fol-
lows from (43) and (36). The same result was established by (24) of [17].
A first temporal derivative of the tDSK structure s;;. takes the following

form:

asd,i,m

ot = _(_1)“i Kd,mUd,de‘x,i,m _(_1)ﬁi j’d,mvd,msd‘y,i,m’ (44)

which validates completeness of the eDSK structures with respect to temporal
differentiation of any order.

The first derivative of s4;m in ¢is a superposition of the tDSK costructures in
the x- and y-directions, which are located in the adjacent corner points of the
differentiation rectangle. Amplitudes of the tDSK costructures depend on prod-
ucts of the celerities of propagation and the wave numbers in the (x; y) plane.

Using definitions (18), (20) and the spatial derivatives the tRSK structure s;;m

we compute a first temporal derivative

oS, @ '
%: _(_1) I Kr,mxr,l,msr,x,i,m _(_1)ﬂl /,lr,er,t,er,y,i,m + Sr,t,i,m' (45)
where
oX 't du,__(t dX t
Xrtm:Xrtm(t):_ r,rn(x ):Urm(t)+ r,m()t_ I’,m,O()’
” o ot ’ dt dt
(46)
Y \Y Y
Vow Yo () == om0y gy e ll)y_ Dema 9
” v ot ' dt dt
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are time-dependent amplitudes.

Consequently, the first temporal derivative of the tRSK structure s, and the
eRSK structures is produced by a superposition of the tRSK and eRSK costruc-
tures in x, y; and £ whereas the time-dependent amplitudes depend on temporal
derivatives of U,y Vim Xemo, and Y.mo. The tRSK, tRSK, eRSK, and eRSK,
structures are closed with respect to temporal differentiation of the first order.

If

Ur,m (t):Ud,m’ Vr,m (t):Vd,m' Xr,m,O (t): Xd,m,O' Yr,m,O (t):Yd,m,Ol (47)
Av, . (t)=Avg . B, (t)=Bvy,, Cv.,(t)=Cv4,, Dv,,(t)=Dvy,,

then the temporal derivative (45)-(46) of the tRSK structure s;, is converted

into the temporal derivative (44) of the tDSK structure $4; .

3. Vector Kinematic Structures
3.1. Definitions of the eDVK and tDVK Structures

We follow (20) of [16] and define the eDVK structures of the nith family for
turbulent systems @gn Dam Cam dam as gradients of the eDSK structures (3) in

the following column form:

+Kd,mbd,m _Kd,mad,m
ad,m =Vad,m = +/1d,rncd,m ' bd,m =Vbd,m = +ﬂd,mdd,m !
(_1)’7 ﬂd,mad,m (_l)” :ud,mbd,m
- (48)
+ Kd,mdd,m _Kd,mcd,m
Cd,m = VCd,m = - )i’d,mad,m J dd.m = Vdd,m = - /ld,mbd,m
(_1)’7 :ud,mcd,m _(_1)’7 :ud,mdd,m

The eDVK structures are [3, 1, M, 1] arrays, which are visualized by 3 x 1
columns (48) of the eDSK structures multiplied by coefficients, where elements
of columns (48) are [, 1] arrays that are displayed in terms of M x 1 columns
5).

Consequently, the tDVK structures of the [4 m)] family are introduced as fol-

lows:

Saim = YSuim :I:ad,m'bd,mlcd,m'dd,m’

Sd,><,i,m :Vsd,x,i,m :[bd,m'ad,m'dd,mlcd,m]' ( )
49

Sd,y,i,m :Vsd,y,i,m :[Cd,m'dd,m’ad,m’bd,m '
Sd,x,y,i,m :Vsd,x,y,i,m = [dd,m'cd,m’bd,m'ad,m]'

Equations (49) establish a row definition of the tDVK structures.
With the help of the definition of gradient and the first spatial derivatives of
the tDSK structures (34), we obtain definitions of the tDVK structures in the

column form. For the tDVK structure $4;., we have

DOI: 10.4236/ajcm.2024.141004

110 American Journal of Computational Mathematics


https://doi.org/10.4236/ajcm.2024.141004

V. A. Miroshnikov

0S4 im
X K nSin
Sg.im = asjﬁ =1 ()" Ay nSo.yim | (50)
3y im (—1)” HymSqim
L az i

Expansions (1) of the tDSK structures Sgxim Sdyim Saim for =1, 2, 3, 4 give

the following matrix definition of the tDVK structure g
+ K Dy m — Ky md m +Kgmgm — KgmCa,m
Sd,im = + A4 mCam + A mBgm =4 mBqm ~Agmbam |- G
(_1)7 Ha m8g m (_1)77 Hg Py m (_1)” Hg mCa,m (_1))7 MmOy m

Since substitution of the eDVK structures in the column form (48) into the
row definition of the tDVK structure $;;, (49) results in the same matrix (51),
the first of four-dimensional (4-d) row definitions (49) is equivalent to the
three-dimensional (3-d) column definition (50). Therefore, Sy, is a [3, 4, M, 1]
array, which is visualized by 3 x 4 matrix (51) of the eDSK structures multiplied
by coefficients. Elements of matrix (51) are [, 1] arrays that are represented via
Mx 1 columns (5).

3.2. Definitions of the eRVK and tRVK Structures

In parallel to (48), we define the eRVK structures of the mth family for stochas-
tic and turbulent systems a,m, bym» Com dim as gradients of the eRSK structures

(12) in the following column form:

+Kr mbrm Kr marm
ar,m zvar,m = +ﬂ’r mCrm ! br,m =Vbr,m = +ﬂ’r mdrm '
(_1)7 lur,mar,m (_1)7 :ur,mbr,m
- (52)
+Kr mdrm Kr mCrm
Cr,m =VCr,m = ﬂ“r marm ' dr,m =Vdr,m = ﬂ“r mbrm
(_1) :ur,mcr,m _(_1) :ur,mdr,m

Thus, the eRVK structures represent the [3, 1, A4 1] arrays, which are set via 3 x 1
columns (52) of the eRSK structures multiplied by coefficients, where elements
of columns (52) are [, 1] arrays that are visualized in terms of M x 1 columns
(15).

Therefore, the tRVK structures of the [4 m] family are expressed via the eRVK

structures in the following row form:

Sr,i,m :Vsr,i,m _[arm' r,m? rm'dr m]!
Sr,x,i,m :Vsrxim :|:brm' r,m? rm'Crm:|’
(53)
Sr,y,i,m ZVSrylm _|:Crm' r,m? rm’brm]’
Sr,x,y,i,mzvsrxylm_[drm! r,m? rm’arm]
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We then compute the gradient of the tRSK structures to find a representation

of the tRVK structures in the column form. For s, we obtain

_asr,i,m ]
aX @i
(_1) Kr,msr,x,i,m
_ asr,i,m _ 1 Bi ﬂ
Sr,i,m - - (_ ) r‘msr,y,i,m . (54)
ay n
asr,i,m (_1) M Stim
Substituting (10), we compute that
+Kr mbrm Kr marm +Kr mdrm Krmcrm
Sr,i,m = +ﬂ“r mCrm +ﬂ’r mdrm ;Lr marm j'r mbrm ’ (55)

(_1)77 HemBem (_1) lur,mbr,m (_1)7 M oG (_1)” tur,mdr,m

which is a matrix definition of the tRVK structure s, .

Because substitution of the column definition (52) of eRVK structures into the
tRVK structure s;,, in the row form (53) returns matrix (55), the first of 4-d row
definitions (53) is equivalent to the 3-d column definition (54). Consequently,
S..m represents the [3, 4, M, 1] array, which is displayed by 3 x 4 matrix (55) of
the eRSK structures multiplied by coefficients, where elements of matrix (55) are

[, 1] arrays that are specified by M x 1 columns (15).

3.3. Definitions of the eRVK; and tRVK; Structures

Succeeding (52), the eRVK, structures of the mth family for stochastic and tur-
bulent systems a.im Drim Crem diim are expressed as gradients of the eRSK,

structures (23) in the following column form:

+Kr,mbr,t,m Kr martm
A tm :Var,t,m = +ﬂ‘r mCrim | br,t,m ZVbr,t,m = +ﬂ‘r mdrtm '
(_l)r] ,ur,mar,t,m (_1) rur,mbr,t,m
- (56)
+Krmdrtm Krmcrtm
Cr,t,m = VCr,t,m = _ﬂ’r,mar,t,m ' dr,t,m = Vdr,t,m = _ﬂ‘r,mbr,t,m
(_1)77 ;ur,mcr,t,m _(_1)'7 ;ur,mdr,t,m

The eRVK, structures are visualized by the [3, 1, M, 1] arrays, as well, which
are represented via 3 x 1 columns (56) of the eRSK, structures multiplied by
coefficients. Elements of columns (56) are [ 1] arrays that are shown by M x 1
columns (25).

Hence, we set the tRVK, structures of the [/ m] family in the row form by

Sr,t,i,m = VSr,t,i,m = [ar,t,mer,t,mVCr,t,m'dr,t,m:I’
Sr,x,t,i,m =vsrxtim z[brtm’artm'drtm'crtm] (57)
Sr,y,t,i,m :Vsr y,t,i,m _[Crtm'd

reme S em rtm]

sr,x,y,t,i,m =VSr,><,y,l,i,m =|:dr,l,micr,t,m’ rtm? rtm
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The column form of the tRVK, structures is generated by the first spatial de-

rivatives. For .., we get

_asr,t,i,m
OX (_1)ai .
Seaim = f§g§£1 = (<0 2080y | 8)
aSf,t,i,m (_1)’7 /Jrvmsf,t,i,m
| 0z |

Using (21), the matrix form of s,,;» may be written as

+Kr,mbr,t,m ~ K m@r tm +Kr,mdr,t,m ~KemCrtm

+4 C +4 d -2 a -4.b .(59)

rtim — r,m>r.t,m r,mr,t,m r,m%r.t,m r,mer,t,m

(_1)” lur,mar,t,m (_1)” :ur,mbr,t,m (_1)" /ur,mCr,t,m (_1)" :ur,mdr,t,m

Thus, §,.;m is also the [3, 4, M, 1] array, which is displayed in terms of 3 x 4
matrix (59) of the eRVK, structures multiplied by coefficients, while elements of
matrix (59) are [A4, 1] arrays, which are visualized by M x 1 columns (25).

Definitions of the tDVK structures (49), the tRVK structures (53), and tRVK,
structures (57), which are analogous to definitions of the tDSK structures (1), the
tRSK structures (10), and tRSK; structures (21), once more result in quadrality of
theoretical formulas. Quadrality of the tDVK, tRVK, and tRVK, structures is
validated by tables of the divergence, the curl, the first spatial derivatives, the
second spatial derivatives, the Laplacian, and the first temporal derivative, as
well. For conciseness, further theoretical results of Section 3 will be represented
mostly via the tDVK structure §4;. the tRVK structure s.;., and the tRVK,
structure S.;. that are enough for the description of experimental results.

Similarity of definitions (49), (53), and (57) also yields the determinis-
tic-random invariance of the tDVK, tRVK, and tRVK, structures with respect to
the spatial differentiation in (X, y; z) of any order. Hence differentiation tables of
the tDVK structures become identical to differential tables of the tRVK and
tRVK, structures after substituting

Kd,m =Kr,m’ ﬂ‘d,m Z/Ir,m' :ud,m =/ur,m’ (60)
Sd,i,m = Sr,i,m’ Sd,x,i,m = Sr,x,i,m’ Sd,y,i,m = Sr,y,i,ml Sd,x,y,i,m = Sr,x,y,i,m’
and
Kd,m :Kr,m' ﬂ’d,m :ﬂ“r,m’ :ud,m ::ur,m’ (61)
Sd,i,m = Sr,t,i,m' Sd,x,i,m = Sr,x,t,i,m' Sd,y,i,m = Sr,y,t,i,m’ Sd,x,y,i,m = Sr,x,y,t,i,m'
respectively.

3.4. Differentiation Tables

Computing the divergence of the tDVK structure s4;»with the help of (43) yields
% 2o 2s

d,i,m + 0 Sd,l,m + 0 sd,l,m
ox? oy? 07*

V-Syim =V-(Vsdvi,m)= =As,;» =[0,0,0,0]. (62)
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So, $4;m and eDVK structures are divergence-free due to (9). Solenoidality of
the tRSK structure s,;,, and the eRSK structures follows from (62) and (60). The
same result was obtained in (36) of [17].

In agreement with the definition of the curl of the tDVK structures (49) and
the first spatial derivatives (34) of the tDSK structures, we demonstrate that the
tDVK structure 4 together with the eDVK structures are irrotational. Explicitly,

we get
A s (1) 4, B O
VxSyim=|~(=1)" tym as;;m (1) x4 asdé;"m = 8 : (63)
_+(_1),3. - asda,;,i,m (1 k 832;,i,mJ

A corresponding formula for the tRSK structure s;;., which follows from (63)
with the help of (60), coincides with formula (37) of [17].
A straightforward but tedious computation of the differentiation table of the

tDVK structures, using both the column definition (50) and the row definition

(49), gives
as;;,m =+(-1)" K4 mSaxim: B = +(_1)ﬂi A4mSa.yim
asda;im _ _(_1)D’i Ky mSaims M = +(—l)ﬂi Ad.mSd x.yim
O84.yim a O84yim A
- =+(_1) I Ka.mSd,x,y.im: — =_(_1) I ﬂ“d,msd,i,m’
OX ’ oy (64)
B4 nys Faxyi
Sdg;”lvm = _(—]-)mI Kq mSd,yims % - _(_1)ﬂl ﬁd,msd,xvivm’
oS im ; 0s X,i,m
;IZ’ =+(_1)7/ud,msd,i,m’ da—z =+(_1)” Hg,mSd xim
38, ., 84,y "
d@; - :+(—1)” HamSd,yim: dézy : :+(_1)If”d,msd,x,vvi~m'

A corresponding table for the tRVK structures, which results from (64) and
(60), coincides with differentiation table (38) of [17].

Differentiation table (34) of the tDSK structures is similar to differentiation
table (64) of the tDVK structures because the differentiation tables of the scalar

and vector structures become identical after substituting

(65)

Sqim = Saimr Saxim = Sdximr  Sdyim = Sdyim'  Sdxyim = Odxy.im*

This property of the tDSK, tDVK, tRSK, tRVK, eDSK, eDVK, eRSK, and eRVK
structures is termed the scalar-vector invariance [16] [17] [18] of the theoretical and
experimental invariant structures. The scalar-vector invariance is visualized by the
differentiation diagram in Figure 1. The scalar-vector invariance is valid for the

second spatial derivatives, the Laplacian, and the first temporal derivative, as
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well.

Namely, a differentiation table of the second spatial derivatives of the tDVK
structure $q;, which have been obtained with the help of both the column defi-
nition (50) and the row definition (49),

azsd i azsd i aj+p;

aX,ZI,m = _Kj,msd,i,m’ 6X—8Iym = (_1) Kd,mﬂd,msd,x.y,i,m
sy d%sy e

ay,ZI,m = _ﬂ‘dz,msd,i,m’ axé;m = (_1) ! Kd,m:ud,msd,x,i,m (66)
0%s, . o%s, . =

a;‘Z‘Ym = +/’l(:12,msd,i,mv aytié;m = (—1)ﬁl g ﬂ“d,mlud,msd,y,i,m

looks like differentiation table (42). In agreement with the differentiation dia-
gram in Figure 1, the repeated second spatial derivatives of the tDVK structure
S4;m and the eDVK structures are invariant and the mixed second spatial deriva-
tives are covariant, what agrees with the second spatial derivatives of the tDSK
structure $4;,, and the eDSK structures. Due to (66) and (60), a relevant table for
the tRVK structure s.;, is the same as differentiation table (40) of [17].

To prove harmonicity of the tDVK structure $4;. and the eDVK structures,
we sum up the repeated second spatial derivatives of (66). Instead, the column
definition of the tDVK structure Sq;» (50) and harmonicity of the tDSK struc-

tures yield a column Laplacian of s4;, as follows:
_(_1)04 Kam (Kdz,m + ﬂ'dz,m _/ug,m )Sd,x,i,m 0
Bi
ASd,i,m = _(_1) ﬂ“d,m (Kdz,m +]“dz,m _:udz,m)sd,y,i,m =|0]. (67)

_(_1)1] Hy,m (Kcim +ﬂ’d2,m _:udz,m)sd,i,m

o

The correspondent result of the combined application of (67) and (60) agrees
with (41) of [17].
We then find the first temporal derivative of 4 in the indexed form as follows:

asd,i,m

ot :_(_1)ai Kd,mUd,rnsd,x,i,m _(_1)ﬂi ﬂ’d,mvd,msd,y,i,m‘ (68)

The first temporal derivative of the tDVK structure s;;» and the eDVK struc-
tures is a superposition of costructures in x and y. Equation (68) validates the
completeness of the eDVK structures regarding temporal differentiation of any
order.

Finally, computation of the first temporal derivative of s,;, in the indexed
form gives

M:—(—m;«r X emSexim = (=1 ZnYeemSryim + S

mNrt,mer, x,i,m r,m'rtm*r,y,i,m
ot Y

(69)

r,tim?

where the time-dependent amplitudes X, and Y., are specified by (46). Simi-
lar to (45), the first temporal derivative of the tRVK structure s;; is produced
by a superposition of the tRVK structures in x, y; and ¢

The tRVK structure s, and the eRVK structures are closed with respect to
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spatial differentiation in (X, y; 2) of any order. Equation (69) stipulates the
completeness of the tRVK structure s, the tRVK, structure s,;;» and the
eRVK and eRVK, structures with respect to temporal differentiation of the first

order.

4. Scalar Dynamic Structures
4.1. Definitions of the eDDSD and tDDSD Structures

The eDDSD structures for turbulent systems are defined as all kinds of products
of the eDSK structures (3) of the mth family aqm, bgm Cim dimand the nth fam-
ily aqm Dan Canm din with indices of deterministic internal waves m=1, 2, ..., M
andn=1,2,..., M
Ay ndyn Aumbany BgmCan Agmdan
bd,mad,n’ bd,mbd,n' bd,mCd,n’ bd,mdd,n’
Cd,ma’d,n’ Cd,mbd,n’ Cd,mcd,n’ Cd,mdd,n’
dymdans dgmPyns damCans  dgman-

(70)

The eDDSD structures are closed as they contain all possible products of the
eDSK structures of the mth and nth families.

The eDDSD structures (70) are represented by [AM, M] arrays, which are dis-
played via M x M matrices. For example,

ay ,lbd 1 8y ,lbd a8y ,1bd,M
by =l 8 mbys o AP, Agmbawm |- (71)
ad,Mbd,l ad,Mbd,n ad,Mbd,M

Thus, the tDDSD structures are established via all kinds of products of the
tDSK structures (1) of the [7 m] family Sgim Saxim Sdpim Sdxyim and the [/ n]

family Sqjn Saxjm Sdyim Sdxy)n aS

Sd,i,msd,j,n' Sd,i,msd,x,j,m Sd,i,msd,y,j,n’ Sd,i,msd,x,y,j,n’
Sd,x,i,msd,j,n’ Sd,x,i,msd,x,j,n’ Sd,x,i,msd,y,j,n’ Sd,x,i,msd,x,y,j,n' (72)
Sd,y,i,msd,j,n' Sd,y,i,msd,x,j,n' Sd,y,i,msd,y,j,n’ Sd,y,i,msd,x,y,j,n’

Sd,x,y,i,msd,j,m Sd,x,y,i,msd,x,j,n’ Sd,x,y,i,msd,y,j,n’ Sd,x,y,i,msd,x,y,i,n’

where indices of deterministic wave groups /=1, 2, ..., [and j=1, 2, ..., Jand in-
dices of deterministic internal waves m =1, 2, ..., M and n =1, 2, ..., M. The
tDDSD structures also are closed since they comprise all possible products of the
tDSK structures of the [ m] and [/, n] families.
In terms of the eDDSD structures,
Amdan  Bambin  BamCan  Agmgn
Bymdyn  Bamban  BamCan  Bamdan
Sq,imSd,jn = . (73)
CamBsn  ComPan  ComCan  Camban
dym@gn dgmban domCan damdan

Therefore, the tDDSD structure $;mS4;, represents a [4, 4, M, M] array, which
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is displayed as 4 x 4 matrix (73) of the eDDSD structures. Elements of matrix
(73) are the [M, M] arrays that are visualized like A/ x M matrices (71). Other
tDDSD structures are also 4 x 4 matrices of the eDDSD structures arranged in

different orders.

4.2. Definitions of the eDRSD and tDRSD Structures

We specify the eDRSD structures for turbulent systems as all kinds of products
of the eDSK structures (3) of the mith family aym, bym Cim dim and the eRSK
structures (12) of the nth family a., 0.5 ¢, d,, with indices of deterministic in-

ternal waves m =1, 2, ..., M and indices of random internal waves n=1, 2, ...,

M-
ad,mar,m ad,mbr,n’ ad,mcr,n’ ad,mdr,n’
bd,mar,n’ bd,mbr,n’ bd,mcr,n' bd,mdr,n! (74)
Cd,mar,n' Cd,mbr,n' Cd,mCr,n’ Cd,mdr,n’
dd,mar,n’ dd,mbr,n’ dd,mcr,n’ dd‘mdr,n'

Again, the eDRSD structures (74) are displayed as the [A, M] arrays, which
are shown by the M/ x M matrices. Explicitly,

ay ,1br,1 Yy ,lbr,n Ry ,1br,M
A m br,n = ad,mbr,l ad,mbr,n ad,mbr,M . (75)
by o agmbeg Ay m b

In turn, the tDRSD structures are defined through all kinds of products of the
tDSK structures (1) of the [4 m] family Sgim Saxim Sdpim Sdxyim and the tRSK
structures (10) of the [ n] family S, Sexim Seyim Spxyin DY

Sd,imS Sd,imS

Sd,imS Sd,imS

rj,n? X, j,n? ry,j,n’ rxy,j.n’
Sd,x,i,msr,j,n’ Sd,x,i,msr,x,j,n' Sd,x,i,msr,y,j,n' Sd,x,i,msr,x,y,j,n’ (76)
sd,y,i,msr,j,n' Sd‘y,i,msr,x,j,n’ Sd,y,i,msr,y,j,n' Sd,y,i‘msr,x,y,j‘n’
Sd,x,y,i,msr,j,n’ Sd,x,y,i,msr,x,j,n' Sd,x,y,i,msr,y,j,n' Sd,x,y,i,msr,x,y,j,n’

where 7=1, 2, ..., T are indices of deterministic wave groups, j= 1, 2, ..., /are in-
dices of random wave groups, m = 1, 2, ..., M are indices of deterministic inter-
nal waves, and n= 1, 2, ..., M are indices of random internal waves.

In the eDRSD structures,

ad,mar,n ad,mbr,n ad,mcr,n ar,mdr,n
bd,mar,n bd,mbr,n bd,mCr,n br,mdr,n
SinSin =l 4 ¢ b ¢ c ¢ d 77)
d,m*r,n d,m™~r,n d,m>r,n r,m-r,n
dd,mar,n dd,mbr,n dd,mCr,n dr,mdr,n

Consequently, the tDRSD structure $g;ms:;. is manifested by the [4, 4, M, M]
array, which is 4 x 4 matrix (77) of the eDRSD structures. Elements of matrix
(77) present the [M, M)] arrays that are shown alike M x M matrix (75). Further
tDRSD structures are the 4 x 4 matrices of the eDRSD structures, as well, which
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are organized in diverse orders.

4.3. Definitions of the eRDSD and tRDSD Structures

The eRDSD structures for turbulent systems are set up as all kinds of products of
the eRSK structures (12) of the mth family a.m bym Com dim and the eDSK
structures (3) of the nth family ay,, bym Cam dan with indices of random internal

waves m =1, 2, ..., Mand indices of deterministic internal waves n=1, 2, ..., M-

ar,mad,n’ ar,mbd,n! ar,mcd,n' ar,mdd,n'
br,mad,n’ br,mbd,n’ br,mCd,m br,mdd,n7 (78)
ComBanr Crmbunr CrmCanr Crmban
d g dopbyn, doocyn, dodgn

The eDRSD and eRDSD structures are closed as they embrace all possible
products of the eDSK and eRSK structures of the mth and nth families.
Likewise (71) and (75), the eRDSD structures (78) are manifested by the [A4, M]

arrays, which are specified via the A/ x M matrices. Namely,

ar,lbd 10 ar,lbd n o ar,lbd,M
ar,m bd,n = ar,mbd,l a'r,mbd,n a'r,mbd,M . (79)
ar‘Mbd,l ar,Mbd,n ar,Mbd,M

In line with (76), the tRDSD structures are specified via all kinds of products
of the tRSK structures of the [4 m]family Spinm Sexim Supim Sexpim and the tDSK

structures of the [, n] family Sy;m Saxin Sdyim Sdxyn as follows:

Sr,i,msd,j,n' Sr,i,msd,x,j,n’ Sr,i,msd,y,j,n’ Sr,i,msd,x,y,j,n'

S‘r,x,i,ms‘d,j,n’ Sr,x.i,msd‘x.j,n’ Sr,x,i.msd,y,j‘n’ sr,x,i,msd,x,y,j,n’ (80)
Sr,y,i,msd,j,n' Sr,y,i,msd,x,j,n’ Sr,y,i,msd,y,j,n’ Sr,y,i,msd,x,y,j,n'

Sr,x,y,i,de,j,n’ sr,x,y,i,msd,x,j,n' Sr,x,y,i,msd,y,j,nl Sr,x,y,i,de,x,y,j,m

where /=1, 2, ..., Tare indices of random wave groups, j= 1, 2, ..., [ are indices of
deterministic wave groups, m = 1, 2, ..., M are indices of random internal waves,
and n =1, 2, ..., M are indices of deterministic internal waves. The tDRSD and
tRDSD structures are closed as they embrace all possible products of the tDSK
and tRSK structures of the [ m] and [}, n] families.

Via the eRDSD structures,

ar,mcd ,n a

ar,ma‘d,n T.m r,mdd,n
br,mad,n br,mbd,n br,mcd,n br,mdd,n
Sandain Tl e 4 ¢ b ¢ ¢ ¢ d (81)
r.m~d,n r,m~d,n r.m~d,n r,m-d,n
CIr,ma‘d,n dr,mbd,n dr,mCd,n dr,mdd,n

Similarly, the tRDSD structure S;;mSq,.. is expressed via the [4, 4, M, M] array,

which is exposed as 4 x 4 matrix (81) of the eRDSD structures. Elements of ma-
trix (81) are the [A4, M] arrays that are displayed through M x M matrices (79).
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Another tRDSD structures are composed of the 4 x 4 matrices of the eRDSD

structures, which are positioned in diverse orders.

4.4. Definitions of the eRRSD and tRRSD Structures

In agreement with (43) of [17], we represent the eRRSD structures for stochastic
and turbulent systems as all kinds of products of the eRSK structures (12) of the
mth famlly ar,m br,m’ Crm» dr,m and the nth famlly arm br,m Crns C{r,n with indices of

random internal waves m=1,2, ... Mand n=1, 2, ..., M-

a _a a b a ¢ a d

r.m~r,n’ r,.m=r,n? r,.m~r,n? r,m~r,n?

b, ,a b, .b b, .C b, .d

r,m=r,n? r,m=r,n? r,mr,n? rm-r,n?
(82)
c .a c.b C C c .d

r,m=r,n? r,m~r,n’ r,m~r,n? r,m=r,n’

dr,mar,n' dr‘mbr,n’ dr,mCr,n’ dr,mdr,n'

The eRRSD structures are closed too for the reason that they comprise all
possible products of the eRSK structures of the mth and nth families.
The eRRSD structures (82) are also displayed as the [A4, M] arrays, which are

visualized by the M x M matrices. For example,

ar,1br,l e ar,lbr,n e ar,lbr,M
& br,n = ar,mbr,l ar,mbr,n ar,mbr,M . (83)
a'r,M br,l a'r,Mbr,n ar,Mbr,M

Hence, the tRRSD structures are defined through all kinds of products of the
tRSK structures (10) of the [7 m] family Spim Ssxim Sepim Sexpim and the [j n]

family S,im Sixjm Sepim Sexyia int the following form:

StimSrint  StimStwin'  SrimSryint  SrimSrxy.in
SeximSrin'  SrximSraint  SrwimSryint  SrximSray.int 50
StyimSrint SryimSixin SryimSryine StyimSryn

s s s s S s s s

r.X,y,Q,mer,j,n? rX,Y,i,merx, j,n? rx,y,i,mery,jn? rXY,0,morx,y, j,n?

where /=1, 2, ..., Jand j= 1, 2, ..., Jare indices of random wave groups and
m=1,2,..., Mand n=1, 2, ..., M are indices of random internal waves. The
tRRSD structures are closed since they include all possible products of the tRSK
structures of the [ m] and [}, n] families.

Through the eRRSD structures,

ar,mar,n ar,mbr,n ar, Cr n ar,mdr n
br,mar,n br,mbr,n br,mcr,n br dr n
Sr |,msr,j n = b d . (85)
Cr,mar,n Cr,m r,n Cr,mcr,n Cr,m r,n
dr,mar,n dr‘mbr,n dr,mcr,n dr,mdr n

The tRRSD structure s,;ms;;, is displayed by the [4, 4, M, M)] array, which is

represented via 4 x 4 matrix (85) of the eRRSD structures. Elements of matrix
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(85) are the [M, M] arrays that are exposed as M x M matrices (83). Other
tRRSD structures are also the 4 x 4 matrices of the eRRSD structures listed in

various orders.

4.5. Differentiation Tables

Taking the first spatial derivatives of sg;mSq;n substituting the first spatial deriva-
tives of the tDSK structures (34), and using (34) with substitution [/ = j, m = n]
gives

a(s PN T )
dim>d,jn) i aj
— = = (_l) K4,mSd,ximSd,jn T (_l) K4 nSd,i,mSd x,jn

oX
O(SqimSq in ; i
% =(=1)" A4 mS.y.imSa i +(_1)ﬁ] Aa.nSaimSay,jns (86)
O(S4.imSa.jn
Z
Proceeding the same way for the tDRSD structures yields
ols i,msr".n % X
% = (_1) Kd,msd,x,i,msr,jvn +(_1) : Kr,nsd,i,msrvxvjy“’
OSy ;i S, :
M = (_1)ﬂl /’i'd,msd,y,i,msr,j,n +(_1)ﬂj ﬂ’r,nsd,i,msr,y.jx"’ (87)
oy
a(sd,i,msr,‘,n)
SUTEL AT A

The differentiation table of the first spatial derivatives of the tRDSD structures

becomes

O|S i mSq i
M :(_1)ai KemS Sd,j,n +(_1)0‘j Kd,nsr,i,msd,x,j,n'

OX r,mr,x,i,m
O|SimSq i
% :(_1)ﬁ. A mSroyimSd. i +(_1)ﬂi Ay nSeinSay i (88)
8(Sr,i,msd,',n)
T’ =(=1)" (e + Hap ) SeimSa. i

Finally, we compute the differentiation table of the first spatial derivatives of
the tRRSD structures in the following form:

OS;imSr
—( L ""”) =(=1)" K mSeximSr.in +(=1)" K nSpimS

r,m°r,x,i,m>r,j,n r,n°ri,m>r,x,j,n?

oX
O(S,: mS; i
M = (_1)ﬂi )“r mSr yi mSr j.n +(_1)ﬂj lr nSrimSr y.j,n? (89)
6 Sr,i,er,',n
( oz : ):(_1)'7 (ﬂr,m+ﬂr,n)sr,i,msr,j,n’

which coincides with (47) of [17].
Expansion of (86)-(89) in all group and wave indices demonstrates the com-
pleteness of the eDDSD, eDRSD, eRDSD, and eRRSD structures with respect to
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spatial differentiation of any order. The computed first derivatives of the tDDSD,
tDRSD, tRDSD, tRRSD structures and the eDDSD, eDRSD, eRDSD, eRRSD struc-
tures with respect to zare invariant and with respect to xand y-are covariant.

Theoretical Equations (86)-(89) for the tDDSD, tDRSD, tRDSD, and tRRSD
structures have been verified by differentiation tables of the eDDSD, eDRSD,
eRDSD, and eRRSD structures using experimental and theoretical programming
in Maple, while each theoretical formula corresponds to a table of 16 experi-
mental formulas. In view of a large size, Maple codes will be published else-
where.

The gradient of the tDDSD, tDRSD, tRDSD, and tRRSD structures will be
computed via the tDDVD, tDRVD, tRDVD, and tRRVD structures of the mth
and nth families in Section 5.5.

5. Vector Dynamic Structures

5.1. Definitions of the eDDVD and tDDVD Structures

Analogous to (40) of [16], we define the eDDVD structures of the mth family for

turbulent systems as all kinds of products of the eDVK structures (48) of the mth

family agm, Bam Cam dim and the eDSK structures (3) of the nth family ag,, byn

Can dgn, with indices of deterministic internal waves m=1,2, ..., Mand n=1, 2,
.o M-

a‘d,mad,n’ ad,mbd,n' ad,mcd,n’ ad,mdd,n’
bd,mad,n' bd,mbd,n' bd,mcd,m bd,mdd,m
CamBan: Cambanr  CamCans  ComUan
dd,mad,n' dd b, dd,mcd,n’ dd,mdd,n'

,m~d,n?

(90)

Because the eDVK structures are gradients (48) of the eDSK structures, the
eDDVD structures aqmadqm adqmbdn 8dmCin admdan etc. are visualized by the fol-

lowing columns:

+Kd,mbd,mad,n +Kd,mbd,mbd,n

a‘d,mad,n = +ﬂ’d,mcd,mad,n ' a‘d,mbd,n = +ﬂ’d,mcd,mbd,n '
n n
(_1) Iud,mad,mad,n (_1) :ud,mad,mbd,n
- - (91)
+Kd,mbd,mcd,n +Kd,mbd,mdd,n
a‘d,mcd n— +ﬂ’d,mcd,mcd,n ' ad,mdd,n = +ﬁ’d,mcd,mdd,n

_(_1)” /ud,mad,mcd,n _(_1)77 /ud‘mad.mdd,n

Therefore, the eDDVD structures of the mth family are represented by [3, 1,
M, M) arrays, which are manifested via 3 x 1 columns (91) of the eDDSD
structures multiplied by coefficients, where elements of columns (91) are the
[M, M] arrays that are exhibited as the M x M matrices analogous to matrix
(71).

Consequently, we set the eDDVD structures of the nth family for turbulent
systems as all kinds of products of the eDSK structures (3) of the mth family ag,
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bans Cim dim and the eDVK structures (48) of the nth family aqn, ban Cim din
with indices of deterministic internal waves m=1,2, ..., Mand n=1,2, ..., M-
A mdan Agmbans  BamCan gmbans
Ay BBy BymCons Bamdan
Cam@gns CamPans  CamCans  Camans
Aynr Gymbynr GgmCons dgmbgn-

(92)

n?

The eDDVD structures of the mth and nth families are closed since they in-
clude all possible products of the eDVK and eDSK structures of the mth and nth
families.

Since the eDVK structures are presented via gradients of the correspondent
eDSK structures, the eDDVD structures of the nth family aymdan dqmban ddmCan
a4mdyn, etc. are shown by the following columns:

+Kd,nad,mbd,n _Kd,nad,mad,n
a'd,mad,n = +/1d,nad,mcd,n ! ad,mbd,n = +ld,nad,mdd,n '
n n
(_1) /ud,nad,mad,n (_1) /ud,nad,mbd,n
_ - _ (93)
+ Kd,nad,mdd,n _Kd,nad,mcd,n
a'd,mcd,n = _ﬂ“d,nad,mad,n J a'd,mdd,n = _ﬂ’d,nad,mbd,n
n n
(_1) /ud,nad,mcd,n (_1) /ud,nad,mdd,n

Thus, the eDDVD structures of the nth family are the [3, 1, M, M] arrays,
which are exposed by 3 x 1 columns (93) of the eDDSD structures multiplied by
coefficients, where elements of columns (93) are expressed via the [, M] arrays
that are displayed by the M/ x M matrices alike (71).

The tDDVD structures of the mth family are introduced as all kinds of prod-
ucts of the tDVK structures (49) of the [4 m] family and the tDSK structures (1)
of the [, n] family. Namely,

Sd,i,msd,j,n' Sd,i,msd,x,j,n’ sd,i,msd,y,j,n’ Sd,i,msd,x,y,j,n’
Sd,x,i,msd,j,n' sd,x,i,msd,x,j,n’ Sd,x,i,msd,y,j,n' Sd,x,i,msd,x,y,j,nl (94)
Sd,y,i,msd,j,m Sd,y,i,msd,x,j,n' Sd,y,i,msd,y,j,n’ Sd,y,i,msd,x,y,j,m

Sd,x,y,i,msd,j,n’ Sd,x,y,i,msd,x,j,n' Sd,x,y,i,msd,y,j,n' Sd,x,y,i,msd,x,y,j,n’

where /=1, 2, ..., Jand j= 1, 2, ..., T are indices of deterministic wave groups,
m=1,2,... Mand n=1, 2, ..., M are indices of deterministic internal waves.
In terms of the eDDVD structures of the mth family (90),
ad,mad,n ad,mbd,n ad,mCd,n ad,mdd,n
bd mad,n bd mbd n bd mCd,n bd mdd n

| (95)

S,. .S, .
d,i,m>d,j,n
Cd,mad,n Cd,mbd,n Cd,mcd,n Cd,mdd,n

dd,mad,n dd,mbd,n dd‘mcd,n dd,mdd,n

The tDDVD structure of the mth family s4;mS4n is a [4, 4, 3, 1, M, M] array
that is visualized by 4 x 4 matrix (95) of the eDDVD structures of the mth family.
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So, elements of matrix (95) are the [3, 1, M, M)] arrays that are displayed by the 3 x 1
columns of the M x M matrices of the eDDSD structures multiplied by coeffi-
cients. Another tDDVD structures of the mth family are the 4 x 4 matrices of the
eDDVD structures of the mth family arranged in different orders.

The tDDVD structures of the nth family are set as all kinds of products of the
tDSK structures (1) of the [ m] family and the tDVK structures (49) of the [}, n]
family. Explicitly,

Sd,i,msd,j,n' Sd,i,msd,x,j,n’ Sd,i,msd,y,j,n’ Sd,i,msd,x,y,j,n'
Sd,x,i,msd,j,m Sd,x,i,msd,x,j,n' Sd,x,i,msd,y,j,n' Sd,x,i,msd,x,y,j,m (96)
Sd,y,i,msd,j,n' Sd,y,i,msd,x,j,n’ sd,y,i,msd,y,j,n’ sd,y,i,msd,x,y,j,n'

Sd,x,y,i,msd,j,n’ Sd,x,y,i,msd,x,j,n' Sd,x,y,i,msd,y,j,n' Sd,x,y,i,msd,x,y,j,n’

where /=1, 2, ..., Jand j= 1, 2, ..., T are indices of deterministic wave groups,
m=1,2,..., Mand n=1, 2, ..., M are indices of deterministic internal waves.
The tDDVD structures of the mth and nth families are closed as they comprise
all possible products of the tDVK and tDSK structures of the [/ m] and [, ] fami-
lies.
Through the eDDVD structures of the nth family (92),
8y Bmbyn BunCan Aymdan
Bym@sn  Bombun  BomCon  Bumdan
SqimSq,jn = . (97)
CimBan ComPon  CamCan Comlan
dymdyn dambsn dymCon Aoy

The tDDVD structure of the nth family s4;m84,. is also the [4, 4, 3, 1, M, M]
array, which is displayed via 4 x 4 matrix (97) of the eDDVD structures of the
nth family. Elements of matrix (97) are specified by the [3, 1, M, M] arrays that
are shown through the 3 x 1 columns of the M x M matrices of the eDDSD
structures multiplied by coefficients. Other tDDVD structures of the nth family
are also visualized as the 4 x 4 matrices of the eDDVD structures of the nth fam-

ily listed in various orders.

5.2. Definitions of the eDRVD and tDRVD structures

Alike (90), the eDRVD structures of the mth family for turbulent systems are
specified as all kinds of products of the eDVK structures (48) of the mth family
a4m bam Cam digm with an index of deterministic internal waves m=1,2, ..., M
and the eRSK structures (12) of the nth family a.,, by Gon din With an index of
random internal waves n=1, 2, ..., M.
B marns Agnbn BgnCrny 8g e
ymdrns Boabrns BonCrns Bymlyn
Cam@rnr CamPrins  CymCrns Comd
d, @ d, b d,.C d,.d

d,m™r,n? d,m™r,n? d,m>r,n? d,m>r,n*

(98)

rn?

Because the eDVK structures are presented via gradients (48) of the eDSK
structures, the eDRVD structures aqma.m aqmbim ddmCim ddmdsn efc. are dis-

played as follows:
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+ Kd,mbd,mar,n +Kd,mbd,mbr,n
ad,mar,n = +ﬂd,mcd,mar,n 1 a'd,mbr,n = +ﬂd,mcd,mbr,n 1
n n
(_1) ﬂd,mad,mar,n (_1) /Id,mad,mbr,n
- - (99)
+ Kd,mbd,mcr,n + Kd,mbd,mdr,n
ad,mCr,n = + /,Ld,mcd,mcr,n ' ad,mdr,n = + /,Ld,mcd,mdr,n
n n
(_1) tud,mad,mcr,n (_1) tud,mad,mdr,n

So, the eDRVD structures of the mth family are expressed through the [3, 1,
M, M] arrays, which are exposed via 3 x 1 columns (99) of the eDRSD structures
multiplied by coefficients, while elements of columns (99) are the [, M] arrays
that are manifested by the M x M matrices similar to matrix (75).

In the same way, the eDRVD structures of the nth family for turbulent sys-
tems are described by all kinds of products of the eDSK structures (3) of the mth
family agm Dam Cam dam with an index of deterministic internal waves m = 1, 2,
..., M and the eRVK structures (52) of the nth family a.,, b.» Cn d., with an
index of random internal waves n=1, 2, ..., M:

Ayl o A b, 8 nConn Al
Dy mrns Dy b0 By nCrny By nden,
Com@rnr  ComPrns CymCrns Cymd
d, a d, b d, c d, d

d,m~r,n? d,m™~r,n? d,m>r,n’ d,m>rn"

(100)

r,n?

Because the eRVK structures are defined as gradients of the eRSK structures,
the eDRVD structures of the nth family agmasn a4mbim aamCin aamd,n etc. are

visualized by

+Kr,nad,mbr,n _Kr,nad,mar,n
a‘d,ma'r,n = +ﬂ’r,nad,mcr,n ' ad,mbr,n = +ﬂ“r,nad,mdr,n '
n n
(_1) /ur,nad,mar,n (_1) /ur,nad‘mbr,n
- - _ (101)
+Kr,nad,mdr,n _Kr,nad,mcr,n
a'd,mcr,n = - /Ir,nad,mar,n ' ad,mdr,n = - )i’r,nad,mbr,n
n n
(_l) /ur,nad,mcr,n (_1) /ur,nad,mdr,n

Consequently, the eDRVD structures of the nth family are the [3, 1, M, M]
arrays, as well, which are manifested in terms of 3 x 1 columns (101) of the
eDRSD structures multiplied by coefficients, whereas elements of columns (101)
are the [M, M] arrays that are exposed by the A/ x M matrices analogous to (75).

We specify the tDRVD structures of the mth family as all kinds of products of
the tDVK structures (49) of the [/ m] family and the tRSK structures (10) of the
[, ] family:

Sd,i,msr,j,n’ Sd,i,msr,x,j,n' Sd,i,msr,y,j,n’ Sd,i,msr,x,y,j,n’

Sd,x,i,msr,j,n' Sd,x,i,msr,x,j,n’ Sd,x,i,msr,y,j,n' Sd,x,i,msr,x,y,j,n’ (102)
Sd,y,i,msr,j,n’ Sd,y,i,msr,x,j,n’ Sd,y,i,msr,y,j,n’ sd,y,i,msr,x,y,j,n’

Sd,x,y,i,msr,j,n' Sd,x,y,i,msr,x,j,n’ Sd,x,y,i,msr,y,j,n' Sd,x,y,i,msr,x,y,j,n!
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where 7= 1, 2, ..., /is an index of deterministic wave groups, /=1, 2, ..., /is an
index of random wave groups, m = 1, 2, ..., Mis an index of deterministic inter-
nal waves, and n=1, 2, ..., Mis an index of random internal waves.

Via the eDRVD structures of the mth family (98),

ad,mar,n a'd,mbr,n ad,mcr,n ad,mdr,n
bd,mar,n bd,mbr,n bd,mcr,n bd,mdr,n
Sd,i,msr,j,n = b d . (103)
Cd,ma'r,n Cd,m r,n Cd,mcr,n Cd,m r,n
dd,mar‘n dd,mbr,n dd‘mc’r,n dd,mdr,n

So, the tDRVD structure of the nth family s;..;, represents the [4, 4, 3, 1, M,
M)] array, which is displayed as 4 x 4 matrix (103) of the eDRVD structures of
the mth family. Elements of matrix (103) are also the [3, 1, M, M] arrays that are
shown by the 3 x 1 columns of the M x M matrices of the eDRSD structures
multiplied by coefficients. Further tDRVD structures of the mth family are the 4 x 4
matrices of the eDRVD structures of the mth family, as well, organized in di-
verse orders.

The tDRVD of the nth family are computed as all kinds of products of the
tDSK structures (1) of the [4 m] family and the tRVK structures (53) of the [/, n]
family. Namely,

Sd,i,msr,j,n’ Sd,i,msr,x,j,n' Sd,i,msr,y,j,n’ Sd,i,msr,x,y,j,n'

sd,x,i,msr,j,n' Sd,x,i,msr,x,j,n’ Sd,x,i,msr,y,j,n' Sd,x,i,msr,x,y,j,m (104)
Sd‘y,i,msr,j,n’ sd,y,i,msr‘x,j‘n’ Sd,y,i,msr,y,j,n’ Sd,y,i,msr,x,y,j‘n’

sd,x,y,i,msr,j,n' Sd,x,y,i,msr,x,j,n! Sd,x,y,i,msr,y,j,n' Sd,x,y,i,msr,x,y,j,n!

where 7= 1, 2, ..., /is an index of deterministic wave groups, j= 1, 2, ..., /is an
index of random wave groups, m = 1, 2, ..., M is an index of deterministic inter-
nal waves, and n= 1, 2, ..., Mis an index of random internal waves.

In terms of the eDRVD structures of the nth family (100),

a'd,ma'r,n ad,mbr,n a'd,mCr,n ad,mdr,n
bd‘mar,n bd,mbr,n bd,mcr‘n bd,mdr,n
Sd,i,msr,j,n = b d . (105)
Cd,mar,n Cd,m r,n Cd,mcr,n Cd,m r,n
dd,mar,n dd,mbr,n dd,mCr,n dd,mdr,n

Thus, the tDRVD structure of the ath family sq;ms,;» presents the [4, 4, 3, 1, M,
M)] array, which is set by 4 x 4 matrix (105) of the eDRVD structures of the nth
family. Elements of matrix (105) are also the [3, 1, M, M] arrays that are mani-
fested via the 3 x 1 columns of the M x M matrices of the eDRSD structures
multiplied by coefficients. Various tDRVD structures of the nth family are the 4 x 4
matrices of the eDRVD structures of the nth family positioned in diverse orders.

5.3. Definitions of the eRDVD and tRDVD Structures

Following (98), we introduce the eRDVD structures of the mth family for turbu-
lent systems as all kinds of products of the eRVK structures (52) of the mth fam-
ily a5 By Comy dym with an index of random internal waves m=1, 2, ..., Mand

the eDSK structures (3) of the ath family agn, bam Cin din with an index of de-
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terministic internal waves n=1, 2, ..., M:

8 ndgn Bl A nCanr 8 nlyn
br,mad,n' br,mbd,n' br,mcd,n’ br,mdd,n’ (106)
Cr,mad,m Cr,mbd,n’ Cr,mcd,n7 Cr,mdd,n7
d @, Ol dnCons dndg

For the reason that the eRVK structures are gradients of the eRSK structures,

the eRDVD structures a,,d4m armDan 8rmCam drmdan €tc. become

+Kr,mbr,mad,n +Kr,mbr,mbd,n
a‘r,ma‘d,n = +ﬂ’r,mcr,mad,n ' a'r,mbd,n = +ﬂ’r,mcr,mbd,n !
n n
(_1) #T,maf,mad,ﬂ (_1) /ur,mar,mbd,n
n - (107)
+Kr,mbr,mcd,n + Kr,mbr,mdd,n
a'r,mCd,n = +ﬂ“r,mcr,mcd,n 1 ar,mdd,n = +lr,mcr,mdd,n
n n
(_1) /’lr,mar,mcd,n (_1) lur,mar,mdd,n

The eRDVD structures of the mth family are described by the [3, 1, M, M] ar-
rays, which are manifested via 3 x 1 columns (107) of the eRDSD structures
multiplied by coefficients, where elements of columns (107) are the [M, M] ar-
rays that are shown by the A/ x M matrices similar to matrix (79).

Analogously, we specify the eRDVD structures of the nth family for turbulent
systems as all kinds of products of the eRSK structures (12) of the mth family a.
by Coms dpm with an index of random internal waves m = 1, 2, ..., M and the
eDVK structures (48) of the nth family a4 Dan Can din with an index of deter-

ministic internal waves n=1, 2, ..., M.
ar,mad,n’ ar,mbd,m ar,mcd,n’ ar,mdd,m
br,mad,n' br,mbd,n' br,mcd,n' br,mdd,n’
(108)
Cr,mad,n’ Cr,mbd,n' Cr,mCd,n’ Cr,mdd,n'
dr,mad,n’ dr,mbd,n' dr,mcd,n’ dr,mdd,n

The experimental eDRVD and eRDVD structures of the mth and nth families
are closed since they include all possible products of the eDVK, eRVK, eDSK,
and eRSK structures of the mth and nth families.

Because the eDVK structures are represented by gradients of the eDSK struc-
tures, the eRDVD structures of the nth family a,maqm armbam azmCan armdan €tc.

are expressed as follows:

+ Kd,nar,mbd,n _Kd,nar,mad,n
ar,mad,n = +ﬂ’d.nar,mcd,n 1 a'r‘mbd‘n = +ld‘nar,mdd‘n 1
n n
(_1) tud,nar,mad,n (_1) :ud,nar,mbd,n
- - _ (109)
+Kd,nar,mdd,n _Kd,nar,mcd,n
ar,mCd‘n = - /Id,nar,mad,n ’ ar,mdd‘n = - /Id,nar,mbd,n
n n
(_1) ,ud,nar,mcd,n (_1) :ud,nar,mdd,n

Thus, the eRDVD structures of the sth family are exhibited via the [3, 1, A4 M]
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arrays, which are shown by 3 x 1 columns (109) of the eRDSD structures multiplied
by coefficients, while elements of columns (109) are the [A4 M] arrays that are
displayed by the M x M matrices alike matrix (79).

The tRDVD structures of the mth family are constructed as all kinds of prod-
ucts of the tRVK structures (53) of the [ m] family and the tDSK structures (1)
of the [, n] family

Sr,i,msd,j,n' Sr,i,msd‘x,j,n’ sr,i‘msd,y,j,n' Sr‘i,msd,x,y,j,n’

Sr,x,i,msd,j,n' Sr,x,i,msd,x,j,n' sr,x,i,msd,y,j,n' Sr,x,i,msd,x,y,j,n' (110)
Sr,y,i,msd,j,n' Sr,y,i,msd,x,j,n’ Sr,y,i,msd,y,j,n' Sr,y,i,msd,x,y,j,n’

Sr,x,y,i,msd,j,n’ Sr,x‘y,i,msd‘x,j,n’ sr,x,y,i,msd,y,j,n' Sr‘x,y,i,msd‘x,y‘j,n’

where /=1, 2, ..., [is an index of random wave groups, j= 1, 2, ..., /is an index of
deterministic wave groups, m = 1, 2, ..., Mis an index of random internal waves,
and n=1, 2, ..., Mis an index of deterministic internal waves.
In the eRDVD structures of the mth family (106),
a g, &b, a.c, a.,d
b m@an  Bmbin BrnCin b nda,
c, ,d
d d

SrimSd,jn = (111)

Cr,ma‘d,n Cr,mbd,n Cr,mCd,n
dr,ma‘d,n dr,mbd,n d

The tRDVD structure of the mth family s,;mSq;. is set as the [4, 4, 3, 1, M, M]
array, which is visualized by 4 x 4 matrix (111) of the eRDVD structures of the

Cd,n

r,m

n1th family. Once more, elements of matrix (111) present the [3, 1, M, M] arrays
that are displayed by the 3 x 1 columns of the M x M matrices of the eRDSD
structures multiplied by coefficients. Other tRDVD structures of the mth family
are represented by the 4 x 4 matrices of the eRDVD structures of the mth family
positioned in different orders.

The tRDVD structures of the nth family are composed as all kinds of products
of the tRSK structures (10) of the [ m] family and the tDVK structures (49) of
the [, n] family:

Sr,i,msd,j,n’ Sr,i,msd,x,j,n’ Sr,i,msd,y,j,m Sr,i,msd,x,y,j,n’

Sr,x,i,msd,j,n' Sr,x,i,msd,x,j,n’ Sr,x,i,msd,y,j,n’ Sr,x,i,msd,x,y,j,n’ (112)
sr,y,i,msd,j,n' Sr,y,i,msd,x,j,n' Sr,y,i,msd,y,j,n’ Sr,y,i,msd,x,y,j,n'

sr,x,y,i,msd,j,n’ Sr,x,y,i,msd,x,j,n’ Sr,x,y,i,msd,y,j,n' Sr,x,y,i,msd,x,y,j,n’

where /=1, 2, ..., [is an index of random wave groups, j=1, 2, ..., /is an index of
deterministic wave groups, m = 1, 2, ..., M is an index of random internal waves,
and n=1, 2, ..., Mis an index of deterministic internal waves.

The tDRVD structures and tRDVD structures of the mth and nth families are
also closed because they include all possible products of the tDVK, tRVK, tDSK,
and tRSK structures of the [4 m] and [/, n] families.

Via the eRDVD structures of the nth family (108),

ar,ma'd,n a'r,mbd,n a‘r,mCd,n ar,mdd,n
s s _ br,mad,n r,mbd,n br,mCd,n br,mdd,n (113)
rim¥dn e a, ¢ by, €. Cun C.dy. |

r.m~d,n r,m~d,n r,m~d,n r,m-d,n

dr,ma'd,n dr,mbd,n dr,mcd,n dr,mdd,n
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The tRDVD structure of the nth family s.;84;. represents the [4, 4, 3, 1, M, M]
array, which is specified via 4 x 4 matrix (113) of the eRDVD structures of the
nth family. Elements of matrix (113) are given by the [3, 1, M, M] arrays that are
shown in terms of the 3 x 1 columns of the M X M matrices of the eRDSD
structures multiplied by coefficients. Further tRDVD structures of the nth family
are displayed by the 4 x 4 matrices of the eRDVD structures of the nth family

arranged in various orders.

5.4. Definitions of the eRRVD and tRRVD Structures

Following (52) of [17], the eRRVD structures of the mth family for stochastic
and turbulent systems are established as all kinds of products of the eRVK
structures (52) of the mth family a.., bym Conm» dim and the eRSK structures (12)
of the nth family a.,, b.n Cim d,n with indices of random internal waves m = 1,
2,.. Mand n=1,2, ..., M-

a ,a ., a..b., a..c. a.d.,,
b na . bobo, boco.. bo.d ., (114)
Com@rns Conbrns ConCrny Copdp,
d.a, d.b., d.c. d.d..

For the eRVK structures are represented by gradients (52) of the eRSK struc-
tures, the eRRVD structures 2,mam @rmbDrn armCin armdyn etc. are manifested by

the following columns:

+ Kr,mbr,mar,n + Kr,mbr,mbr,n
ar,mar,n = +ﬂ’r,mcr,mar,n ' ar,mbr,n = +ﬂr,mcr,mbr,n !
7 7
(_1) /ur,mar,mar,n (_l) :ur,mar,mbr,n
- (115)
+Kr,mbr,mcr,n +Kr,mbr,mdr,n
ar,mcr,n = + ﬂr,mcr,mcr,n ' ar,mdr,n = + ﬂ’r,mcr,mdr,n
n n
(_1) :ur,mar,mcr,n (_1) :ur,mar,mdr,n

Consequently, the eDRVD structures of the mth family are the [3, 1, M, M]
arrays, which are displayed in terms of 3 x 1 columns (115) of the eRRSD struc-
tures multiplied by coefficients, where elements of columns (115) are the [A, M)]
arrays that are exhibited as the A/ x A matrices similar to matrix (83).

So, the eRRVD structures of the nth family for stochastic and turbulent sys-
tems are defined as all kinds of products of the eRSK structures (12) of the mth
family a,m, brm Com» dim and the eRVK structures (52) of the nth family a.,, b,
Cin d,.n with indices of random internal waves m=1,2, .., Mand n=1, 2, ..., M-

a .. @b, a.c ., a.,.d.,,
b o Bonb, bonco, bodo, (116)
Comdrns Conbrns ConCrns Condrn,
d na., d.b., d.c., d.d..

The experimental eRRVD structures of the mth and nth families are closed
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since they comprise all possible products of the eRVK and eRSK structures of
the mth and nth families.

Since the eRVK structures are gradients of the correspondent eRSK structures,
the eRRVD structures a.mdrm armbrm anmCrm anmden etc. are visualized by the

following columns:

+ Kr,nar,mbr,n — K n@ g
8, = +/1r‘nar_mcr'n , ar’mbr_n = +ﬂ“r,nar,mdr,n 7
g 7
(_1) :ur,nar,mar,n (_1) ,U,.’nar'mbr’n
- - - (117)
+K‘r,nar,mdr'n _Kr,nar,mcr,n
ar,mcr‘n - _ﬂr’”ar'marvn ! ar:mdryﬂ = _/Ir,nar,mbr,n
77 ’7
(_l) Hy 08 mCr (—1) yr,nar'mdryn

Thus, the eRRVD structures of the nth family are represented by the [3, 1, A4
M)] arrays, as well, which are displayed in terms of 3 x 1 columns (117) of the
eRRSD structures multiplied by coefficients, where elements of columns (117)
are the [M, M] arrays that are shown by the M x M matrices like (83).

The tRRVD structures of the mth family are specified as all kinds of products
of the tRVK structures (53) of the [ m] family and the tRSK structures (10) of
the [}, n] family. Explicitly,

Sy imSr. s S imSrx it Sy imSryine S imSry.

SiimSrin SroimSracjme SroimSryint SroimSray.jne 118)
StyimSrint SryimSixine SryimSryinr SryimSexy.ine

s s s s s s s s

rX,y,i,mr,j,n? r.Xy,i,mor.x,j,n? rXy,imory,jn? rXy,0,morxy, j,n?

where /=1, 2, ..., Tand j =1, 2, ..., [ are indices of random wave groups and
m=1,2,.., Mand n=1, 2, ..., Mare indices of random internal waves.
Via the eRRVD structures of the mth family (114),

a'r,mar,n ar,mbr,n ar,mcr,n ar,mdr,n
br,ma’r,n br,mbr,n br,mcr,n br,mdr,n
sr,i,msr,j,n = b d (119)
Cr,mar‘n Cr‘m r,n Cr,mcr‘n c ,m~r,n
dr,mar,n dr,mbr,n dr,mCr,n dr,mdr,n

The tRRVD structure of the mth family s.;ms:,;.. is given by the [4, 4, 3, 1, M,
M)] array that is visualized as 4 x 4 matrix (119) of the eRRVD structures of the
nth family. Elements of matrix (119) are specified in terms of the [3, 1, M, M]
arrays that are displayed via the 3 x 1 columns of the M x M matrices of the
eRRSD structures multiplied by coefficients. Other tRRVD structures of the nith
family are the 4 x 4 matrices of the eRRVD structures of the mth family listed in
various orders.

We then define the tRRVD of the nth family as all kinds of products of the
tRSK structures (10) of the [ m] family and the tRVK structures (53) of the [}, ]
family. Namely,
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sr,i,er,j,n' Sr,i,msr,x,j,n' Sr,i,msr,y,j,n’ Sr,i,msr,x,y,j,n’

SeximSrjny SeximSrxint  SrximSryint SrximSrxyjn (120)
Sr,y,i,msr,j,n' Sr,y,i,msr,x,j,n' sr,y,i,msr,y,j,n' Sr,y,i,msr,x,y,j,n'

S S S S S S S S

rxy,imer,jn? rXy,i,mvr.x,j,n? rXy,i,mory,j,n? r,X,y,i,mer.xy,jn?

where 7=1, 2, ..., [and j =1, 2, ..., /are indices of random wave groups and
m=1,2,.., Mand n=1, 2, ..., M are indices of random internal waves.

The tRRVD structures of the mth and nth families are closed since they in-
clude all possible products of the tRVK and tRSK structures of the [4 m] and [}, ]
families.

Through the eRRVD structures of the nth family (116),

o
o

al’

o

m&r n mbr,n mCrn mdr,n
br,mar,n br,mbr,n br,mCr,n br,mdr,n
SrimSrjn = b d (121)
Cr,mar,n Cr,m r.n Cr,mcr,n Cr,m rn
dr,mar,n dr,mbr,n dr,m rn dr‘mdr,n

The tRRVD structure of the nth family s;ms;;, is also the [4, 4, 3, 1, M, M] ar-
ray, which is displayed as 4 x 4 matrix (121) of the eRRVD structures of the nth
family. Elements of matrix (121) are the [3, 1, M, M] arrays that are visualized by
the 3 x 1 columns of the A/ x M matrices of the eRRSD structures multiplied by
coefficients. Other tRRVD structures of the nth family are the 4 x 4 matrices of
the eRRVD structures of the nth family arranged in diverse orders.

5.5. The Helmholtz Decomposition of the Directional Derivatives

Substitution of the first spatial derivatives of the tDSK (34) and tDVK (64)
structures in the vector definitions of the directional derivative (42) of [16] and
simplification yield an anticommutator and a commutator of the tDVK struc-
tures Sq;m and Sq;,, correspondingly, in the tDDVD structures of the mth (94)
and nth (96) families in the following form:

(Sd,i,m 'V>Sd,j,n +(Sd,j,n 'V)Sd,i,m

_ o taj
=+ (_1) Kdam&dn (Sd,x,i,msd,x,j,n + Sd,x,i,msd,x,j,n )

B+ B (122)
+ (_l) ! ﬂd,mld,n (Sd,y,i,msd,y,j,n + Sd,y,i‘msd,y,j,n)
+ﬂd,mﬂd,n(sd,i,m3d,j,n +Sd,i,msd,j,n)'
(Sd,i,m 'V)Sd,j,n _(Sd,j,n 'V)sd,i,m
= _(_1)ai+aj Ky mKdn (sd,x,i,msd,x,j,n _Sd,x,i,msd,x,j,n) (123)

_(_1)ﬂi+ﬂj ﬂ’d,mﬂ'd,n (Sd,y,i,msd,y,j,n - Sd,y,i,msd,y,j,n)

_/ud,m/ud,n(sd,i,msd,j,n _Sd,i,msd,j,n)'

In the similar way, we compute the anticommutator and the commutator of
the tDVK structure s4;» and the tRVK structure s, respectively, through the
tDRVD structures of the mth (102) and nth (104) families as follows:
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(Sd,i,m 'V)Sr,j,n +(Sr,j,n 'V)Sd,i,m
= +(_1)ai+0‘j Kd mKr n (Sd X,i, er X, j,n + Sd,x,i,msr,x,j,n)
+ (=0 24 A

d,m”*r,n delm ry]n+sdy|msryjn)

(
+ g bt (SaimSein +SaimSrin),
(Saam V)81 = (St V) S
= (1) ke (St ximSrncin = SaximSexin)
~(-)"" Ay mAen (SayimSey in = SayimSey.in)

~ HymHen (Sd,i,msr,j,n _Sd,i,msr,j,n)'

(124)

(125)

Analogously, the anticommutator and the commutator of the tRVK structure

S.;m and the tDVK structure s, correspondingly, in terms of the tRDVD

structures of the mth (110) and nth (112) families become
(SeimV)Sain +(SainV)Srim
aj+aj
= +(_1) ' Kr,mKd,n (Sr,x,i,msd,x,j,n + Sr,x,i,msd,x,j,n)

+ (=) A g (s
+ ty wtan (SeimSan +StimSain)s
(Seim*V)Sajn _(Sd,j,n 'V)Sr,i,m
= (1) Ky g 0 (SeximSoin = SrimSain)
(=" 2 (SryimSayin = SryimSay.in)

_:ur,mlud,n(sr,i,msd,j,n _Sr,i,msd,j,n)'

+S

ryimSd,y,in r,y,i,msd,yijn)

(126)

(127)

Eventually, we obtain the anticommutator and the commutator of the tRVK

structures §,;» and s, respectively, via the tRRVD structures of the mth (118)

and nth (120) families as
(Seim V)Se +(Sr,j,n 'V)Sr,i,m
=+(=1)" K, (s S 4SS )

r,m™rn \ 2rx,i,m°r.xjn r,X,i,mer,x, j,n

+(1)ﬂ'+ﬂ'/1/‘t( imStyin *SyinSryin)

r,m=Tr,n ry,|,m ry.n ry,Lm=r,y,J,n

+/ur,m/ur,n(sr,i,msr,j,n +Sr,i,msr,j,n)’

(SeimV)Srin —(sr,j‘n ~V)sr,i_m
=—(-1)"" k, .k, (s s .. —s .S )

r,m=r,n r,x,,mer.x, J,n rX,,mTr.x, J,n

~(=1" Ay e (SeyimSey.in = SryimSey.in

r.m”r,n ry,l,m ry,j.n rLy.,m=ry,j.n

— Hy mHr n (Sr,i,msr,j,n _Sr,i,msr,j,n)'

(128)

(129)

Expansion of the tDDVD structures of (122)-(123) into the tDDSD structures
(72) and comparison with the gradient of the dot product and the curl of the

cross product of the tDVK structures $4;,» and 84, which have been also com-

puted in the tDDSD structures using (49) and (55) of [16], yield
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V(Sd,i,m 'Sd,j,n):+(5d,i,m 'v)sd,j,n +(Sd,j,n 'V)Sd,i,m’

(130)
v><(Scl,i,m X Sd,j,n):_<sd,i,m 'V)Sd,j,n +(Sd,j,n ’v)sd,i,m-

We then represent the tDRVD structures of (124)-(125) in the tDRSD struc-
tures (76) and compare with the gradient of the dot product and the curl of the
cross product of the tDVK structure sg;» and the tRVK structure s,;, which
have been also expressed in the tRDSD structures, to find that

V(Sd,i,m ' Sr,j,n ) = +<Sd,i,m 'v)sr,j,n + (Sr,j,n 'v)sd,i,m’
Vx (Sd,i,m X Sr,j,n ) = _(Sd,i,m 'V)Sr,j,n +(Sr,j,n 'V)Sd,i,m'
Similarly, transformation of the tRDVD structures of (126)-(127) into the

tRDSD structures (80) and comparison with the gradient of the dot product and
the curl of the cross product of the tRVK structure s,;,» and the tDVK structure

(131)

84 which have been obtained in the tRDSD structures too, give
V(Sr,i,m ’ Sd,j,n):-f_(sr,i,m 'V)Sd,j,n +(Sd,j,n 'V)sr,i,m’
VX(sr,i,m x sd,j,n):_(sr,i,m 'V)Sd,j,n +<Sd,j,n 'v)sr,i,m'

Finally, we convert the tRRVD structures of (128)-(129) in the tRRSD struc-
tures (84) and compare with the gradient of the dot product and the curl of the

(132)

cross product of the tRVK structures §;;. and s, which have been displayed in

the tRRSD structures, as well, to compute
V(Sr,i,m 'Sr,j,n):+(3r,i,m V)8 in +(s,'jyn -V)sr,i,m,
Vo (Seim %Sy ) ==(SimV)Srin + (S0 V) Seime

In agreement with the Fundamental Theorem of Vector Analysis [23], solving

(133)

of (130) with respect to the directional derivatives returns the Helmholtz de-
composition of the derivative of the tDVK structure sy, in the direction of the
tDVK structure s4;,, and the derivative of the tDVK structure $4;,, in the direc-
tion of the tDVK structure s4;, in the following form:

(Sd,i,m 'V)Sd,j,n =VOyimaintVXAyimgin:

(134)
(Sd,j,n 'V)Sd,i,m =VO, inaim T VXA jndim:

We also solve (131) with respect to the directional derivatives to find the
Helmbholtz decomposition of the derivative of the tRVK structure s, in the di-
rection of the tDVK structure sy, and the derivative of the tDVK structure 84,

in the direction of the tRVK structure s,;, as follows:
(sd,i,m ! V)Sr,j,n = V(‘Dd,i,m,r,j,n + V X Ad,i,m,r,j,n '

(135)
(Sr,j,n 'V)Sd,i,m =VO, i aim VXA e

Solution of (132) with respect to the directional derivatives yields the Helm-
holtz decomposition of the derivative of the tDVK structure s4;, in the direction
of the tRVK structure s,;,, and the derivative of the tRVK structure s,;, in the

direction of the tDVK structure sg4;., as
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(Sr,i,m 'V)Sd,j,n =VO, ;i naint VXA ndin
(Sd,j,n ‘V)Sr,i,m =VCI)d,j,n,r,i,m +Vx A\i,j,n,r,i,m'

Eventually, we resolve (133) with respect to the directional derivatives to

(136)

compute the Helmholtz decomposition of the derivative of the tRVK structure
S.;» in the direction of the tRVK structure s,;., and the derivative of the tRVK
structure s;;, in the direction of the tRVK structure s,

(Sr,i,m 'V)Sr,j,n :V(Dr,i,m,r,j,n +Vx Ar,i,m,r,j,n'
(Sr,j,n 'V)Sr,i,m =VcDr,j‘n,r,i,m +V x Ar,j‘n,r,i,m'

In Equation (134), the scalar Helmholtz potential and the vector Helmholtz

(137)

potential are

1

dimd,jn = +E(Sd,i,m “Sd,jin ) =+Dy i ndim

O
(138)

1
Adimd,in = _E(Sd,i,m X Sd,j,n) =—Ay jndim:

The scalar and vector Helmholtz potentials of (135) may be written as follows:

1
('Dd,i,m,r,j,n = +E(Sd,i,m ’ Sr,j,n ) = +(Dr,j,n,d,i,m'
(139)

1
Ad,i,m,r,j,n = _E(Sd,i,m x Sr,j,n ) = _Ar,j,n,d,i,m'

Computation of the scalar and vector Helmholtz potentials of (136) gives

1
q)r,i,m,d,j,n = +E(Sr,i,m : Sd,j,n ) = +ch,j,n,r,i,m'
(140)

A’.i,m‘d,j,n = _%(sr,i,m x sd,j‘n ) = _Ad,j,n,r‘i,m'

Finally, we find the scalar and vector Helmholtz potentials of (137) in the fol-
lowing form:

1
q)r,i,m,r,j,n = +E(Sr,i,m : Sr,j,n ) = +(Dr,j,n,r,i,m'
(141)

1
Ar,i,m,r,j,n = _E(sr,i,m x Sr,j,n ) = _Ar,j,n,r,i,m'

So, the scalar Helmholtz potentials of (138)-(141) are symmetrical and the
vector Helmholtz potentials of (138)-(141) are asymmetrical.

Finally, we compute the gradient of the tDDSD structure $g;mSa;n» the tDRSD
structure Sq;ms;n» the tRDSD structure Sg;mSq;» and the tRRSD structure Sg;ms;;n
in terms of the tDDVD structure, the tDRVD structure, the tRDVD structure,
and the tRRVD structure of the mth and nth families, respectively, to obtain

V<Sd,i,msd,j.n>= Sd,imSd,jn T SdimSd,jns
V(Sd,i,msr,j,n) = Sd,i,msr,j,n + Sd,i,msr,j,n’
V(Sr,i,msd,j,n): Sr,i,msd,j,n + Sr,i,msd,j,n’

V(ss S . +S. S

ri,m r,j,n):Sr,i,m r,j.n rimer,jn*

(142)

Theoretical Equations (122)-(142) in terms the tDDVD, tDRVD, tRDVD,
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tRRVD structures of the mth and nth families have been verified by differentia-
tion tables in the eDDVD, eDRVD, eRDVD, eRRVD structures of the mth and
nth families with the help of experimental and theoretical programming in
Maple, while each theoretical formula corresponds to a table of 16 experimental

formulas.

6. The Turbulent Stokes Field

6.1. The Helmholtz Decomposition of the Turbulent
Navier-Stokes Equations

Turbulent internal waves of a Newtonian fluid with a constant density p. and a
constant dynamic viscosity 4. in a field of gravity g = [g» g g are governed by

the momentum conservation law [24]

oy,
pc|:El+(ut'V)ul:lz_vpc,t+ﬂcAut+pcg (143)

and the mass conservation law
V-u, =0, (144)
where
U, =[Ut,x,Ut,y,Ut,z](X'y,Z,t) (145)
is a velocity field of a turbulent flow,
Per = Pt (X, Y, 2,1) (146)

is a cumulative pressure of the turbulent flow.
The quasi-scalar Dirichlet problems for the Navier-Stokes equations

(143)-(144) may be set on the upper and lower boundaries of the upper domain
U =|:X€(—oo,oo),ye(—oo,oo),z6(0,00)] (147)
for the z-component u,, by

limu,, =0, u,

2+

=, (148)

and on the upper and lower boundaries of the lower domain

L:[Xe(—w,oo),ye(—oo,oo),ze(—oo,O)] (149)
via
Upz| o = Uy ZIirpwuth =0, (150)
where
Uy = Uy, (X, Y1) (151)

is a turbulent boundary function, which will be considered in Section 6.3.

The configuration of the upper and lower domains of turbulent internal waves
is shown in Figure 2. In agreement with boundary conditions (148) and (150),
the turbulent internal waves are produced by turbulent surface waves propagat-

ing in a generation domain.
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Upper Domain
y /J\-WWW
X
Generation Domain

MW *

Lower Domain

Figure 2. The configuration of the upper domain (147) and the lower
domain (149) of the Dirichlet problems (148) and (150) for the tur-
bulent Navier-Stokes equations (143)-(146).

From the standpoint of the Fundamental Theorem of Vector Analysis [23],
the quasi-scalar Dirichlet problems (148) and (150) for the turbulent Navier-
Stokes equations (143)-(144) in vector and scalar variables (145)-(146) may be
treated as problems of the Helmholtz decomposition of the Archimedean field

Fa=-p.9, (152)
the turbulent Stokes field
ou
Fs,t :pcgt_ﬂcAut’ (153)

and the turbulent Navier field
Fue =20 (U VU, (154)

The Archimedean field, the turbulent Stokes field, and the turbulent Navier
field are decomposed using the scalar Helmholtz potentials p4, ps» and pu,, cor-

respondingly, in the following form:

Fp==Vp,, Fs,t =-VDs s FN.I =-VDhyu (155)

where p, denotes the hydrostatic pressure of the Archimedean problem, ps, sig-
nifies the kinematic pressure of the turbulent Stokes problem, and px; stands for
the dynamic pressure of the turbulent Navier problem.

Summations of (152)-(154) and (155) yield the Helmholtz decomposition of
the turbulent Navier-Stokes equation (143)

ou
FA + FS,t + FN,I =0 g +cht_luc Aut +Pc (Ul 'V)Ut :—Vpc,[. (156)

where
Peit = Pat Psit Puy (157)

is a cumulative pressure of the turbulent flow, ie. p. is a scalar Helmholtz po-
tential of the sum of the Archimedean field, the turbulent Stokes field, and the
turbulent Navier field.

The problem of finding the scalar Helmholtz potential p4 of the Archimedean
field F, has a general solution [24]
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pA:po(t)+pc(gxx+gyy+gzz)! (158)

where p(?) is a reference pressure, which is a smooth random function of time
from C=.

Following the Reynolds approach [1], we set the velocity field u, of a turbulent
flow as a superposition of a velocity field u, of a deterministic flow and a velocity

field u, of a random flow. Namely,

u =uy +u, (159)

where
Uy =[ Uy Ug o Ug, (X Y,2,), (160)
u, =[u,,x,u,'y,um (x,y,2,t). (161)

In agreement with (159), the turbulent Stokes field
Fo.=Fsq+Fs, (162)

where
u
Fsq =pc%_:ucAud (163)

is the deterministic Stokes field and

ou,
ot

FS,r :pc _/ucAur (164)

is the random Stokes field.

In the view of (162), the kinematic pressure of the turbulent Stokes flow

Ps:=Psqg + Psrs (165)

where ps.is a kinematic pressure of the deterministic Stokes problem and ps, is
a kinematic pressure of the random Stokes problem. The deterministic and ran-
dom kinematic pressures are defined as the scalar Helmholtz potentials of the

deterministic and random Stokes field, respectively, by

Fsa=—VPsq4, Fs, =—Vps,. (166)

Combining (157) and (165) yields that the cumulative pressure of the turbu-
lent flow
Pet = Pat Psg + Psrt+ Pt (167)
Following (159), we decompose the turbulent boundary function (151) by
Uy, =Uyg +Up . (168)
A problem of calculating the deterministic velocity field u; and the scalar

Helmholtz potential psq of the deterministic Stokes field Fs, takes the following

form:

0
ﬂ—yCAud +Vps 4 =0, (169)

Pcat

V.ud:O, (170)
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U:limu,, =0, Ug,o |,

=Uy g
Z—>+0

0 (171)

Lo Ug,| o =Upa leﬁrpwud'Z =0.

Similarly, a problem of finding the random velocity field uz, and the scalar

Helmholtz potential ps, of the random Stokes field Fs, may be written as follows:

ou
Pe 6tr —He Aur +VpS,r :0’ (172)
V-u, =0, (173)
U:limu ,=0, u, o = Un e
Z—>+0 ) = (174)
Loou |, =Uy Z'Lrl“m =0.

Problem (169)-(171) will be called afterwards the deterministic Stokes prob-
lem and problem (172)-(174) will be termed the random Stokes problem. Con-
trary to the classical Stokes equations that are treated for small Reynolds num-
bers, the deterministic Stokes problem and the random Stokes problem are set
for all Reynolds numbers.

A problem of computing the scalar Helmholtz potential py, of the turbulent
Navier field Fy, for u, given by (159), us of the deterministic Stokes problem
(169)-(171), and u, of the random Stokes problem (172)-(174)

P (U -V)u +Vpy, = o[ (Ug +1,)-V](uy +u,)+Vpy, =0 (175)

will be later referred to as the turbulent Navier problem. Since we are looking for
an exact solution to Equations (143)-(151), the turbulent Navier problem is set

for all Reynolds numbers, as well.

6.2. The Turbulent Stokes Problem
A general wave solution of the deterministic Stokes Equations (169)-(170) is
U =V, q (176)

a¢)u,d
ot

Psa ==L ) (177)

where ¢,q is the scalar Helmholtz potential of the deterministic velocity field

that should be harmonic, ie.
Ag,4 =0, (178)

and the temporal derivative of ¢, s must commutate with the gradient.
The deterministic velocity field u,is formed by velocity fields u,; of 7 deterministic

wave groups with A/ internal waves per group. Thus,
|
Ug =D U (179)
i-1

Because of quadrality of the tDVK structures, we use the simplest tDVK

structure s4; to expand the velocity fields of /wave groups as follows:
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M
Uy i :st,i,m (180)
m=1

fori=1,2,.., 1L
Combining (179)-(180) and changing the order of summation yields

I M M
Uy =D > Sgim =22 Saim: (181)

i=1 m=1 m=1i=1

Using definition (49) of the tDVK structures via the tDSK structures, we get

M |
Uy =VD > Syim: (182)

m=1i=1

In agreement with the Helmholtz decomposition of the velocity field (176),
the scalar Helmholtz potential represented via the tDSK structure sz, takes the

following form:

M 1
DI (183)

m=1i=1

Indeed, the Laplace Equation (178) is satisfied identically since s4;, is har-
monic (43).

We then substitute the velocity potential (183) in (177) and use the temporal
derivative (44) of s4; to find the kinematic pressure of the deterministic Stokes

problem that is expanded in the tDSK structures Sqy;m and sqy,;m as follows:

_ L IaSdlm
pmzlz ot

(184)
< A
=+p ). 1[( 1) &y mYgmSawim + (1) Ag Vo mSa, ylm:|

m=1i

To verify the general solution (181) and (184) of the deterministic Stokes
Equations (169)-(170) in the tDVK and tDSK structures, we use the temporal
derivative (68) of the tDVK structure s4;,, to find

lil =1 (185)
Z |: ( ) Ky, mUd,de,x,i,m_(_l)ﬂi ﬂd,mvd,msd,y,i,m:|'

Since $4;, is harmonic (67),

11, A, =0. (186)

Computing the gradient of pg,; with the help of gradient (49) of the tDSK

structures Syxim and sy, gives

Vde chZ[( ) Kdm dedX|m (1)/)1]’ Vdmsdy|mi| (187)

m=1i=1

Substitution of (185)-(187) in the momentum conservation law (169) of the
deterministic Stokes problem shows that it is satisfied identically. Because the
tDVK structure s, is divergence-free (62), the mass conservation law (170) of

the deterministic Stokes problem is fulfilled identically, as well.
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A general wave solution of the random Stokes Equations (172)-(173) may be

written as follows:

ur zvgou‘r’ (188)
0P, r

=— —, 189

pS,r pc at ( )

where @, is the scalar Helmholtz potential of the random velocity field that

must be harmonic, viz.

Ag,, =0, (190)

and the temporal derivative of ¢, have to commutate with the gradient.
The random velocity field u, is generated by velocity fields u,; of 7 random
wave groups with A/ internal waves per group. Consequently,

U, ;. (191)

u, = ri

r

M-

I
2N

Due to quadrality of the tRVK structures and consistency with the determinis-
tic Stokes problem, we employ the tRVK structure ;. to decompose the ran-

dom velocity fields of /wave groups in the following form:
M
ur,i =zsr,i,m (192)
-1

fori=1,2,..,1I
We then combine (191)-(192) and change the order of summation to get

ur =IZisr,i,m =ilzsr,i,m' (193)

i=1 m=1 m=1i=1

Usage of definition (53) of the tRVK structures via the tRSK structures gives
M
U =V > s in (194)
m=1i=1
In accordance with the Helmholtz decomposition of the velocity field (188),
the scalar Helmholtz potential written via the tRSK structure s;, becomes
M |
¢u,r :Zzsr,i,m' (195)
m=1i=1
Certainly, the Laplace equation (190) is fulfilled because s, is harmonic.
Substituting the velocity potential (195) in (189) and using the temporal de-
rivative (45) of ;. we compute the kinematic pressure of the random Stokes
problem decomposed in the tRSK structures S;yim» Sryim and the tRSK, structure
Sseim in the following form:

0s

M )
pS,r :_pczz é;’m
m=1i=1 (196)
M
= +ch:1zl:|:(_1)al Kr,mxr,t,msr,x,i,m +(_1)ﬁl ﬂ’r,er,t,er,y,i,m - Sr,t,i,m ]
m=1 i=

We then justify the general solution (193) and (196) of the random Stokes
Equations (172)-(173) in the tRVK, tRSK, and tRSK; structures by taking the
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temporary derivative (69) of the tRVK structure s, ;. as follows:

_ZZ rlm

m-tict (197)

S Bi
zz ( ) KmxrthrX|m_( )I/’i‘rertm ry|m+sr,t,i,m .
> |-

As s;;,» is harmonic,
HAU, =0. (198)

Using the gradient of the tRSK structures S.xim Smuim (53) and the tRSK,
structure s,.;m (57), we compute the gradient of ps, as follows:
M |
i Bi
va,erCZZ[( 1) K Xrtm r,x,i,m ( ) ﬂrertm rylm_sr,t,i,m:|' (199)
m=1i=1
Substitution of Equations (197)-(199) in the momentum conservation law
(172) of the random Stokes problem gives that it is fulfilled. The tRVK structure
S.im is divergence-free. Thus, the mass conservation law (173) of the random
Stokes problem is also satisfied.
Combining (159), (181), (193), (183), (195), (165), (184), and (196), we com-

pute the turbulent velocity field
|

iZ(Sdlm Stim ) (200)

m=1i=1
the scalar Helmholtz potential of the turbulent velocity field
M
u,t :ZZ(Sd,i,m +Sr,i,m)’ (201)
m=1i=1

and the turbulent kinematic pressure

chZ[( ) Kg mYd.mSaxim +(_1)ﬁi AgmVa mSa.y.im

m=1i-1 (202)
+(=1)" Ky o Xy oS + (1) A Y, —s

r,m rtm r,y,i,m r,ti,m

in terms of the tDVK, tRVK, tDSK, tRSK, and tRSK, structures, where the
time-dependent amplitudes are provided by (46).

6.3. The Turbulent Boundary Function

To find an admissible form of the deterministic boundary function of (168), we
compute a general solution for a z-component u,, of the deterministic velocity
field. In agreement with (176), (183), (34), and (9),

a%d M & Oy im

M I
U, = = ZZ 8’ —= (_1)’7 Z Kj,m + /1(12,m iz:l:sd,i,m- (203)

m=1 i=1 Z m=1

Similar to the 3-v tDSK structure Sgim = [adm Ddm Cdm daml(Xam Yam 2) (1),
define a 2-v tDSK boundary structure

Sp.d,im :[ab,d,m’bb,d,m'Cb,d,m’db,d,m]' (204)

where [abdm Dodm Codm dbdml(Xsdm Yodm) are 2-v eDSK boundary structures,

which are defined in the following form:
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A4 m =AY 4SS dm + BV mCSham+CVoamSCodm+ DVormCCham
By dm =—"BVoam SSoam T AVam CSham — DVo.am SCo.am T CVo.rm CCo.4.m> (205)
Co.dm = CVoam SSo.a.m — DVo.d.m CSo.a.m + AVh.a.m SCo.d.m + BVo,rm CCo. m>

Ayam =DV gm SS5.0.m = CVo.a.m Cb..m — BVog.m SCo.a.m + AVh rm CCo 4 m»

where m = 1, 2, ..., M is an index of boundary deterministic waves, M is a total
number of boundary waves in a deterministic wave group, Avsqm BVsdam CVodm
Dy, 4 are boundary amplitudes of vAx, y; z 9.
Here, 2-v eDSK boundary functions [sssqm CSsdm SChdm €Codm(Xsdm Yodm)
are products
SSpa.m = Ko.dm SYbdms  CSo.dm = CXoa.m Yodme
SCydm = SXp,d,m CYodme CCha,m = Xo.d.m CYb.a.m

(206)

of the following 1-v eDSK boundary functions [sxsqm ¢Xsdm](Xbdm) and [sysdm

Cyb,d,m]( Yoim):
SXp.dm = Sin(Kb,d,mxb,d,m)' CXygm = COS(Kb,d,mXb,d,m )’

. (207)
SYp,d,m =SIN (/q‘b,d,mYb,d,m )! Yoam = COS(%,d,mYb,d,m )’

where Xpum = Xoam(x ) and Y,qm = Yoam(p; ) are 2-v boundary deterministic
propagation variables defined by
Xoam =X=Upamt+ Xy gm0 Yoam =Y Voamt+Yoamo- (208)

In Equations (204)-(208), [Xsqum Ys4qm] is the Cartesian coordinate of a frame
of reference moving with the mth boundary deterministic wave, [ Uyqm Vidml is
the celerity of propagation of the mth boundary deterministic wave, [Xjqmo,
Ys.ampo) is a reference value of [ Xy qm Yidm] at £=0,x=0, y=0.

In terms of the tDSK boundary structure ssq;. (204), the deterministic boundary

function
M I
Upg = (_1)'7 Z\/ sz,d,m + ﬂ’nz,d,m Zsb,d,i,m' (209)
m=1 i=1
If and only if
Kigm = Kpdm> Agm = o dmo
Ud,m =Ub,d,m’ Vd,m =Vb,d,m’ Xd,m,o = Xb,d,m,O’ Yd,m,o =Yb,d,m,0' (210)

Ay =AVygmi BYyn=BVygm CVyn=CVigm DVypn=DVygnm,

then the 2-v deterministic propagation variables, the 1-v eDSK functions, the 3-v
eDSK functions, the 3-v eDSK structures, and the 3-v tDSK structure s;;, are
related with the correspondent boundary variables as follows:
Xom = Xoam Yam =Yoam

CXgm = CXp 4,m> SYa,m =Yodms CYam =CYoa,m

$5€4 |, o = SSh.0.m> €€ .o = CShg.ms S |, = 5Co0.m» O |, =CCoig s (211)

z= 7= z= 7=
7=0 = bb,d,m’

0~ Sbdiim

SXgm =Xy d,m+

ad,mL:O =8q4m  bym Cd,m|2:0 =Cogm Gom|,_, =g

Sd,i,m

and the Dirichlet boundary condition of (171)
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ud‘z

o = Una (212)

is fulfilled identically both for Uand L. The conditions at infinities of (171) are
also fulfilled since ez;.(2) becomes the decay model both in Uand L due to the
sign parameter 7.

To compute an admissible form of the random boundary function of (168),
we find a general solution for the z-component u;, of the random velocity field.
In the view of (188), (195), and (19),

a¢u r L asr i,m 7 u 2 2
— LA hmo_ _1 o
ur,z oz zz 5 ( ) Z\/ Kem +ﬂ‘r.m Sr.l,m (213)

|
Z m=1 i=1

Continuing the 3-v tRSK structure Sy;m = [anm Brm Con o) (X Yo 2) (10),
we define a 2-v tRSK boundary structure

Sh,r,i,m = [ab,r,m ' bb,r‘m’cb,r,m ! db,r,m]’ (214)

where [apnnm Dbrm Corm Abrml(Xbrm Yorm) are 2-v eRSK boundary structures,
which are specified as
ab,r,m = +Avb,r,m SSb,r,m + Bvb,r,m Csb,r,m + CVb,r,m SCb,r,m + Dvb,r,m CCb,r,m’
bb,r,m = _Bvb,r,m SSb,r,m + AVb,r,m CSb,r,m - DVb,r,m SCb,r,m + CVb,r,m CCb,r,m'
(215)
Cb,r,m = _va,r,m Ssb,r,m - DVb,r,m Csb,r,m + AVb,r,m SCb,r,m + Bvb,r,m ch,r,m’

d = +Dvb,r,m Ssb,r,m - va,r,m Csb,r,m - BVb,r,m SCb,r,m + Avb,r,m CCb,r,m'

b,r,m

In (215), m =1, 2, ..., M is an index of boundary random waves, M is a num-

ber of boundary waves in a random wave group,
Avb,r,m = AVb,r,m (t)’ Bvl:»,r,m = Bvk:u,r,m (t)'

216
va,r,m = va,r,m (t)' Dvb,r,m = DVb,r,m (t) ( )

are boundary amplitudes of vi(x; y; z 9.
Here, 2-v eRSK boundary functions [$Sysm CShsm SChrm CCopm)(Xorm Yorm)

are specified by products

SSb,r,m = sXb,r,m Syb,r,m ’ CSb,r,m = be,r,m Syb,r,m ’

(217)
Scb,r,m = SXb,r,m Cyb,r,m’ ch,r,m = CXb,r,m Cyb,r,m

of the following 1-v eRSK boundary functions [sXpnm Xbrm)(Xsrm) and [Sysrm
(9% bsm]( Vo.rm):

SXb,r,m =Sin(Kb,r,mxb,r,m)’ be,r,m =COS(Kb,r,mxb,r,m)’

. (218)
Syb,r,m =sin (lb,r,mYb,r,m )’ Cyb,r,m = Cos(ﬂb,r,mYb,r,m )’

where X, = Xprm(x 8 and Yirm = Yorm(y; 0 are 2-v boundary random propa-
gation variables set by

X =x-U t+ Xb,r,m,O’ Yb,r,m = y_vb,r,mt+Yb,r,m,O' (219)

b,r,m b,r,m

In Equations (214)-(219), [Xssm Ysrm] is the Cartesian coordinate of a frame
of reference moving with the mth boundary random wave, [Usrm Virm] is a ce-
lerity of propagation of the mth boundary random wave, [ Xm0, Ysrmo] is a ref-

erence value of [Xy,m» Yorm] at £=0, x=0, y= 0, and parameters
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Ub,r,m :Ub,r,m (t)' Vb,r,m :Vb,r,m (t)’ Xk:|,r,m,0 = Xb,r,m,O (t)’ Yk:|,r,m :Yb,r,m,o (t) (220)

together with (216) are smooth random functions of time from C~. The wave
numbers x,.» and A, are random constants.

In the tRSK boundary structure s, (214), the random boundary function

M |
U 2 2
ub,r = (_1) Z Korm T ﬂ‘n,r,m Zsb,r,i,m' (221)
m=1 i=1
If and only if
Kr,m :Kb,r,m’ j’r,m :Ab,r,m7
Ur,m :Ub,r,m' Vr,m :Vb,r,m' Xr,m,O = Xb,r,m,o’ Yr,m,O :Yb,r,m,O' (222)

AVr,m = AVb,r,m’ BVr,m = Bvb,r,m’ Cvr,m = va,r,m’ DVr,m = DVb,r,m’

then the 2-v random propagation variables, the 1-v eRSK functions, the 3-v
eRSK functions, the 3-v eRSK structures, and the 3-v tRSK structure s;;,, are
connected with the relevant boundary variables as
Xem = Xorm Yim =Y

SXem = SXoemr O =% SYrm = SYo,r,m: CYrm = Yorm:

sserme:0 =SSy m cseerL:O =CSy.r.m: scerymL:0 =SCp . cce,YmL:0 =CCy,mr (223)

7=0 =bb,r,m’ Cr,m d =d

7-0 b,r,m?

,r,m?

a

rml,_ & ¢ m br,m 20 Co.r.m> r,m

S

riml,_g = Sb,r,i,m

and the Dirichlet boundary condition of (174)

ur,z = ub (224)

N

z=0
is satisfied exactly for Uand L. The conditions at infinities of (174) is satisfied, as
well, because ez,,(2) expresses the decay model both in Uand L.

Combining (168), (209), and (221) yields the turbulent boundary function

M | |
ub,t = (_1)7] Z[\/ Ktid‘m + ﬂbz,d,m zsb,d,i,m + \) Ktir,m + ﬂ"bz,r,m Zsb,r,i,m ) (225)
m=1 i=1 i=1

7. The Turbulent Navier Field
7.1. Expansion of the Turbulent Navier Field

For the turbulent Navier field Fy, (154)-(155), the turbulent Navier problem of
computing the scalar Helmholtz potential py, of Fy, is reduced to solving the
turbulent Navier equation (175).

Complementing kinematic expansions (179)-(180) of uy for dynamic prob-

lems, we have two expansions in the velocity fields of 7 deterministic wave groups
| |
Uy =D Uy =2 Uy, (226)
i1 j=1

with M internal waves per deterministic wave group. The velocity fields u4; and

ug;are expanded in the tDVK structures as follows:

M M M M
Uy i :st,i,m :st,i,n’ Ug; = st,j,m :st,j,n' (227)
=1 =1 m=1 n=1
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Combining (226) and (227) yields four equivalent presentations of the deter-

ministic velocity field

= %lesd,i,m = ilzsd,j,m :izllsd,i,n :ilzsd,j,n’ (228)

m=1i=1 m=1 j=1 n=1i=1 n=1 j=1

viz. quadrality of ua.
Analogously, continuation of (191)-(192) for dynamic problems yields two

decompositions of u, via the velocity fields of /random wave groups
| |
e =2 U =2 U (229)

with M internal waves per random wave group. The velocity fields u,;and u,;are

decomposed in the tRVK structures in the following form:
M M M M
= z Sr‘i,m = Zsr,i,n' ur,j = Z Sr,j,m = Zsr,j,n' (230)
m=1 n=1 m=1 n=1

We then combine (229) and (230) to show quadrality of the random velocity
field as

M M M M
Zzsrlmzzzsr,j,m:zzsr,i,n :Zzsr,j,n' (231)
m=1i=1 m=1 j=1 n=1i=1 n=l j=1

Substitution of the flow decomposition (159) in the turbulent Navier field
(154) and expansion of the dot product of &, and V gives

FN,t :pc(ud 'V+Ur 'V)(Ud +ur)= FN,d,d + FN,d,r + FN,r,d + FN,r,r’ (232)
Ug V) Uy, Fygr =00 (Ug-V)up,
'V)ud’ FN,r,r :pc(ur 'V)ur

Fyaa :Pc(

(233)
I:N,r,d = pc (ur

where Fy4qis the Navier field of self-interaction of the deterministic flow, Fy,
is the Navier field of interaction between the deterministic and random flows,
Fy.q is the Navier field of interaction between the random and deterministic
flows, and Fy;.,is the Navier field of self-interaction of the random flow.
Substitution of the group decompositions (227), (230) in the Navier fields
(233), expansion of the dot products, and reduction of the product of two
one-dimensional (1-d) sums to a two-dimensional (2-d) sum by

ZAZB iiA& (234)

i=1 =1 i=1 j=1

yields

i=1 j=1 i=1 j=1
I I [ (235)
I:N,r,d P ur,I.V] ud,i =P (uri.v)udl’
i=1 j=1 i=1 j=1
I | Il
I:N,r,r =P url \4 ur,j =Fe Z(url v)urj
i=1 j=1 i=1 j=1
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Since a sum of terms transposed in (4 ) is equivalent to the sum of original

terms, Le.

> Y AB, (236)

j=1

M_
M_

>

i=1lj

AB, =

I
iN

1]
N

a sum of the interaction Navier fields Fy4-and Fy,s may be recast to a symmetrical

form
|

Fuar +Fara :PCZI:Z[(UM 'V)ur,j +<ur,j 'V)ud,i:|' (237)

i=1 j=1

With the help of (117) of [17]

ZZI:AB iAB +ZZ(AB +AB,), (238)

i=1 j=1 i= i=1 j=i+l

we convert the rectangular summation of (235) into the diagonal and triangular
summations with the aim of computing a decomposition of Fy, into five Navier
fields

Fae=Fugaigi T Fugaia; tF +F +Fygririe (239)

N,g.d,ir,j N,g.rirj

First, the diagonal (j = 7) Navier field Fygq;4; of I selfsame deterministic wave
groups
|
Frgdidi = Y Fugisir Frgioi =2 (ud,i 'V)ud,i : (240)
i1
where Fyg;q4; is the Navier field of diagonal interaction of the selfsame #th de-
terministic wave group, which is described by the half of the anticommutator of
[ags ugi] fori=1,2, .., I
Second, the non-diagonal (j > 1) Navier field Fy,q;q4,; of non-diagonal interac-

tion between /(7 — 1)/2 distinct deterministic wave groups

Fugdidj = ZZFNdIdJ’ Nd,i,d,j:Pc[(ud,i'V)Ud,j"‘(ud,j'v)ud,i]: (241)

i=1 j=i+l

where Fy;q;is the Navier field of non-diagonal interaction between the distinct
ith and jth deterministic wave groups, which is given by the anticommutator of
lugs ug) fori=1,2,..,I1-1,j=i+1,i+2, .., I

Third, the Navier field Fygq;,; of interaction between 7 (all diagonal and
non-diagonal) deterministic and random wave groups

1
NgdlrJ ZZFNdIrJ' Nd,i,r,j:pc[(ud,i'v)ur,j+(ur,j'v>ud,i:|v (242)

i=1 j=1

where Fyq;.;is the Navier field of interaction between the #th deterministic and
jth random wave groups, which is provided by the anticommutator of [u,, u/]
fori=1,2,.,Lj=1,2,.., I

Fourth, the non-diagonal Navier field Fy,.;.; of non-diagonal interaction be-

tween /(7 — 1)/2 distinct random wave groups

1-1 1
FN,g,r,i,r,j :Z Z I:N,r,i,r,j’ I:N,r,i,r,j =P |:<ur,i 'V)ur,j +(ur,j 'v)ur,i:|! (243)

i=1 j=itl
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where Fy,;.;is the Navier field of non-diagonal interaction between the distinct
ith and jth random wave groups, which is specified by the anticommutator of
lu, u)fori=1,2,..,7-1,j=i+1,i+2,.., L

Fifth, the diagonal Navier field Fy,,;; of /selfsame random wave groups
|
l:N,g,r,i,r,i = Z FN,r,i,r,i | FN,r,i,r,i =P (ur,i -V) Ui (244)
i1

where Fy,;., is the Navier field of diagonal interaction of the selfsame th random
wave group, which is expressed by the half of the anticommutator of [u,; u,] for
i=12,..,1

There are following relationships between constituents of the rectangular, di-

agonal, and triangular expansions of the Navier field Fy:

Frad =Fugdiai ¥ Fugdia i
Fuar +Fura =Fugain

Fu, =F +F

N,g,rir,j

(245)
N,g,rir,i*
Consequently, the five-terms expansion (239) of the turbulent Navier field

may be reduced to a three-terms expansion

Fve=Fnoo +F +Fyor (246)

N,g,d,i,r,j

Rectangular summation matrices
Myda = [(Ud,i 'V)Ud,j ] Myar = [(Ud,i 'V)Ur,j ]

My g :[(ur,i -V)udyj], My, :|:(ur,i -V)u”—]

of the Navier fields (235) are shown in Figure 3 in the decomposed form via di-

(247)

agonal elements and elements of the lower and upper triangular matrices.

(a) (b
[ (wy, V), ] [ - o (g, V)u,, ]
(- V), - (w,-V)ay, - (,, V), - (u,,-V)u,
I (0, V)a,, ] [ (u,,V)a,, -
(u,,V)u,, (u,,-V)u,, (u,,-V)u, (u,,-V)u,,
_ (© _ _ (d) _

Figure 3. The summation matrices Mnad Mnds, Mnsa, and My, (247) are shown by (a),
(b), (c), and (d), correspondingly.
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Interchange of group indices [/= j, j= i] describes transposition of elements of
all four matrices with respect to local group diagonals j = 7 for matrix elements
(u4:V)ug; and (ug;V)ug, (wq:V)u, and (wq;V)u, (0.:V)ug; and (u,,V)ua,
(u;:V)u, and (u,;V)u,,. Interchange of pairs of group indices [d= 1, i= j, r=d, j= 1]
corresponds to transposition of elements of matrices M4 and My,,s with re-
spect to a global group diagonal j = 7 which coincides with the local group di-
agonals of matrices Myqs and My~ For instance consider matrix elements
(14:V)u,;and (a0, V) ug,(uq;V)u,;and (a,-V)ug,

The global group diagonal coincides with a local diagonal of a summation

IVINdd MNdr:|
My =| . (248)
N |:MN,r,d MN,r,r

matrix

of the Navier field (232). So, My, is a summation matrix of with elements My.4
My Mo, and My, which are matrices themselves shown in Figure 3, be-
cause

[

i =pci2];jz;[(udvi V) (U V) U+ (U V) U+ (U V) |- 249)

In Figure 3(a), the general term (u4:V)uy; of Fyq;qi (240) sums up diagonal
elements of My 4. Since the first index of the directional derivative is a counter
of rows and the second index is a counter of columns, the first general term
(14:V)ug; of Fyqiq; (241) sums up by rows elements of the upper triangular ma-
trix of My4qand the second general term (u4,V) 14, sums up by columns elements
of the lower triangular matrix of My

In Figure 3(b) and Figure 3(c), the first general term (u4:V) a1, of F ;. (242)
sums up by rows all elements of matrix My, and the second general term
(u,7V) ug;sums up by columns all elements of matrix My,.a.

In Figure 3(d), the general term (u,-V)u,; of Fyuiri (244) sums up diagonal
elements of My, the first general term (u,:V)u,; of Fy.;,; (243) sums up by
rows elements of the upper triangular matrix of My, and the second general
term (u,,V)u,; sums up by columns elements of the lower triangular matrix of
My

We then substitute the decomposition of the velocity fields (227) and (230) in
(240)-(244), expand the dot products, and combine the product of 1-d sums into
a 2-d sum to get the following rectangular expansions:

M M
Frodidi =chZ(5d,i,m 'V)Sd,i,n’

m;ln;ll
Fuaidi :Pczlz[(sd,i,m V)84 i +(Sd,j,m 'V)Sd,i,n]’
m=1n=
M M
FN,d,i,r,j :pc lel[(sd,i,m 'V)sr,j,n +(Sr,j,m 'V)Sd,i,n:|’ (250)
MM
FN,r,i,r,j =P ZIZ‘II:(Sr,i,m 'V)sr,j,n +(sr,j,m 'V)sr,i,n:|1
m=1n=
M M
I:N,r,i,r,i :pczz<sr,i,m 'V)Sr,i,n'

3
Il
LN
>
Il
iN
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To use Equation (238) in the case of rectangular summation in internal waves
(250), we substitute in (238) /= m, j= n, [= Mto compute

M-1 M

iif\nBFiAﬂBw (AuB, +AB,) (251)

m=1n=1 m=1 n=m+1

Using (250)-(251) yields that the Navier field Fyq;q; (240) is expanded in two

sums:

M M-l M
Fudidi = Z Fudimdim T Z Z Fudimdin: (252)
m=1 m=1 n=m+1

First, the internal (2 = m) sum of the Navier field Fyg;mdq:m of propagation of

the nith wave from the selfsame the #th deterministic wave group
Fudimdim =pc(sd,i,m 'V)Sd,i,m' (253)

which is represented via the half-anticommutator of the tDVK structures
[Sdims Saim) for i=1,2, .., Tand m=1,2, ..., M.

Second, the external (2 > m) sum of the Navier field Fyg;main of diagonal
interaction between the distinct mth and nth waves from the selfsame ith deter-

ministic wave group
Fudimdin =P [(Sd,i,m 'V)Sd,i,n +(Sd,i,n 'V)Sd,i,m:ll (254)

which is described by the anticommutator of the tDVK structures [Sq;m, Sq:.] for
i=1,2,.,Lm=1,2,..M-1l,and n=m+ 1, m+ 2, ..., M.
Similarly, the Navier field Fyq;q4;(241) may be decomposed in two sums

M M-l M
Fudid =ZFN,d,i,m,d,j,m + Z Z Fydimd,jn- (255)
m=1

m=1 n=m+1

First, the internal sum of the Navier field Fygima;n» of non-diagonal interaction

between the mth waves from the distinct ith and jth deterministic wave groups
Fudimdim = Pe |:(Sd,i,m 'V)Sd,j,m + (Sd,j,m ' V)sd,i,m ] (256)

which is expressed in terms of the anticommutator of the tDVK structures

(Saim Sajm) for i=1,2, . I=1,j=i+1,i+2, ..., Land m=1,2, .., M.
Second, the external sum of the Navier fields Fyng;ma,. of non-diagonal

interaction between the distinct nth and nth waves from the distinct /th and jth

deterministic wave groups
Fadimdjn = Pe |:(Sd,i,m 'V>5d,j,n +(Sd,j,m 'V)Sd,i,n
+ (S50 V) S jm +(5dijn -V)sd,i,m]

which is presented by two anticommutators of the tDVK structures [Sy;m Sq;.] and

(257)

[Saim Sqjpm) for i=1,2,.., I-1,j=i+1,i+2,.., L m=1,2,., M—-1,and n=m+1,
m+2,..,M
We then use (250)-(251) to find that the Navier field Fnq;; (242) is also

superposed in two sums
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M Ml M
Fudir = Z Fudimejm Z Fudimejn- (258)
m=1 m=1 n=m+1

First, the internal sum of the Navier fields Fxqm.,» of non-diagonal interac-
tion between the mth waves from all ith deterministic and jth random wave
groups

FN,d,i,m,r,j,m =0 I:(Sd,i,m V) Sr,j,m + (Sr,j,m V) Sd,i,m :|’ (259)
which is implemented by the anticommutator of the tDVK and tRVK structures
[Sdim Srjm) for i=1,2,..,Lj=1,2, .., Land m=1,2, .., M.

Second, the external sum of the Navier fields Fy;m;» of non-diagonal interaction

between the distinct mth and nth waves from all ith deterministic and jth ran-

dom wave groups
FN,d,i,m,r,j,n =P |:(Sd,i,m 'V)Sr,j,n +(Sr,j,m 'V)Sd,i,n
+(Sd,i,n 'V)Sr,j,m +(Sr,j,n 'V)Sd,i,m:|'

which is displayed by two anticommutators of the tDVK and tRVK structures

(260)

[Saim Siin] and [Sqim Sym) for i=1,2, .., L j=1,2,.., L m=1,2,..,M,and n=1,
2, .., M.
Analogously, the Navier field Fy,;.;(243) is again expanded in two sums
M M-1 M
Furing = Z Farimejm Z Z Farimejne (261)
m=1 m=1 n=m+1

First, the internal sum of the Navier field Fumr;m of non-diagonal interac-

tion between the mth waves from the distinct /th and jth random wave groups
FN,r,i,m,r,j,m =P |:(Sr,i,m : v)Sr,j,m + (Sr,j,m ’ V) Sr,i,m j|’ (262)

which is described via the anticommutator of the tRVK structures [Sy;m S:;m] for
i=1,2,.,1-1,j=i+1,i+2,..,Land m=1,2, .., M.

Second, the external sum of Navier field Fy;m;:» of non-diagonal interaction
between the distinct mth and nth waves from the distinct #th and jth random

wave groups
I:N,r,i,m,r,j,n :pc |:(Sr,i,m 'V)Sr,j,n +(Sr,j,m 'V>Sr,i,n
+(Sr,i,n 'V)Sr,j,m +(Sr,j,n 'V)Sr,i,m:|’

which is demonstrated by two anticommutators of the tRVK structures [y 8;2] and

(263)

[Ssim Sgjm] for i=1,2, .., [-1,j=i+1,i+2,.., L, m=1,2,.,M—-1l,and n=m+ 1,
m+2,.., M
Finally, usage of (250)-(251) shows that the Navier field Fy,;,; (244) is de-

composed in two sums, as well,

M M-1 M
FN,r,i,r,i = Z FN,r,i,m,r,i,m + z Z I:N,r,i,m,r,i,n' (264)
=1 m=1 n=m+1

First, the internal sum of the Navier field Fy,;mr;m 0of propagation of the mth

,,,,,,

wave from the selfsame th random wave group
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I:N,r,i,m,r,i,m :pc(sr,i,m 'V)sr,i,m! (265)

which is presented via the half-anticommutator of the tRVK structures [$;;nm Ssim)
fori=1,2,..,/and m=1,2, ..., M.

in of diagonal interaction

between the distinct mth and nth waves from the selfsame ith random wave
group

I:N,r,i,m,r,i,n =P |:(sr,i,m V) Sr,i,n + (Sr,i,n ' V)Sr,i,m :|’ (266)
which is displayed by the anticommutator of the tRVK structures [8;;m» 8:n] for 7= 1,

2, m=1,2,..,.M—1l,and n=m+ 1, m+ 2, ..., M.

Rectangular summation matrices

MN,d,i,dl _|:(Sd i,m 'V)Sd i n]
+

My giaj = [(sd,mV)sd]n (sd,jymV)deivn],

Mygins = (SoimV)Srin +(Seim V) Sain | (267)
My rir :[(sr,m V). in +(s ,Jm-V)sr,nJ

My i =] (SeimV)S0in |

of the Navier fields (250) are shown in Figure 4 in the decomposed form in
terms of diagonal elements and elements of the lower and upper triangular ma-
trices.

Summation matrix My,4;4; of element (u,-V)u,; of summation matrix M4
which is shown in Figure 3(a), is represented in Figure 4(a). The general term
(8a;mV)Saim of Fnaimdim (253) sums up diagonal elements of My;q, the first
general term (SqinV)Sdin Of Fndimdin (254) sums up by rows elements of the
upper triangular matrix of Myg4;4, and the second general term (Sa;nV)Saim
sums up by columns elements of the lower triangular matrix of Myq;d;.

In Figure 4(b), summation matrix My,;q; of the sum of elements (u4V) a4+
(u4;V)ug; of summation matrix Mpy,4q4 which are displayed in Figure 3(a), is
visualized. The general term (Sq;mV)Saim + (SajnV)Saim Of Frndimdjm (256) sums
up diagonal elements of Myq;q,. The first general term (8q;m'V)Sajn + (SajnrV)Sain
of Fngimd;n (257) sums up by rows elements of the upper triangular matrix of
My ;aq;. The second general term (8q;2'V)Saim + (SanV)8a:m sSums up by columns
elements of the lower triangular matrix of Myq;4,

Summation matrix Myq;.; of the sum of elements (u4:V)u,; + (u,;V)uq; of
summation matrices Myq, and My, which are shown in Figure 3(b) and Fig-
ure 3(c), respectively, is presented in Figure 4(c). The general term (Sq;nV)Ssm
+ (Srjm V) Sdim Of Fngimrm (259) sums up diagonal elements of My The first
general term (Sq;m'V)Srin + (840 V)Sain Of Fydimrin (260) sums up by rows
elements of the upper triangular matrix of My, The second general term
(84:n'V) Sejm + (82 V)Sqim sums up by columns elements of the lower triangular

matrix of Myq;..
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(sd,i,m : V) sd,i,n
(sd,i,n 'V)sd,i,m (sd,i,m 'V)sd,i,m

(a)

(sd,i,m ' V) sd,./,n + (sd,j,m : V) sd,i,n

(sd,i,n 'V)sd,j,m +(sd,/',n 'V)sd‘i,m (sd,i,m 'V)sd,j,m +(sd,/',m 'V)sd,i,m

(b)

(sd,i,m 'V)sr,j,n +(sr,j,m 'V)sd,i,n

(sd,i,n'V)sr,j,m+(sr,j,n'v)sd,i,m (sd,i,m'V)sr,j,m+(sr,j,m'v)sd,t,m

(o)

(sr‘,,m ~V) S jat (sr‘j,m . V) Sein

(sr,i,n : V)sr,j,m + (sr,j,n : V)sr,i,m e (sr,i,m : V) sV‘j,m + (sr‘f,m ! v) sr,iJn

(d)

(sr,i,m : v ) sr,i,n

(sr,i,n .v)sr,i,m (sr,i,m .v)sr,i,m

(e)

Figure 4. The summation matrices Mndidi, Mndidjy Mndirj, Mnzirj, and Mu,,;i(267) are
displayed by (a), (b), (c), (d), and (e), respectively.

In Figure 4(d), summation matrix My,;; of the sum of elements(u,V)u,; +
(u,/V)u,; of summation matrix My, which is displayed in Figure 3(d), is
represented. The general term (8..n'V)Srim + (SejmrV)Snim Of Fnrimrim (262) re-
turns a sum of diagonal elements of My, The first general term (8p;nV)Szn +
(82 V) 851 Of Fypimiin (263) sums up by rows elements of the upper triangular
matrix of My, The second general term (8,;,V)Ssim + (81n'V)Srim sums up by

columns elements of the lower triangular matrix of My,.; .
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Summation matrix My,.;.; of element (u.:V)u,; of summation matrix My,
which is shown in Figure 3(d), is presented in Figure 4(e). The general term
(8in V) Spim Of Frpimerim (265) computes a sum of diagonal elements of My.;.5

the first general term (8;;m'V)Ssin Of Fnrimrin (266) sums up by rows elements of

the upper triangular matrix of Mn,;.» and the second general term (s.;,V)s,im
finds by columns a sum of elements of the lower triangular matrix of My; ..

7.2. Potentialization of the Turbulent Navier Field

The Navier fields Fyqimdim (253) and Fyqimaq;n (254) may be transformed into a
potential form with the help of the Helmholtz decomposition (134) and (138) of
the derivative of s4;,, in the direction of $4;., the derivative of s4;, in the direc-

tion of $4;., and the derivative of s, in the direction of s4;, Explicitly,
1
(Sd,i,m 'V)Sd,i,m :EV(Sd,i,m 'Sd,i,m)'
1 1
(Sd,i,m 'V)Sd,i,n :Ev(sd,i,m “Sq.in ) _EV X (Sd,i,m x Sd,i,n)' (268)

(Sd,i,n 'v)sd,i,m =%V(Sd,i,m “Sq.in ) +%V X (Sd,i,m X Sgin )
We then compute the anticommutator
(sd,i,m 'V)Sd,i,n +<Sd,i,n 'V)sd,i,m :V(Sd,i,m 'Sd,i,n) (269)

which shows cancelling out the vector Helmholtz potentials and potentialization
of the anticommutator of [$u;um> S4:x].
Substituting anticommutators of (268)-(269) in (252)-(254) and factoring the

gradients yield
1M M-1 M
FN,d,i,d,i = pcv|:EZ(Sd,i,m 'Sd,i,m)"" Z Z (Sd,i,m “Sdin )j| (270)
m=1 m=1 n=m+1

Analogously, we compute the Helmholtz decomposition of the derivative of
S4;m in the direction of s, the derivative of $4;, in the direction of s4;m, the
derivative of s4;, in the direction of sy, the derivative of s4;., in the direction of
Sa4;m the derivative of s, in the direction of s4;,, and the derivative of s4;, in the

direction of s4;, in the following form:

(Sd,i,m 'V)Sd,j,m :%V(Sd,i,m 'Sd,j,m)_%vx(sd,i,m XSy jm)'
(Sd,j m 'V)Sd im :%V(sd,im “Sq.j m)+%vx(sd,i,m XSy jm)’
(Sd,i,m V)Sd,j n :%V(Sd,i,m “Sy Jn)—%VX(Sd im % Sd,j,n)'
(271)
(Sd,j,n V)Sd i\m :%V(Sd,i,m " Sy jn)+%vx(sd i\m Xsd,j,n)’
(Sd,i,n V)sd jm =%V(Sd,i,n Sq Jm)_%vx(sd,i,n Xsd,j,m)’
(Sd,j m 'v)sdln :%V(Sd,i‘n 'Sd Jm)+%vx(sd in ><sd j,m)'
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Therefore, three anticommutators become
(Sd,i,m 'V)Sd,j,m +(5d,j,m 'V)Sd,i,m = V(Sd,i,m 'Sd,j,m)v
(Soim V)Sain +(Sain V) Saim =V (SaimSajn ) (272)
(sd,i,n 'v)sd,j,m +(sd,j,m 'V)Sd,i,n = v(sd,i,n : sd,j,m)-
So, cancelling out the vector Helmholtz potentials once more produces poten-
tialization of the anticommutators of [Sainm Sajml> [Saim Sajnl> and [Sain Sajm].

Substituting anticommutators (272) in (255)-(257) and taking out the gradient

operator give

M M-l M
Fdidj =pcv|:2(sd,i,m 'Sd,j,m)+ Z Z (sd,i,m “Sq,in tSain Sa,jm )} (273)
m=1 m=1 n=m+1

To potentialize the Navier fields Fuaimrim (259) and Fugimrin (260), we use
the Helmholtz decomposition (135)-(136) and (139)-(140) of the derivative of
S.;m in the direction of s4;. the derivative of 84, in the direction of s, the de-
rivative of §,;, in the direction of $4;. the derivative of s4;, in the direction of
S.im the derivative of s.;, in the direction of s4;,, and the derivative of s4;, in the

direction of s Specifically,

(Suim9)80sm =5V (8010 S =5V %S0 %)
(Sram¥)Suim =5 ¥ (Suim “Sram) +5 V(S XS 1)
(SaimV)Se i =%V(Sd,i,m s, j,n)_%vx(sd,i,m XS, in )
(50°9)Suim =3 (S S030) + 3 (8010 %50 ). o
(Sd.n-V)Sr,m=%V(Sd,i,n sr]Ym)—%w(sd,i,nxs”,m),
(505 7V) 010 =5V (a0 S0 1) + 29 %8010 %50 1)

Computation of three anticommutators
(Sd,i,m 'V)Sr,j,m +(Sr,j,m 'V)sd im=— V(Sd im’ Sr,j,m)'
(sd,i,m 'V)sr,j,n +(Sr,j,n . )Sd im— (Sd im’ r,', ) (275)
(sd,i,n 'v)sr,j,m +(Sr,j,m : )Sd in = (Sd in’ r,', )
again results in cancelling out the vector Helmholtz potentials and potentializa-
tion of the anticommutators of [Saim» Sriml> [Saim Srjnls and [Sain Srjm).

Substitution of anticommutators (275) in (258)-(260) returns a potentialized

form of

<

-1 M

Z (Sd im’ r, intSqin 'Sr,j,m ):| (276)

1 n=m+1

M=

(sd,i,m "9, m)+
1

3
I
3
I

FN,d,i,r,j = Pcv{

Analogously, the Helmholtz decomposition (137) and (141) of the derivative

of s,;m in the direction of ;. the derivative of s, in the direction of §,;, the
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derivative of s;;, in the direction of s;;», the derivative of s, in the direction of
S.im the derivative of s, in the direction of s, and the derivative of s;, in the

direction of s, are following:

(Srlm 'V)Srjm :%V(Sr,i,m Sr]m)_%vx(sr,i,m ><Sr j m)'
(Sr j.m V)Srl,m :%V(Sr,i,m Sr j m)+%vx(sr,i,m XS Jm)’
(Sr i,m .V)Sr j.n :%V(Sr,i,m Sr,J,n)_%VX(Sr,i,m x Sr,j n)'
(277)
(Sr,j,n V)Sr i,m :%V(Sr im* S j,n)+%vx(sr im X Sr,j,n)'
(Sr,l n V)Sr,] m =%V(Sr,i,n : Sr,j,m)_%vx(sr,i n X Sr,J,m)'
(sr,j,m v)sr,i,n =%V(Sr in 'Sr,j,m)+%vx(sr,i,n x sr,j m)'

Using directional derivatives (277), we obtain three anticommutators
(Sim V)Seim*(Seim V) Srim =V (SeimSrim)»
(Seim V)Sin (S0 V)Sim =V(SimSrin)s (278)
(SeinV)Seim*(Srim V) Srin =V(SeinSrim):
The vector Helmholtz potentials are cancelled out and the anticommutators of
(Srims Sejmls [Spims 8rjnl> and [8zin Srim] are potentialized, as well.

Substitution of anticommutators (278) in (261)-(263) returns a potentialized
form of the Navier field

M M-1 M
I:N,r,i‘r,j = pcv|:z<sr,i,m : Sr,j,m)+ Z z (sr,i,m : Sr,j‘n +Sinc Sr,j,m ):| (279)
m=1 m=1 n=m+1

Eventually, the Navier fields Fuimsim (265) and Fyimrin (266) may be con-
verted into the potential form with the help of the Helmholtz decomposition of
the derivative of s,;, in the direction of s,;., the derivative of s,;, in the direc-

tion of 8., and the derivative of s, in the direction of s,;, Namely,

(Sr,i,m 'V)sr,i,m :%V<Sr,i,m S m)'
1 1
ri, N T 5 im Srin )75V X\ Seim X Srin )
(Stim V)Sein 2V(s“m Stin) >V (Seim*Sein) (280)
(Sr,i,n 'V)sr i,m :%V(Sr,i,m ! Sr,i,n)-*'%V ><(Sr,i,m X Sr,i,n)'

Calculation of the anticommutator
(Sr,i,m ' v)Sr,i,n +<Sr,i,n ' V)Sr,i,m = v(Sr,i,m ' Sr,i,n) (281)

again produces cancelling out the vector Helmholtz potentials and potentializa-
tion of the anticommutator of [$,;m S;x]-
Substituting anticommutators of (280)-(281) in (264)-(266) and pulling out

the gradient operator give
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1 M M-1 M
FNJJJ’I PV Z(rlm' r|m)+ Z(rlm' rln) : (282)
2ml m=1 n=m+1

Finally, we combine the potentialized Navier fields (270), (273), (276), (279),
(282) in agreement with (240)-(245) to obtain a potentialized form of the Navier
field of the deterministic flow

Fuda :pcv{i{%i(sdm ~sdyivm)+sz“l i (Saim 'Sd,i,n)j|

i=1 m=1 m=1 n=m+1 (283)

M-1

" ZI: {i(s‘“’m Saim)* i (Ssim " Sa.im + Sain ‘Sd,j:m)}},

i=1 j=i+lm=1 m=1 n=m+1

the Navier field of the deterministic-random flow
=

N,g,d,i,r,j

=pcVZII|Z{

i=1 j=1

M-1

M M
Z::(Sd,i,m rjm)+2:: z (sdlm r,',n+sd,i,n'sr,j,m)

m=1 m=1 n=m+1

} (284)

and the Navier field of the random flow

o (S350 8§ 0]

+
™M
N
—_
v
3
-
5
S—

i=1 m=1 m=1 n=m+1

(285)

The vector Helmholtz potentials cancel out due to the third Newton law since
the vector Helmholtz potentials express internal forces of interaction between
the turbulent internal waves. In accordance with the third Newton law, the in-
ternal forces possess the same magnitudes and opposite directions, Ze. compen-
sate each other. The scalar Helmholtz potentials describe external forces with a
non-trivial resultant, which moves the turbulent internal waves in agreement

with the second Newton law.

7.3. Reduction of the Turbulent Navier Field

The orders of diagonal summations in 7 and m, triangular summations in (J )

and (m, n), and the rectangular summation in (4 /) may be interchanged as fol-

lows:
I M M
ZZ Aﬁ,m,i,m = Z A,m,i,m’ (286)
i=1 m=1 m=1i=1
I M-1 M M-1 M |
Z Ai‘m,i,n = Z ZA,m,i‘n’ (287)
i=1 m=1 n=m+1 m=1 n=m+1 i=1
-1 | M M 1-1 |
Z ZA.m,j m :Z z A‘m,j,m’ (288)
i=1 j=i+1m=1 m=1i=1 j=i+l
-1 I M-1 M M-1 M 1-1 |
Z A m,j,n Z z Ai,m,j,nl (289)
i=1 j=i+1 m=1 n=m+1 m=1 n=m+1i=1 j=i+l
-1 I M-1 M
2 Anin= ZZZZAHW (290)
i=1 j=i+1 m=1 n=m+1 m=1 n=m+1i=1 j=i+l
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iii/%m,m ZZZMW (291)

i=1 j=lm=1 m=li=1 j=1
I 1 M1 M M-1 M 1
zz Z Aﬁ,m,j.n = Z z ZZA,m,],n’ (292)
i=1 j=1 m=1n=m+1 m=1 n=m+1i=1 j=1
I I M1 M

IDITIIES 3 35 3) I (293)
i=1 j=1 m=1n=m+1 m=1n=m+1i=1 j=1

Using (286)-(290), the Navier field (283) of the deterministic flow may be
converted to

Mg -1 1
Fyaa = {E{Ez(sd,i,m ~Sd,i,m)+ 2 Zl(sd,i,m “Sq,im ):|
m i= i=1 j=i+ (294)
M-1 1-1

With the help of (291)-(293), the commutative symmetry of the dot product,

and the invariance of the transposed summation

ii(Aj,m' B.)= ZZ(M Bjn) (295)

=1 j=1 i=l j=1

the Navier field (284) of the deterministic-random flow is transformed into

Fug.in] =pcv{iii(sd mSeim)

m=1li=1 j=1
(296)
M-1 M 1 1
+ z ZZ(Sdlm' rj.n S,i,m'sd,j,n):|'
m=1n=m+1i=1 j=1
Similarly to (294), the Navier field of the random flow becomes
M 1 | -1 1
I:N,r,r:Vpc mzl{gg( rim’ r|m)+; ;1< rim’ rJ,m):|
R : (297)

<

-1

85 St

1n=m+1[ i=1

1-1

3
Il

i=1 j=i

Analogous to (238), we compute the following inverse reductions of the di-

agonal and triangular summations to the rectangular summation in (4 j)

i(A-Bi)+|le(A~B,-+BwA) IZIZ( B;), (298)

%_Il(AiA)Jri_lZl(NAjF%ZI; I (A-A) (299)

Usage of (298)-(299) enables to eliminate the diagonal and triangular summa-
tions in (4 J) and transform the Navier field (294) of the deterministic flows and
the Navier field (297) of the random flow to

Fuoe = izl‘i:(sd,i,m'Sd,j,m)Jr i

m:l i=1 j=1 m=1 n=m+1i

M-1

M_

IZ<Sd,i,m 'Sd,j,n) ) (300)

j=1

Il
[iN
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FN,r,r:pcv{%%iIZ( cimSeim )+ i ii(sryi'm-sm'n) . (301)

m=li=1 j=1 m=1 n=m+1i=1 j=1

Summation of (300), (296), and (301) in the view of (246), the invariance of
the transposed summation (295), and factoring return the Navier field of the

turbulent flow

(302)

IZ(Sd im+Seim)(Sain +s,,j,n)}.

Similar to (251), we then find the following inverse reductions of the diagonal

and triangular summations to the rectangular summation in (:m, n)

%mM_l(A" An)+ Z_:lnzmlﬂ( Av-A)= mzan;(Am A), (303)
%milizlllill(Am &l )+:11n§:+1IZI1:J ( )

(304)

To derive (304), the general term A,-A, of sums of (303) is replaced with the
summation matrix of A;,rA;, in (4 j). Equation (304) is reduced to (303) for /= 1.
All theoretical relationships between the diagonal, triangular, and rectangular
summations (234), (236), (238), (251), (286)-(293), (295), (298)-(299), (303)-
(304), (329)-(330), (332), (334), and (336) have been also justified using experi-
mental programming in Maple.

In the view of (304), the diagonal and triangular summations in (11, n) are re-
placed with the rectangular summation of (302) to conclude with a last potentialized
form of the Navier field of the turbulent flow

M M

A IR ACHEE N (09

m=1n=1i=1 j=1

Using the definition of the kinetic energy and velocity expansions (159), (226),
(228), (229), (231), we change the orders of summation to get the following al-

ternative presentations of the kinetic energy of turbulent flow

(ud,i+ur,i)'(ud,j+ur,j) (306)

ii(sdlm rlm)'(sd,j,n+sr,j,n)-

m=1n=1 i=1 j=1

Comparison of (305) with (306) and (155) yields a relationship between the
turbulent Navier field and the kinetic energy
Fu: = VK, (307)
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and the scalar Helmholtz potential of the turbulent Navier field
Pue=—Kep (308)

7.4. The Dynamic and Cumulative Pressure Fields of the
Turbulent Navier-Stokes Problem

The kinetic energy of the turbulent flow (306) may be decomposed in four con-

stituents

Ke,t = Ke,d,d + Ke,d,r + Ke,r,d + Ke,r,r! (309)

where

pMMll
Keoa =5 22223 (Sa1m " Sa.i) (310)

m=1ln=1i=1 j=1

is the kinetic energy of self-interaction of the deterministic flow,

%ZZii@mwm) (311)

m=1n=1i=1 j=1

is the kinetic energy of interaction between the deterministic and random flows,

%ZZZZﬁWSMJ (312)

mlnllljl

is the kinetic energy of interaction between the random and deterministic flows,
and

M

w=%2iiihmrm) (313)

m=1n=1i=1 j=1
is the kinetic energy of self-interaction of the random flow.
Using the alternative definition (308) of the kinetic energy via the dynamic

pressure and the dot product of the tDVK (50) and tRVK (54) structures, we
obtain the dynamic pressure of self-interaction of the deterministic flow

Pnag =—K S ZZZZ[( )a " Kam&d nSd,x,i,mSd,x jn

m=1n=1i=1 j=1 (314)

Bi+Pj
+(-1) AgmAanSd.y.imSdy.in + /ud,m:ud,nsd,i,msd,j,nj|

in the tDDSD structures (72), the dynamic pressure of interaction between the

deterministic and random flows

M M I 7
Pnar = _Ke,d,r = _%ZZZZ[( )0‘|+‘11 Kd m&rnSd x,imSrx,jn
m=1n=1i=1 j=

(315)
Bi+Bj
+(_l) ! j“d mﬂ’r nSd y,i,m r Y, 0,0 +/ud,m/ud,nsd,i,msr,j,n:|

in the tDRSD structures (76), the dynamic pressure of interaction between the

random and deterministic flows
. M o1 e
pN,r,d :_Ke,r,d :_?ZZZZ[(_]') ! Kr,mKd,nsr,x,i,msd,x,j,n
m=1n=11i-1 j=1 (316)

Bi+PBj
+( ) n ﬂ’ j‘d nsr ylmsd,y,j,n +/ur,m/ud,nsr,i,msd,j,n:|
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in the tRDSD structures (80), and the dynamic pressure of self-interaction of the

random flow
p M M I | N
' aj+aj
pN,r,r =-K e,r,r =_?ZZZZ|:( ) ! Ky mKr,nSr,x,i,er,x,j,n
m=1n-1i-1 j-1 (317)
Bi+Pj
+( ) : j’r mﬁ’r nsrylm ry,jn +/ur,m/ur,nsr,i,msr,j,n:|

in the tRRSD structures (84).
In agreement with (308)-(309),

Pne=Prnagat Puar T Prnrg + P (318)

Combining the scalar Helmholtz potentials of the superposition of the
Archimedean field (158), the turbulent Stokes field (202), and the turbulent

Navier field (314)-(318) returns the cumulative pressure of the turbulent flow
Per = o (1) + 2. (9,X+ 9,y +0,2)

+chZ|:( l) Kd m d msd X,i,m (_1)ﬂi /Id,mvd,msd,y,i,m

m=1i=1

+( l) K Xrtm r,X,i,m ( )ﬂl Arertm rylm_sr,t,i,m]

[ ,
ZZ[( )al+a] (Kd,msd,x,i,m + Kr,msr,x,i,m)(Kd,nsd,x,j,n + Kr,nsr,x,j,n)

i=1 j=1
+ (_1)ﬁi+ﬂj (ﬂ“d,msd,y,i,m + ﬂ“r,msr,y,i,m )(ﬂd,nsd,y,j,n + ﬂ’r,nsr,y,j,n )

+(/ud,msd,i,m +/ur,msr,i,m )(:ud,nsd,j,n +/ur,nsr,j,n ):|

(319)

Mz

PN
> 2

m=1n

]
[N

in terms of the tDSK, tRSK, tRSK, tDDSD, tDRSD, tRDSD, and tRRSD struc-
tures.
7.5. Justification of the Turbulent Navier Problem

To verify the turbulent solution (159), (228), (231), (314)-(318) by (175), we use

an expanded vector form of the directional derivatives (233)

ouy ou ou,
u,-Viu, =p.| u +u 44y d
pc(d )d (dxax dyay dzazJ
ou ou ou
pc(ud 'V)Ur =P ud,x_r+ud,y_r+ud,z_r '
OX oy oz
(320)
ou ou, ou
Pe (ur 'V)ud =P [ur,x a_)?+ ur,y Ed—‘_ ur,z a_zdj'
ou ou ou
pc(ur 'V)ur =P [ur,x 6)(r ry 8yr rz azr]'
In agreement with (228) and (231), the x, y-, z-components of u,are
05 M 1 0os M L ds,.
ZZ dlm’ udvyzzz d,i,m udz ZZ d,|,m, (321)
m=1i-1 miiz oy miia Oz
the x-, y=, z-components of u, are
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M M 1 5s . M 1 55 (322)
— rlm, r — I',I,m,urZ: I’Im 322

and the deterministic and random velocity fields are, respectively,
!

M M
Uy =2 D Sajmr U =225 - (323)

n=1 j=1 n=1 j=1

Substitution of (321)-(323) in (320) and combining sums gives

0Sgi.m 054,in N 0Sgim O54,in N OS4.im OS4,jn
ox o oy oy oz )

i L& 0S4 im OS¢ jn +85d,i,m 0S¢ i +85d,i,m 08t in ’
OX  OX oy oy oz oz

il I (asrlmasdjn+ar|m63djn+65r,i,m asd,j,nj

(324)

oXx  OX oy oy oz oz

L& 0Sim as,,jyn . 08 im Gsm.yn . 0S,im asm.,n
ox  Ox oy oy oz oz |

We then substitute the spatial derivatives (34) and (64) of the tDSK, tRSK,
tDVK, and tRVK structures and collect like terms to represent the derivative of
u;in the direction of usin terms of the tDDVD structures of the nth family (96)

M M a
pc(ud 'V)Ud =PCZZZZ[(‘1) o Ky.mKa.nSa,ximSd,x,jn

m=1n-1i-1 j-1 (325)
v
+(_1) " A4 mAd.nSd.yimSa.y,jn +:ud,m/ud,n5d,i,msd,j,n:|’

the derivative of u, in the direction of u; via the tDRVD structures of the nth
family (104)

M M I I Ca
pc(ud 'V)ur :pCZZZZ[(_l) s Kd,mKr,nSd,x,i,msr,x,j,n

m=1n=1i=1 j=1 (326)
_F(_:]')ﬂ#ﬁJ ]’d mﬂ’r nsd y,i,m r y.j.n +:ud m:ur nsd i, er j, n:Il

the derivative of u, in the direction of u, through the tRDVD structures of the
nth family (112)

M M |
Pe(U )y = 2 223D (1) K Sanin
m=ln=1li=1 j=1 (327)

Bi+Pj
+( 1) H ﬂ’ ﬂ’d nsr y|msd,y,j,n +:ur,m:ud,nsr,i,msd,j,n:|'

and the derivative of @, in the direction of u, in the tRRVD structures of the nth
family (120)

[
ZZ[( )al+aJ rmKr,nSr,x,i,er,x,j,n

i1 (328)

Bi+Pj
+( ) s ﬂ’r m)“r nsr A msr AN +/ur,m/ur,nsr,i,msr,j,n:|'

Mz
Mg

pc(ur ‘V)ur =P

1n

3
|
Il

iR

Application of the 4-d summation of transposed elements with indices [j= 4 7= j
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n=m, m= 1|

iiii Amin =iiii A nime (329)

(330)

Bith
+(_1) C A mAdnSa.yimSd.y. i +:ud,m/ud,nsd,i,msd,j,nj|'

Therefore, directional derivative (325) may be represented via the tDDVD
structures of the nith (94) and nth (96) families in the following symmetric form:

o, MM e
Pe(uy-V)u, :?ZZZZ[(_” " Ky & nSd ximSa
m=ln=L i-1 j-1
Bi+Bj
+(_1) " Aa mAdnSa yimSa.y.in +:ud,m;ud,nsd,i,msd,j,n:|
oMM 1 (331)
aj+aj
+ 2y S S S () g Koo i
2 m=1n=1i=1 j=1
Bi+PBj
+(_1) " Ay mAd 0Sd.yimSa.y.in +/ud,m/ud,nsd,i,msd‘j,n:|'
Similarly, using (329), we have
M M LI ara
ZZZZ[( 1) Kd,mKr,nSd,x,i,er,x,j,n
m=1ln=1i=1 j=1
Bi+h
+(_l) ! Ad,mlr,nsd,y,i,msr,y,j,n +/Ud,mtur,nsd,i,msr,j,n:|
(332)

Bi+Bj
+(_1) n ﬂr,m/’i’d,nsr,y,i,msd,y,j,n +/ur,mlud,nsr,i,msd,j,n:|'

So, (326) may be rewritten in a symmetrical form in terms of the tRDVD
structures of the mth family (110) and the tDRVD structures of the nth family
(104) as follows:

(333)

fi+Pj
+(_1) /’Ld,m/’)’r,nsd,y,i,msr,y,j,n + :ud,m:ur,nsd,i,msr,j,n :|

With the help of (329), we obtain an identity
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M M I L
ZZZZ[(_]')“IWJ Kr,mKd,nSr,x,i,de,x,j,n
+(_1)ﬂi+ﬂj /lr,mld,nsr,y,i,msd,y,j,n +:ur,m:ud,nsr,i,msd,j,n:|
M M I L
= ZZZZ[(_]')%WI Kd,mKr,nSd,x,i,er,x,j,n

Bi+p
+( )I J/’t Arnsdylm ran"'/udm/urnsdlmsrjn:|7

(334)

which enables to recast (327) through the tDRVD structures of the mth family
(102) and the tRDVD structures of the nth family (112) as

20 )y =23 S S (1) by S0

m=1n=1i=1 j=1

1)/
+( ) ﬂ“dmﬂ’rnsdylm ran+/udm:urnSd|erJn:|

M Lo (335)
P aj+aj
+7ZZZ |:(_1) Kr,mKd,nSr,x,i,de,x,j,n
m=1n=1 i=1 j=1
Fi+Pi
+( 1) : 2’ /ld nsr yii msd,y,j,n + tur,m:ud,nsr,i,msd,j,njl'
Eventually, we use (329) to get
M M I i
ZZ[(_]') : Ky m&s nsrmmsrxm
m=1n=1i=1 j=1
fitPi
+( l) ' ﬂ’r mﬂ'r nSr yi, msr y,j,n + /ur,m/ur,nsr,i,msr,j,n:|
(336)

M M 1 b
= ZZZZI:(_:L) Y Kr,mKr,nsr,x,i,msr,x,j,n

Bi+h
+( 1) H ﬂ“r mﬂ’r nsr Y., msr y.i.n +:ur,mtur,nsr,i,msr,j,n:|'

The last identity gives an opportunity to transform (328) symmetrically in the
tRRVD structures of the mth (118) and nth (120) families
|

P2 M M s
pc(ur 'V)Ur :?czzzz[(_l)al " Kr,me,”vaxyi,me-XvJ':n

m=1n=1i=1 j=1

Bi+Pj
+( ) H /1r mﬁ”r nSr ,y,i,m r y,j.n +/ur,m/ur,n5r,i,msr,j,n:|

M M 11 (337)
P, i a
+_CZ ZZ[(_]') : KrmKrnSrmerXJn

2 m=1n=1i=1 j=1

ﬂ|+ﬂ] l ﬂ,

+( ) r,m”’r, nsr y,i,m r y,j.n +lur,m:ur,nsr,i,msr,j,n .
Using the product rule of vector differentiation [23],
V(A,B,)=(VA,)B, +A,(VB,), (338)

we then split the gradient Vpyqq of the deterministic dynamic pressure (314) into
two parts. In the first part named V,,pnaq terms including V[Saxim Sapim Sdiml =
[Saxim Sdyim Saim) are collected. In the second part specified as V,pnqqs terms

With V[Saxm Saym Sdjn]l = [Sdxjm Sdym 844 are included. Explicitly,
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VPuad =VinPuas T VaPugar (339)
where, in agreement with (142),
o MM o
Vi Pngd :_?CZZZZ[(_D C Ky K nSdximSd x jn
m=1n=1i-1 j=L (340)

Ay
+(_1) 7 A mAgnSa.yimSd.y, jn +/ud,m:ud,n5d,i,msd,j,n:|

is computed in terms of the tDDVD structures of the mth family (94) and

M M |
Vi Py =_%ZZZZ|:(_1)aI " K4,m&d nSd xi,mSd x, j.n

m=1n=1i-1 j-1 (341)

Bi+Pj
+(_l) F ﬂ’d,mﬂd,nsd,y,i,msd,y,j,n +/ud,m1ud,nsd,i,msd,j,n:|

via the tDDVD structures of the nth family (96).

With the help of (338), the gradient Vpy4, of the deterministic-random dynamic
pressure (315) is decomposed into two parts. The first part, which is termed
Vopnan includes V[Saxim Sdpim Saiml = [Sdxim Sdpim Saim]. The second part,
which is named as V,pn4, contains terms with V[S.x;m Siyim Sein] = [Sexim Seyjim

S:in]. Namely,
VpN,d,r =Vm pN,d,r +Vn pN,d,r’ (342)

where

oM M1 e
Vm pN,d,r :_?CZZZZ[(_]') ' Kd,mKr,nsd,x,i,er,x,j,n

m=1n=1i-1 j=1 (343)

ﬂl+ﬂ]
+( 1) ﬂ’d mﬂ’r nsd,y,i,msr,y,j,n +:ud,m:ur,nsd,i,msr,j,n:|

is expressed in the tDRVD structures of the mth family (102) and

,0 M M 1 e
Vn pN,d,r = 2C Z;ZZZ[( ) H Kd,mKr,nsd,x,i,msr,x,j,n
m=1ln=1 i=1 j=1

(344)
fi+Bi
+(_1) : Jﬂ’dmﬂ“rnsd y,i,m ryjn+/udm:urnsd|m3rjni|

through the tDRVD structures of the nth family (104).

Similarly, we split the gradient Vpy,s of the random-deterministic dynamic
pressure (316) into two parts. In the first part named V,pn..4 terms containing
VISixim Stpim Seim] = [Spxim Spyim Spim] are presented. In the second part termed
VuPnsa terms with V[Saxim Sayim Sdjn]l = [Sdxjm Sdym Sa;a) are collected. Specifi-
cally,

VPura =V Prra T VaPura: (345)

where

oMM ot
Vm pN,r,d :_?ZZZZ[(_]') I jKr,mKd,nsr,x,i,msd,x,j,n

m=1n-1i-1 j-1 (346)

Bi+Bj
+( ) s )“ /q“d nSr ylmsd,y,j,n +/ur,m/ud,nsr,i,msd,j,n:|
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is represented with the help of the tRDVD structures of the mth family (110) and

YR i
Vi Pn.ra :_%ZZZZ[(_]')HI j’(r,m’(cj,nsr,x,i,msd,x,j,n

m=1n=1i-L j-1 (347)

Bi+Bj
+( ) s ﬂ ﬁ’d nSr ylmsd,y,j,n +/ur,m/ud,nsr,i,msd,j,n:|

using the tRDVD structures of the nth family (112).

In agreement with (338), the gradient Vpu,.. of the random dynamic pressure
(317) is expanded into two parts. The first part that is named V,px,, contains
VISixim Sepim Spim] = [Spxim Seyim Ssim). The second part that is termed V,pn,
includes terms with V[S.xim Seyim Srinl = [Sexjim Sryim Srinl. Therefore,

VpN,r,r =V, Pnorr +V, Pnorro (348)

where

M l I O(|+0(

ZZZI:( ) ! K, mKr,nsr,x,i,er,x,j,n

1n=1i=1 j=1 (349)

Bi+Bj
+( ) C /Ir m/?“r nSr y.i, er y,j.n +:ur,m:ur,n5r,i,msr,j,n:|

3
Il

l\)lnb
M=

Vm pN,r,r ==

is computed via the tRRVD structures of the mth family (118) and

Vn pN,T,I’ = pc ZZZZ[( )a aJ KI’ mKr nSI’XIer X, J n

m=1n=1i=1 j=1 (350)
Bi+Pj
+( ) ' A’r mﬁ’r nsr yleran +/ur,m/ud,nsr,i,msr,j,n:|
with the help of the tRRVD structures of the nth family (120).
Combining (233), (331), (339)-(341) yields
Fuaa =~ (ud 'V)ud ==V Pudd ~VaPrngd ="VPnga (351)

and the following deterministic Navier equation for the Navier field Fy,qq of the

deterministic flow and its scalar Helmholtz potential py44(314)
Pe(Ug-V)Uy +Vpy 4 =0 (352)
is satisfied identically.
In accordance with (233), (333), (346), (344),
Fuar =2 (Ug - V)U ==V, Dy o = VP, (353)

and the Navier field Fyg, of interaction between the deterministic and random

flows is not a potential field as

Fuar Z=VPyar (354)
In the view of (233), (335), (343), (347),

I:N,r,d :pc(ur 'V)ud :_vm pN,d,r _vn pN,r,d (355)

and the Navier field Fy,.s of interaction between the random and deterministic

flows is not a potential field, as well, since

Fura 2= VPyra: (356)
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However, in agreement with (245), (353), (355), (342), (345),
Fugairi =Fnar +Furg =2 (Ug-V)u + o, (U, - V)u,
=VaPuar = VaPrnar = VinPrra = VaPura (357)
==VPuar = VPynra = VPngairi,
where
Pugairi = Prnar+ Prras (358)

and the following deterministic-random equation for the Navier field Fygq;.; of
the deterministic-random flow and its scalar Helmholtz potential pygd.r(358),
(315), (316)

pe] (g VYU, +(U, - V)Uy |+ VPy g g =0 (359)
is fulfilled exactly.
We combine (233), (337), (348)-(350) to show that
FN,r,r = L (ur 'V)ur = 7vm pN,r,r - Vn pN,r,r = 7VpN,r,r (360)

and the following random Navier equation for the Navier field Fy,, of the ran-

dom flow and its scalar Helmholtz potential px,,, (317)
P (U -V)u, +Vp, =0 (361)

is accomplished precisely.
Finally, we use (232), (233), (351), (357), (360), and (318) to derive that

Fye=Fnag + Fuar T Fueg + Fuer
= pe[(Ug V) Uy +(Uy - V) U, +(u, - V) Uy + (U, V), | (362)
==VPyad = VPnar = VPyrd = VPynrr =~ VP,

and the turbulent Navier equation (175) for the Navier field Fy, of the turbulent
flow and its scalar Helmholtz potential py, is strictly justified.

8. Conclusion

The most interesting properties of the scalar and vector kinematic structures that
are treated in Sections 2-3 are the deterministic-random invariance with respect
to the spatial differentiation, the scalar and vector structural oscillations, the
scalar-vector duality, the equiprobability of the experimental and theoretical,
scalar and vector, kinematic structures [16], and quadrality of the theoretical,
scalar and vector, kinematic structures.

The differentiation diagram in Figure 1 represents a mathematical 2-d dice,
where all vertices have exactly the same probability despite the various scales of
differentiation in the x- and yp-directions.

The success of the scalar and vector dynamic structures that are defined and
studied in Sections 4-5 is stipulated by similarity of their algebraic structure to
that of the Navier-Stokes equations since the momentum conservation law (143)

is expressed in terms of a superposition of kinematic terms and dynamic terms
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with an algebraic nonlinearity.

A further attractive feature of the scalar and vector, kinematic and dynamic struc-
tures is absence of formal restrictions on functional amplitudes, wave parameters,
Reynolds numbers, Cartesian coordinates, and times. The algebraic structure of the
vector dynamic structures is actually displayed by five-dimensional arrays, where
two dimensions are produced by interaction of M deterministic and M random
waves, one dimension refers to a vector in the 3-d Cartesian coordinates, and
two dimensions are generated by interaction of 7/ deterministic and / random
wave groups.

The large number of the experimental scalar and dynamic structures, 16 and 32,
respectively, is required for the completeness of expansions of the directional deriv-
atives of the velocity field and the gradient of the dynamic pressure since otherwise
the vortical forces produced by the vector potential (138)-(141) of the Helmholtz
decomposition will not compensate each other and potentialization of the Navier
fields (283)-(285) will become impossible.

Consequently, experimental and theoretical programming in Maple, which
facilitates computation and verification of numerous arrays of the scalar and
vector dynamic structures, is essential for the proof of the necessary (Sections
7.1-7.3) and sufficient (Section 7.5) conditions of existence of the exact solution
to the turbulent Navier problem (175).

Since the exact solution to the turbulent Navier-Stokes equations (143)-(144)
is not effected by viscous dissipation it may serve as the 3-d model of conserva-
tive propagation and interaction of turbulent internal waves in ocean and at-
mosphere via the exponential oscillons and pulsons. Thus, exact wave turbulence
demonstrates accumulation and conservation of green kinetic energy via oceanic
internal waves.

Initially, a smooth random function of time as a part of the exact solution of
fluid dynamics appeared in the form of a reference pressure py(# in the Cauchy
integral of motion. The exact solution for wave turbulence of exponential oscil-
lons and pulsons includes numerous smooth random function of time (13), (20),
(24), (216), and (220) for m =1, 2, ..., M from C=, which are required to specify
random exponential oscillons and pulsons and interaction between deterministic
and random exponential oscillons and pulsons. So, construction of smooth ran-
dom functions of time with oscillatory and pulsatory topology is an open prob-
lem, which will give an opportunity to visualize and analyze random and turbu-
lent internal waves.

It is also interesting to develop theoretical and experimental quantizations of
exact wave turbulence, which generalize the theoretical and experimental quan-
tizations of the deterministic chaos for the Fourier [19] and Bernoulli [20] sets of
wave parameters and the theoretical quantization of the stochastic chaos [17].
Indeed, it looks appealing to study the Eulerian, Lagrangian, and Kolmogorovian
properties of exact wave turbulence and compare them with results obtained in

the frames of statistical wave turbulence and resonant wave turbulence.

DOI: 10.4236/ajcm.2024.141004

166 American Journal of Computational Mathematics


https://doi.org/10.4236/ajcm.2024.141004

V. A. Miroshnikov

Acknowledgements

The support of CAAM and the University of Mount Saint Vincent is gratefully
acknowledged. The author thanks a reviewer for helpful comments, which have

perfected the paper.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this pa-

per.

References

[1] Davidson, P.A. (2004) Turbulence—An Introduction for Scientists and Engineers.
Oxford University Press, Oxford.

[2] Kolmogorov, A.N. (1941) The Local Structure of Turbulence in Incompressible
Viscous Flow for Very Large Reynolds Numbers. Doklady Akademii Nauk SSSR,
30, 299-303.

[3] Kolmogorov, A.N. (1941) On Degeneration (Decay) of Isotropic Turbulence in an
Incompressible Viscous Liquid. Doklady Akademii Nauk SSSR, 31, 538-541.

[4] Kolmogorov, A.N. (1941) Dissipation of Energy in the Locally Isotropic Turbu-
lence. Doklady Akademii Nauk SSSR, 32, 19-21.

[5] Kolmogorov, A.N. (1962) A Refinement of Previous Hypotheses Concerning the
Local Structure of Turbulence in a Viscous Incompressible Fluid at High Reynolds
Number. Journal of Fluid Mechanics, 13, 82-85.
https://doi.org/10.1017/S0022112062000518

[6] Frisch, U. (1995) Turbulence: The Legacy of A. N. Kolmogorov. Cambridge Univer-
sity Press, Cambridge. https://doi.org/10.1017/CBQO9781139170666

[7] Obukhov, A.M. (1941) On the Energy Distribution in the Spectrum of a Turbulent
Flow. Doklady Akademii Nauk SSSR, 32, 22-24.

[8] Obukhov, A.M. (1983) The Kolmogorov Flow and Laboratory Simulation of It.
Russian Mathematical Surveys, 35, 113-126.
https://doi.org/10.1070/RM1983v038n04ABEH004207

[9] Batchelor, G.K. (1953) The Theory of Homogeneous Turbulence. Cambridge Uni-
versity Press, Cambridge.

[10] Chandler, G. and Kerswell, R. (2013) Invariant Recurrent Solutions Embedded in a
Turbulent Two-Dimensional Kolmogorov Flow. journal of Fluid Mechanics, 722,
554-595. https://doi.org/10.1017/jfm.2013.122

[11] Revina, S.V. (2017) Stability of the Kolmogorov Flow and Its Modifications. Com-
putational Mathematics and Mathematical Physics, 57, 995-1012.
https://doi.org/10.1134/S0965542517020130

[12] Monin, A.S. and Yaglom, A.M. (2007) Statistical Fluid Mechanics, Volume 1: Me-
chanics of Turbulence. Dover Publications, New York.

[13] Teodorovich, E.V. (2013) Possible Way of Closing of the Chain of Equations for
Statistical Moments in Turbulence Theory. Journal of Applied Mathematics and
Mechanics, 77, 17-24.

[14] Zakharov, V.E.,, L’vov, V.S. and Falkovich, G. (1992) Kolmogorov Spectra of Tur-
bulence I: Wave Turbulence. Springer-Verlag, Berlin.
https://doi.org/10.1007/978-3-642-50052-7

DOI: 10.4236/ajcm.2024.141004

167 American Journal of Computational Mathematics


https://doi.org/10.4236/ajcm.2024.141004
https://doi.org/10.1017/S0022112062000518
https://doi.org/10.1017/CBO9781139170666
https://doi.org/10.1070/RM1983v038n04ABEH004207
https://doi.org/10.1017/jfm.2013.122
https://doi.org/10.1134/S0965542517020130
https://doi.org/10.1007/978-3-642-50052-7

V. A. Miroshnikov

(15]

(16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]

(24]

Kartashova, E. (2010) Nonlinear Resonance Analysis. Cambridge University Press,
Cambridge. https://doi.org/10.1017/CBO9780511779046

Miroshnikov, V.A. (2020) Deterministic Chaos of Exponential Oscillons and Pul-
sons. American Journal of Computational Mathematics, 10, 43-72.
https://doi.org/10.4236/ajcm.2020.101004

Miroshnikov, V.A. (2023) Stochastic Chaos of Exponential Oscillons and Pulsons.
American Journal of Computational Mathematics, 13, 533-577.
https://doi.org/10.4236/ajcm.2023.134030

Miroshnikov, V.A. (2017) Harmonic Wave Systems: Partial Differential Equations
of the Helmholtz Decomposition. Scientific Research Publishing, Wuhan.

http://www.scirp.org/book/DetailedInforOfABook.aspx?bookID=2494
Miroshnikov, V.A. (2023) Quantization of the Kinetic Energy of Deterministic
Chaos. American Journal of Computational Mathematics, 13, 1-81.
https://doi.org/10.4236/ajcm.2023.131001

Miroshnikov, V.A. (2023) Quantization and Turbulization of Deterministic Chaos
of the Exponential Oscillons and Pulsons. BP International, India.
https://stm.bookpi.org/ QTDCEOQOP/issue/view/1045
https://doi.org/10.9734/bpi/mono/978-81-19217-39-7

Miroshnikov, V.A. (2014) Conservative Interaction of N Stochastic Waves in Two
Dimensions. American Journal of Computational Mathematics, 4, 289-303.
https://doi.org/10.4236/ajcm.2014.44025

Miroshnikov, V.A. (2014) Conservative Interaction of N Internal Waves in Three
Dimensions. American Journal of Computational Mathematics, 4, 329-356.
https://doi.org/10.4236/ajcm.2014.44029

Korn, G.A. and Korn, T.M. (2000) Mathematical Handbook for Scientists and En-
gineers: Definitions, Theorems, and Formulas for Reference and Review. Dover

Publications, New York.

Pozrikidis, C. (2011) Introduction to Theoretical and Computational Fluid Dynam-
ics. 2nd Edition, Oxford University Press, Oxford.

DOI: 10.4236/ajcm.2024.141004

168 American Journal of Computational Mathematics


https://doi.org/10.4236/ajcm.2024.141004
https://doi.org/10.1017/CBO9780511779046
https://doi.org/10.4236/ajcm.2020.101004
https://doi.org/10.4236/ajcm.2023.134030
http://www.scirp.org/book/DetailedInforOfABook.aspx?bookID=2494
https://doi.org/10.4236/ajcm.2023.131001
https://stm.bookpi.org/QTDCEOP/issue/view/1045
https://doi.org/10.9734/bpi/mono/978-81-19217-39-7
https://doi.org/10.4236/ajcm.2014.44025
https://doi.org/10.4236/ajcm.2014.44029

	Wave Turbulence of Exponential Oscillons and Pulsons
	Abstract
	Keywords
	1. Introduction
	2. Scalar Kinematic Structures
	2.1. Definitions of the tDSK and eDSK Structures
	2.2. Definitions of the tRSK and eRSK Structures
	2.2. Definitions of the tRSKt and eRSKt Structures
	2.4. Differentiation Tables

	3. Vector Kinematic Structures
	3.1. Definitions of the eDVK and tDVK Structures
	3.2. Definitions of the eRVK and tRVK Structures
	3.3. Definitions of the eRVKt and tRVKt Structures
	3.4. Differentiation Tables

	4. Scalar Dynamic Structures
	4.1. Definitions of the eDDSD and tDDSD Structures
	4.2. Definitions of the eDRSD and tDRSD Structures
	4.3. Definitions of the eRDSD and tRDSD Structures
	4.4. Definitions of the eRRSD and tRRSD Structures
	4.5. Differentiation Tables

	5. Vector Dynamic Structures
	5.1. Definitions of the eDDVD and tDDVD Structures
	5.2. Definitions of the eDRVD and tDRVD structures
	5.3. Definitions of the eRDVD and tRDVD Structures
	5.4. Definitions of the eRRVD and tRRVD Structures
	5.5. The Helmholtz Decomposition of the Directional Derivatives

	6. The Turbulent Stokes Field
	6.1. The Helmholtz Decomposition of the Turbulent Navier-Stokes Equations 
	6.2. The Turbulent Stokes Problem
	6.3. The Turbulent Boundary Function

	7. The Turbulent Navier Field
	7.1. Expansion of the Turbulent Navier Field
	7.2. Potentialization of the Turbulent Navier Field
	7.3. Reduction of the Turbulent Navier Field
	7.4. The Dynamic and Cumulative Pressure Fields of the Turbulent Navier-Stokes Problem
	7.5. Justification of the Turbulent Navier Problem

	8. Conclusion
	Acknowledgements
	Conflicts of Interest
	References

