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Abstract 
One important aspect of solar energy generation especially in inter-tropical 
sites is the local variability of clouds. Satellite images do not have temporal 
resolution enough to nowcast its impacts on solar plants, this monitoring is 
made by local cameras. However, cloud detection and monitoring are not tri-
vial due to cloud shape dynamics, the camera is a linear and self-adjusting 
device, with fish-eye lenses generating a flat image that distorts images near 
the horizon. The present work focuses on cloud identification to predict its 
effects on solar plants that are distinct for every site’s climatology and geo-
graphy. We used RASPBERY-PI-based cameras pointed at the horizon to al-
low observation of clouds’ vertical distribution, not possible with a unique 
fish-eye lens. A large number of cloud image identification analyses led the 
researchers to use deep learning methods such as U-net, HRnet, and Detec-
tron. We use transfer learning with weights trained over the “2012 ILSVRC 
ImageNet” data set and architecture configurations like Resnet, Efficient, and 
Detectron2. While cloud identification proved a difficult task, we achieved 
the best results by using Jaccard Coefficient as a validation metric, with the 
best model being a U-net with Resnet18 using 486 × 648 resolution. This 
model had an average IoU of 0.6, indicating a satisfactory performance in 
cloud segmentation. We also observed that the data imbalance affected the 
overall performance of all models, with the tree class creating a favorable bias. 
The HRNet model, which works with different resolutions, showed promising 
results with a more refined segmentation at the pixel level, but it was not ne-
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cessary to detect the most predominant clouds in the sky. We are currently 
working on balancing the dataset and mapping out data augmentation trans-
formations for our next experiments. Our ultimate goal is to use such models 
to predict cloud motion and forecast the impact it will have on solar power 
generation. The present work has contributed to a better understanding of 
what techniques work best for cloud identification and paves the way for 
future studies on the development of a better overall cloud classification 
model. 
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1. Introduction 

The presence of clouds has a major effect on the photovoltaic power plants, 
causing significant variability in solar energy that reaches the surface, and as a 
consequence, in the power energy generation (Hu & Stamnes, 2000). The detec-
tion of clouds and the estimation of their impacts on solar plants is a challenging 
task. Clouds are always in continuous metamorphosis. The logarithmic scale of 
its luminosity (Mantelli, von Wangenheim, Pereira, & Sobieranki, 2020), the va-
riety and dynamic of their shapes, along with their forming and extinction 
processes are always associated with local geography and current weather condi-
tions. Different types of clouds and altitudes, also have distinct effects on the 
scattering, reflection, and absorption of solar energy, influencing energy power 
production. Different thicknesses, shapes, and volumes of clouds, could cause 
sudden changes in sky coverage trapping and releasing long and short waves re-
sulting in significant changes in radiation throughout the day. 

The World Meteorological Organization (WMO) classifies clouds by their 
shape, clustering, and height of their base. According to WMO1 clouds can also 
be divided by groups into specific categories such as species, variety, and addi-
tional supplementary features, as described in WMO Cloud Atlas2. The estima-
tion of cloud type and coverage is made by a synoptic operator. The develop-
ment of automated systems and methods of observation is still an open subject. 
Especially in terms of the replacement of the highly developed perception of a 
human observer classification. 

There are commercial automated solutions available for cloud identification, 
in order to assess their impact on energy generation like Whole Sky Imager (WSI) 
(Juncklaus Martins, Cerentini, Neto, & von Wangenheim, 2021, 2022a). This sys-
tem can be configured to use single or double fish-eye surface cameras. They use 
pixel value analysis, and stereo techniques to evaluate the clouds. The single sys-
tem poses a problem when dealing with images used for nowcasting. WSI images 

 

 

1https://public.wmo.int/en  
2https://cloudatlas.wmo.int/en/cloud-classification-summary.html  
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show in detail only clouds that lie on the zenith position. Near the horizon and 
close to the lens border, clouds seem to be compressed and the image degrades 
in the details. Double fish-eye images are coupled with additional geometric and 
stereo technology to determine cloud-based. But the embedded software and ad-
ditional cameras are expensive and they have to be placed kilometers apart. One 
important feature of cloud classification is its vertical distribution in different 
layers. The pixel value analysis used is still far from achieving the classification 
proposed by WMO (Mantelli et al., 2020). 

It is desirable to estimate cloud shade casting in detail, especially when it causes 
a partial coverage of large power plants. Scattered cloud’s condition throughout 
the day has intermittent effects on the generation and does not cause only at-
tenuation in energy. But also a surplus is known as over-irradiation by multiple 
reflections that result in levels of irradiance above the top of atmosphere values 
(Martins, Mantelli, & Rüther, 2022). This excess could result in some operational 
problems with inverters, unbalanced energy generation among module strings, 
overloads, and even safety shutdowns (do Nascimento, Braga, Campos, Naspoli-
ni, & Rüther, 2020; do Nascimento, de Souza Viana, Campos, & Rüther, 2019). 
Therefore, it is important to have tools to model and predict the energy gener-
ated by photovoltaic technologies (Tarrojam, Mueller, Eichman, & Samuelsen, 
2012), especially when associated with storage systems. Many energy grids com-
bine power from multiple sources. Predicting solar power output, using accurate 
cloud forecasting, helps grid managers decide when to tap into alternative ener-
gy sources like wind or hydropower, ensuring a steady power supply to consum-
ers. Additionally, precise prediction of cloud patterns allows power plants to an-
ticipate and adjust for these variations, ensuring more consistent power output. 
Consistent and predictable power generation can lead to stable financial returns, 
since power plants can face penalties or reduced rates if they fail to deliver the 
promised power output to the grid. Accurate forecasting through cloud segmen-
tation can help in avoiding such scenarios.  

From the computer vision point of view, clouds could be segmented and their 
pathways monitored by tracking. Their impact on energy generation is measured 
by determining the present solar position combined with the geometric estima-
tion of clouds shading over the power plant. There are several segmentation 
methods used in the classification of clouds. Mostly based on their shapes and 
inner features like texture, color similarity, brightness, and contour continuity in 
an image (Piccardi, 2004; Souza-Echer, Pereira, Bins, & Andrade, 2006; Long, 
Sabburg, Calbo, & Page, 2006; Mantelli, von Wangenhein, Pereira, & Comunel-
lo, 2010; Mejia et al., 2016). The albedo of a cloud has inherent characteristics 
that are distinguished from common objects and outdoor scene features. Its ref-
lectivity in the visible spectrum is higher than the other wavelengths and its lu-
minance values are usually cropped due to camera scale limitations (Mantelli et 
al., 2020). In general, objects only reflect the local surrounding radiation and this 
approach does not comprehensively describe albedo features and scenery under 
the sun. Therefore, the use of the brightness parameter is not accurate enough to 
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distinguish a cloud. Cloud textures are random and their diffuse edges contain 
gray level jumps which are more similar to a phase step in large areas. To a cer-
tain degree, smaller parts of clouds are similar to the whole, and the cloud clus-
ter has a certain fractal similarity (Li, Dong, Xiao, & Xu, 2015). The shape, size, 
formation, extinction, and changing level are variable along the cloud’s pathway 
which made it difficult to monitor their surface shades.  

Some computer vision-based methods rely on cross-classification and divide 
clouds into broader physical forms. These classifications are based on the shared 
properties of clouds, such as opacity, structure, and formation processes. Specif-
ically, following the classification proposed by (Barrett & Grant, 1976), clouds 
can be categorized as follows:  

1) Stratiform, grouping Cirrostratus, Altostratus, Stratus, and Nimbostratus.  
2) Cirriform, which only includes Cirrus.  
3) Stratocumuliform, encompassing Cirrocumulus, Altocumulus, and 

Stratocumulus.  
4) Cumuliform, containing only Cumulus.  
5) Cumulonimbusform, exclusive to Cumulonimbus.  
These groupings were chosen to explore the broader categories, understand-

ing that there may be variations within each group. Our study aims to provide 
foundational insights into these groupings, which can later be refined to address 
specific cloud types in detail. However, due to the rare presence of Cumulonim-
busform clouds in the region, we chose to exclude this category from the created 
dataset. 

As mentioned before, the identification and classification of clouds near the 
horizon and the prediction of their path toward a photovoltaic installation is still 
an open research field. We believe that other configurations of methods com-
bined with the camera as well as real data-oriented by machine learning could 
also be explored. Machine learning has gained some ground in recent years 
when it comes to solar irradiation prediction (Juncklaus Martins et al., 2021; 
Juncklaus Martins, et al., 2022a; Kumari & Toshniwal, 2021). This is due to the 
popularization and easy access to artificial intelligence frameworks, which have 
several ready-to-use models for image segmentation and detection. There are 
several recent reviews on this subject made by (Juncklaus Martins et al., 2021; 
Kumari & Toshniwal, 2021; Mellit & Kalogirou, 2008; Pelland, Remund, Kleissl, 
Oozeki, & De Brabandere, 2013; Voyant et al., 2017) describing recent methods 
recently used, but they’re no comparative evaluation of performance among 
them. 

In light of the aforementioned challenges and gaps in the current cloud classi-
fication and irradiation prediction methodologies, this work aims to explore ex-
isting methodologies for cloud segmentation and evaluate their performance. 
Our goal is to find a reliable way to classify cloud types. With these experiments 
we can evaluate the techniques and assess if it’s feasible to automate this process 
with a machine learning approach. We start by presenting previous works found 
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in the literature related to the proposed topic. After realizing that the fish-eye 
lens does not provide a good indication of vertical distributions of cloud layers, 
we developed two systems based on Raspberry PI model 2 with the same imag-
ing quality as WSI, pointing to the predominant direction of local clouds, with 
the assistance of local meteorologists (Monteiro, 2001). We use real image data 
sets and check the performance of several frameworks to evaluate their perfor-
mance on cloud classification. In the Materials and Methods section, we give a 
detailed description of used data sets production, and how our experiments were 
performed. In the Results section, we present and discuss briefly the achieved 
results. In the Discussion section, we discuss the problems faced during our ex-
periments and make some suggestions to improve the results, and in the conclu-
sion describe the best methods to implement the proposed task. In section 7, we 
present the next steps we mapped out for future experiments, given what we 
learned throughout the development of this work. 

2. Related Works 

Several machine learning techniques have been used to forecast solar irradiance 
in the past years (Voyant et al., 2017; Kumari & Toshniwal, 2021; Martins et al., 
2022). Some perform cloud identification by doing a binary image segmentation 
on either a patch of the sky or using Whole Sky Images (WSI). Others use the 
physical properties of clouds and the interaction with light and atmosphere 
while others use current meteorological data or exogenous data (Voyant et al., 
2017) from side stations.  

Machine learning techniques can be classified as Support Vectors, K-means, 
Artificial Neural Networks (ANN), and Convolutional Neural Networks. For 
example, in (Paletta & Lasenby, 2020), the dataset used in this study originated 
from the SIRTA laboratory Haeffelin et al. (2005), France. The RGB images were 
collected over a period of seven months from March 2018 to September 2018, 
with a resolution of 768 × 1024 pixels. The work is composed of two distinct 
networks merged into one which outputs the irradiance estimate. On one side, a 
ResNet Convolutional Neural Network (CNN) is used to extract features from 
sky images and on the other side, an Artificial Neural Network (ANN) treats 
available auxiliary data (past irradiance measurements, the angular position of 
the sun, etc). Both outputs are fed into another ANN, which integrates them to 
give its prediction.  

In (Anagnostos et al., 2019), sky images are retrieved every 10 s from sunrise 
to sunset with a camera equipped with a fisheye lens and 1920 × 1920 pixels res-
olution. Specific image features are computed for each image, then provided as 
inputs for the machine learning applications. The sky imaging software deter-
mines for each image the predominant sky or cloud type as one of seven catego-
ries: Cumulus (Cu); Cirrostratus (Cs), Cirrus (Ci); Cirrocumulus (Cc), Altocu-
mulus (Ac); Clear sky (Clear); Stratocumulus (Sc); Stratus (St), Altostratus (As); 
Nimbostratus (Ns), Cumulonimbus (Cb). The Support Vector Classification 
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(SVC) has been chosen with best classification results, achieving an accuracy of 
more than 99% of correct classifications.  

The authors in (Fabel et al., 2022) focus on the semantic segmentation of 
ground-based all-sky images (ASIs) to provide high-resolution cloud coverage 
information of distinct cloud types. The authors propose a self-supervised learning 
approach that leverages a large amount of data for training, thereby increasing 
the model’s performance. They use about 300,000 ASIs in two different pretext 
tasks for pretraining. One task focuses on image reconstruction, while the other 
is based on the DeepCluster model, an iterative procedure of clustering and clas-
sifying the neural network output. The model achieved 85.75% pixel accuracy on 
average, compared to 78.34% for random initialization and 82.05% for pre-
trained ImageNet initialization. The improvement was even more significant 
when considering precision, recall, and Intersection over Union (IoU) of the re-
spective cloud classes, where the improvement ranged between 5 and 20 percen-
tage points, depending on the class. Furthermore, when compared to a Clear-sky 
Library (CSL) from the literature for binary segmentation, their model outper-
formed the CSL, reaching a pixel accuracy of 95.15%.  

The study of (Ye, Cao, Xiao, & Yang, 2019) discusses the challenges of fine- 
grained cloud detection in different regions with varying air qualities. The au-
thors collected WSIs from Hangzhou and Lijiang. The differences in these re-
gions add complexity to the cloud detection problem. The authors tested their 
proposed method for fine-grained cloud detection and recognition against a 
well-known semantic segmentation model, Fully-convolutional Network (FCN). 
They fine-tuned a pre-trained FCN model with 400 images from their dataset, 
which included images from Lijiang and Hangzhou and used 8 cloud types and 
the sky as ground truth label classes. The results showed that their approach 
outperformed the FCN model. The computed evaluations were presented as the 
commonly used in semantic segmentation tasks, such as precision, recall, IoU 
for each class, and accuracy for each image. The authors achieved an average 
precision of 42.75%, average recall of 44.78%, average IoU 34.06% and an accu-
racy of 71.28%. 

3. Methods 

This section provides a detailed description of the dataset utilized, the image 
capturing methodology, and the deep learning models employed in our experi-
ments. We differentiate our experiments into two distinct categories: Semantic 
and Instance Segmentation. 

The experiments presented in this paper are an extension and refinement of 
prior empirical studies conducted by our team. Previously, we evaluated various 
machine learning models on the same dataset, but the classification was predi-
cated on cloud base height. In this iteration, our focus has shifted towards mod-
els that can effectively address the identified issues. 

Despite our meticulous attention to data integrity, we must acknowledge the 
inherent challenges in manual annotation. This process is labor-intensive and 
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couldn’t be exhaustively vetted by our specialists. 
Figure 1 showcases the overall workflow we adopted. We began by capturing 

sky images with cameras angled slightly above the horizon, ensuring a frame rich 
in sky and devoid of terrestrial obstructions like trees or buildings. A subset of 
these images was then manually labeled. After accumulating sufficient labeled 
data, our specialists reviewed and validated the annotations. Subsequent to this, 
we embarked on training our cloud detection models with this vetted data. The 
ensuing step involved evaluating the model’s performance and concurrently us-
ing its output to further validate our manual annotations. Once a range of mod-
els was trained, a comparative study of their results was undertaken. 

Among the semantic segmentation models we employed, the HRNet (Yuan, 
Chen, & Wang, 2020) stands out due to its capability to learn across multiple 
image resolutions concurrently. Its mathematically refined structure lends it 
adaptability, making it suitable for tasks ranging from object detection to se-
mantic segmentation and image classification with only minor modifications. 
Released in 2019, the HRNet garnered significant international interest and is 
now applied to a plethora of challenging problems. Its prowess in semantic seg-
mentation, especially with the Cityscapes dataset3, firmly establishes it as a 
top-tier choice. 

In the domain of convolutional networks, U-net and CNN share similarities. 
Originally conceptualized for electron microscopy image segmentation, U-net 
networks are deep CNNs (Ronneberger, Fischer, & Brox, 2015). On the other 
hand, Resnet (Residual Network) introduces the concept of Residual Blocks to 
address the vanishing or exploding gradient issue. At its core, Resnet employs 
skip connections, which enable activations to bypass certain layers, culminating 
in a residual block. A series of these blocks constitute the Resnet.  

Finally, EfficientNets offer efficiency both in terms of speed and size. As a family 
of image classification models, they achieve remarkable accuracy, surpassing their  
 

 
Figure 1. Overall flow of our work describing the steps used for all experiments. 

 

 

3https://www.cityscapes-dataset.com/  
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predecessors despite their compactness. Their design, rooted in AutoML and 
Compound Scaling, and their training over the ImageNet dataset (Tan & Le, 
2019), make them a formidable tool in our arsenal. 

To better visualize the processes used in our experiments, from labeling to va-
lidation, refer to Figure 2 which provides a detailed flow. 

 

 
Figure 2. Step-by-step process from data labeling up to results and validation. 
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In order to validate the each experiment we computed the mean IoU, accuracy 
and F-score of all predictions performed by the each model. The IoU, also known 
as the Jaccard index or Jaccard similarity coefficient (originally coined coeffi-
cient de communauté by Paul Jaccard), is a statistic used for comparing the si-
milarity and diversity of sample sets. The Jaccard coefficient measures the simi-
larity between finite sample sets, and is defined as the size of the intersection di-
vided by the size of the union of the sample sets, as seen in Equation (1). 

( ), A BJ A B
A B
∩

=
∪

                          (1) 

The F-score, also known as the Dice coefficient, is similar to the Dice loss and 
can be interpreted as a weighted average of the precision and recall, where an 
F-score reaches its best value at 1 and worst score at 0. The relative contribution 
of precision and recall to the F-score are equal. The F-score was used due to its 
robustness with imbalanced datasets. Equation (2) shows the F-score formula:  

 ( ) ( )2
2

precision recallprecision, recall 1
precision recall

Fβ
⋅

= +β
β ⋅ +

           (2) 

where β  is a coefficient to balance precision and recall. 

3.1. Data 

To construct the dataset, images were captured with cameras directed towards 
the horizon in the north and south directions in an area with good view of the 
sky near the Federal University of Santa Catarina (UFSC), in the city of Flo-
rianópolis, located in the Brazilian South Region at Latitude −27.36, Longitude 
−48.31 and altitude of 31 m. It has a humid subtropical climate with the climatic 
seasons well defined4 with mean yearly temperature amount 20.8 C and the an-
nual rainfall is 1506 mm. It is classified in Koppen5 criteria as Cfa by (Alvares et 
al., 2013; Dubreuil, Fante, Planchon, & Santa’Anna Neto, 2018). 

Clouds-1000 Dataset 
The Clouds-1000 (Juncklaus Martins et al., 2022b) dataset is composed of im-
ages collected every minute over the period of March-October of 2021, with an-
notations handmade using the Supervisely6 tool. The tool was created for image 
annotation and data management in which it’s possible to create the annotations 
via interface available, similar to other image editors. Each image was annotated 
with the polygon tool and classified using 4 cloud types: Cirriform, Cumuliform, 
Estratiform, Estratocumuliform and 1 class representing trees and buildings. 
This classification is based on solar radiation absorption characteristics. Due to 
the humid climate of the region, the Cumulonimbus (Cb) cloud seldom forms. 
This type of cloud usually form in dryer regions, thus we won’t find any occur-
rence of this cloud in the dataset. 

During the time of this article, the dataset had faced several validations and 

 

 

4https://en.climate-data.org/south-america/brazil/santa-catarina/florianopolis-1235/   
5https://education.nationalgeographic.org/resource/koppen-climate-classification-system/  
6https://supervise.ly/  
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during an inspection we found 4 images that were either partially annotated or 
missing annotation entirely. Therefore, the latest and current version of the 
Clouds-1000 dataset is composed of 996 fully hand-annotated images. 

The class type distribution is shown in Table 1. It is clear that the dataset dis-
tribution is unbalanced, therefore, we chose the “simpler approach”, meaning 
that our experiments will try to use simple model architectures with little to no 
optimization. In future works we will work on that and compare results. 

3.2. Experiments 

The ground-truth labels used in the experiments follow the segmentation based 
on solar radiation absorption characteristics. The images were divided into three 
datasets: training, validation and testing. Where 60% of the data was used for 
training, 20% for validation and testing, respectively. The selection strategy was 
done randomly, without substitution and the sampling of validation data was 
done only over the training dataset. 

All experiments described in this article were trained on a Tesla p100-pcie-16GB 
GPU and followed the same division and sampling criteria described above. The 
data used in the experiments are all from the Clouds-1000 dataset. The division 
process was executed only once, therefore the training, validation, and test sets 
are equal across all experiments. 

3.2.1. Semantic Segmentation 
Semantic segmentation involves a neural network identifying individual pixels in 
an image according to an object class to which each pixel belongs, dividing the 
image into sections that each represents an object. Our experiments were done 
using the High Resolution Neural Network (HRNet) network and a combination 
of U-net with Resnet and EfficientNet. The team is aware that using different 
frameworks might not result in a fair comparison, however we tried to approach 
all hyperparameters in order to reduce any bias towards a specific framework. 

In our experiments, we used the PaddleSeg7 framework, which is an end-to-end 
highly-efficient development toolkit for image segmentation based on PaddlePad-
dle, which helps both developers and researchers in the whole process of de-
signing segmentation models, training models, optimizing performance and in-
ference speed, and deploying models. This framework was chosen because it  
 
Table 1. Dataset distribution by class type. 

Class Type Amount in Dataset % in Dataset 

Tree 989 99.30% 

Estratocumuliform 812 81.53% 

Estratiform 271 27.21% 

Cirriform 285 28.61% 

Cumuliform 90 9.04% 

 

 

7https://github.com/PaddlePaddle/PaddleSeg   
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could train the HRNet architecture faster with less vRAM requirements than the 
original code. 

We used both the Adam optimizer and the Polynomial Decay training policy. 
We trained the model using the standard transfer-learning/fine-tuning workflow. 
The network was also fed with images with 1280 × 1280 resolution and trained 
for 80,000 iterations with a batch size of 2 images in order to compare its results 
with previously trained models. For this experiment, we used a A100-SXM4-40GB 
video card. 

The U-net with Resnet models were trained using the FastAI v2 framework8. 
We trained two models with different Resnet architectures using transfer learn-
ing, with 18 and 34 residual layers, and employed an incremental resolution 
training strategy, in which we train a model with a specific Resnet architecture 
with different resolutions for a number of epochs. 

The number of epochs was determined empirically, based on previous expe-
riments and the available hardware for training. For every resolution, we used 
the learning rate finder technique, which consists of plotting the learning rate vs 
loss relationship for a model. The idea is to reduce the amount of guesswork in 
picking a good starting learning rate. We monitor the F-score metric for valida-
tion during the training step. This method was applied for both experiments 
with Resnet18 and Resnet34. 

Our experiments with U-net and EfficientNet used the mobile-size baseline 
network, named EfficientNet-B0. We use this pre-trained model for transfer 
learning due to our hardware limitations and to prevent overfitting, since more 
complex models need more data. The only transformation applied to the input 
images was a change in the original 2592 × 1944 resolution to 1280 × 1280 due 
to vram limitations. 

The model was trained using the Pytorch framework over 13 epochs with a 
learning rate of 1 × 10−4 and a batch size of 2 images while monitoring the Cross 
Entropy loss function. 

3.2.2. Instance Segmentation 
A qualitative evaluation was carried out in order to analyze whether “localiza-
tion” problems, that can’t be easily distinguished through the validation metrics, 
were present. This problem can occur when the model classifies different regions 
of the same object (cloud) as multiple classes, where the ground truth is actually 
only one object. To address this problem, we opted to utilize the Detectron2 li-
brary9, an open-source machine learning library developed by Facebook AI Re-
search, which offers cutting-edge algorithms for detection and segmentation 
tasks. Detectron2, the successor to Detectron and maskrcnn-benchmark (Wu, 
Kirillov, Massa, Lo, & Girshick, 2019), was chosen for two main reasons. Firstly, 
it excels in robust object detection, making it well-suited for scenarios where ob-
jects, such as different types of clouds, overlap or are closely situated. Its ad-

 

 

8https://www.fast.ai/   
9https://github.com/facebookresearch/detectron2   
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vanced object detection capabilities enable more accurate identification and clas-
sification of objects within images, thereby reducing the occurrence of a cloud be-
ing assigned multiple classes. Secondly, Detectron2 boasts impressive segmenta-
tion capabilities, including state-of-the-art algorithms like Mask R-CNN. These 
algorithms facilitate pixel-level segmentation, enabling clear boundary delinea-
tion of objects. In our case, this feature proves valuable in ensuring that distinct 
regions of the same cloud are not erroneously classified as different classes. By 
leveraging Detectron2, we can enhance our cloud classification system’s perfor-
mance and accuracy. 

In order to use the Detectron2 library, the dataset was converted from the Su-
pervisely json format to the Common Objects in Context10 (COCO) format in 
order to use the library. COCO is a large-scale object detection and segmenta-
tion dataset including evaluation techniques for instance segmentation models. 
The conversion process involves extracting image-level and object-level infor-
mation from Supervisely annotations and reformatting it into the COCO stan-
dard. The conversion is performed through the following steps in Algorithm 1.  
 

 
 

Our algorithm converts annotations from the Supervisely format to the 
COCO format. For each annotation file, we extract image-level and object-level 
information. These details are transformed and collected into a new COCO ob-
ject, which is added to a set of COCO annotations. The process repeats for each 
object in all annotation files. Finally, the complete set of COCO annotations is 
saved for future use. The conversion process ensures that all relevant image-level 
and object-level information is accurately preserved in the resulting COCO an-
notations. 

After the dataset preparation, we trained a model to predict the bounding 
boxes and segmentation pixels for the objects. We first initiate a baseline model 
previously trained with Detectron2 called Mask RCNN R 50 FPN model in order 
to have better tradeoffs between speed and accuracy (Wu et al., 2019). The mod-

 

 

10https://cocodataset.org/   
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el’s training parameters have a batch size of 8, a learning rate of 25 × 10−5, and a 
stochastic gradient descent optimizer. We kept the original resolution of the in-
put images and trained the model for 3000 iterations on the available Google 
Colab11 GPU, taking approximately three and half hours to train. 

For better visualization and understanding, Table 2 encapsulates all the 
hyperparameters tailored for each model of our experiments, where LR stands 
for Learning Rate and the value LR Finder means that used the learning rate 
finder technique describe in (Smith, 2017). 

4. Results 

In this section we present the achieved results of our initial experiments in the 
same manner, separating into the two different categories, Semantic and In-
stance Segmentation. We present a quantitative summary of the performed ex-
periments explaining the metrics. For qualitative analysis we present graphical 
results emphasizing the problems observed. 

4.1. Semantic Segmentation 

The evaluation was conducted on a test dataset and the performance of each 
model was measured in terms of mean Intersection over Union (mIoU), accura-
cy, and F-score. We selected these metrics as they are commonly used for Se-
mantic Segmentation and they best represent both the successes and errors of 
models. 

Table 3 summarizes the overall performance of the best models we tested. We 
identified each model with a unique Id for later reference in the paper. Model b, 
which is the combination of U-net and Resnet18, achieved the highest mIoU of 
0.6, an accuracy of 0.8564 and F-score of 0.7234, indicating its overall strong 
performance and generalization across the entire dataset. 

The HRNet model achieved a mIoU of 0.3889, an accuracy of 0.7316, and an 
F-score of 0.4869 over the test dataset. These results were obtained after training 
the network for 63,300 epochs. 

The U-net and Resnet experiments had different results with different resolu-
tions, as expected. However, we can verify in Table 4 that the model that achieved  
 

Table 2. Hyperparameters for all models developed. 

Model Resolution Epochs LR Batch Optimizer Loss 

HRNet 1280 × 1280 80,000 1 × 10−4 2 Adam Cross Entropy 

Resnet (both 18 & 34) 243 × 324 Frozen 15, Unfrozen 30 LR Finder 12 Adam Cross Entropy 

Resnet (both 18 & 34) 486 × 648 Frozen 15, Unfrozen 30 LR Finder 4 Adam Cross Entropy 

Resnet (both 18 & 34) 972 × 1296 Frozen 15, Unfrozen 40 LR Finder 1 Adam Cross Entropy 

Efficientnet 1280 × 1280 13 1 × 10−4 2 Adam Cross Entropy 

Detectron2 2592 × 1944 3000 25 × 10−5 8 SGD Cross Entropy 

 

 

11https://colab.research.google.com/    
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Table 3. Average results of the best models over the test dataset. 

Id Model Input Size mIoU Accuracy F-score 

a HRNet 1280 × 1280 0.3889 0.7316 0.4869 

b Unet + Resnet18 486 × 648 0.6 0.8564 0.7234 

c Unet + Resnet34 972 × 1296 0.4796 0.7967 0.59 

d Unet + EfficientNet 1280 × 1280 0.4187 0.8141 0.4871 

 
Table 4. Quantitative results of the best U-net models for each architecture and resolu-
tion. 

Resnet Size Input Size Accuracy F-Score mIoU 

18 243 × 324 0.27 0.12 0.07 

18 486 × 648 0.85 0.72 0.6 

18 972 × 1296 0.48 0.23 0.17 

34 243 × 324 0.33 0.13 0.09 

34 486 × 648 0.17 0.09 0.05 

34 972 × 1296 0.79 0.59 0.47 

 
the best quantitative metrics is the second simplest model is model b, composed 
of a Resnet18 with 486 × 648 resolution. This model achieved an average IoU of 
0.6 across the entire test dataset. In contrast, the Resnet model with 18 residual 
layers and 972 × 1296 resolution presented only a slight improvement over the 
model using 243 × 324 resolution. 

For better visualization, we present a comparison of quantitative results by 
model in Table 5. This table shows the results of the best models over the test 
dataset for each class. Model b outperformed the other models once again, in 
most of the classes, achieving the highest mIoU and precision for the Tree and 
Background classes, as well as the highest precision for the Estratocumuliform 
and Cirriform classes. Model b also achieved the highest recall for the Tree and 
Background classes, and the highest recall for the Estratiform and Estratocumu-
liform classes. 

Model d, which consisted of an Unet architecture combined with an Effi-
cientNet backbone, achieved a mIoU of 0.4187, an accuracy of 0.8141, and 
F-score of 0.4871 over the test dataset at the last epoch which was trained on. 
However, this model also presents problems with segmenting certain classes. 

Figure 3 presents the predicted segmentation of each model on the same in-
put image. The Estratiform class is predominant overall with a small area of Cir-
riform clouds on another layer, behind the main clouds. We can see that no 
model was able to identify the latter, with only model c inferring classes Cumu-
liform and Stratiformes, however none are present in the input image. We can 
also observe that models a, b and d make very similar predictions, however, if we 
look closely we can see that model a makes a more refined prediction, at the pix-
el level. Model b and d are more similar to our ground truth mask, hence we  
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Table 5. Results of the best models over the test dataset, by class. 

Metric mIoU Precision Recall 

Target Class a b c d a b c d a b c d 

Background 0.59 0.76 0.69 0.72 0.75 0.85 0.81 0.79 0.73 0.88 0.82 0.88 

Tree 0.9 0.94 0.9 0.92 0.91 0.97 0.92 0.94 0.98 0.96 0.97 0.97 

Estratocumuliform 0.55 0.75 0.65 0.69 0.67 0.86 0.78 0.75 0.76 0.86 0.80 0.89 

Estratiform 0.07 0.38 0.18 0.03 0.18 0.56 0.35 0.71 0.10 0.5 0.28 0.03 

Cirriform 0.1 0.46 0.35 0.13 0.45 0.69 0.6 0.49 0.12 0.58 0.46 0.15 

Cumuliform 0.09 0.29 0.07 0 0.13 0.39 0.13 0 0.25 0.53 0.12 0 

 

 
Figure 3. Predicted cloud segmentation of different models on the same input image, showing the predominance of Estratiform 
class and the differences in segmentation performance between models. 

 
believe that this is one of the main reasons that model b outperforms the other 
models. 

However, that’s not always the case. We can see in Figure 4 that model a 
makes wrong predictions, resulting in a much rougher inference, especially over 
the clouds of class Cumuliform. Models b and c have small patches of this class 
inside the predicted Estratocumuliform class, which is not correct. This shows 
the “localization” problem mentioned previously. The model is not able to dis-
cern that there are two main cloud objects of the same class. The models are 
probably being influenced more by texture and shape than other characteristics. 
We can also see that this problem occurs with small clouds as well, the Estrati-
form clouds below the main clouds are classified as Estratocumuliform, Estrati-
form and Cirriform, all in the same small region. Model b is able to classify more 
parts of the Estratiform clouds correctly, however, only model a is able to detect 
the faint areas of these clouds at the lower level, even though it classified it in-
correctly. 

Figure 5 shows two examples of segmentation inference of the best overall 
model (b). In contrast, the Resnet model with 18 residual layers and 972 × 1296 
resolution presented only a slight improvement over the model using 243 × 324 
resolution. With this model, it barely segment the most predominant class in the 
dataset, the Tree class. 

The results achieved using the Resnet with 34 residual layers architecture 
(model c) were not so positive. Figure 6 shows an example of inference using 
the best models with 486 × 648 (top) and 972 × 1296 (bottom) resolution. All  
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Figure 4. Example of model’s inference with incorrect predictions for Cumuliform clouds and localization problem. 

 

 
Figure 5. Example of resulting segmentation inference using the Resnet18 with 486 × 648 resolution model (b). 

 
resulting inferences presented the same problem with poor segmentation, with 
the model barely able to identify the Tree class. 

The EfficientNet model achieved an average mIoU of 0.3622 and we can see 
an example of a good segmentation on Figure 7 (top). The model performs well 
when inferring the class with more training samples, Estratocumuliform. Even 
though the resulting segmentation is not very fine where patches of the sky ap-
pear in the middle of the thin clouds atop the image, the model is able to make 
fine segmentation with the Tree class at the bottom. Some very distant clouds on 
the horizon were not segmented as well. However, the struggle to segment well 
the less represented classes is clearly visible (bottom). This result shows that the 
model is capturing some information about the Estratiform class, but still mak-
ing incorrect inferences over the same cloud, giving preference to the more pre-
dominant class. The same occurs at the top of the image, only this time the 
model was able to identify only a very small patch of the correct Cirriform class  
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Figure 6. Example of inference results with 486 × 648 resolution (top) and 972 × 1296 resolution (bottom), using the Resnet with 
34 residual layers architecture. The latter corresponds to model c discussed previously. 

 

 
Figure 7. Example of good and bad resulting segmentation inference with U-net and EfficientNet model. 

 
and wrongly segmented the cloud, similar to the bottom cloud. The model cap-
tures information about the Cirriform class and segments the same cloud into 
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two different classes. This is most likely due to the thin texture of these clouds, 
which in our opinion is an understandable mistake. 

4.2. Instance Segmentation 

The model was assessed for Average Precision (AP) after training using the 
COCOEvaluator class in Detectron2 (Lin et al., 2014). The results can be seen 
in Table 6, where Type represents the type of result, which can be: bounding 
boxes results or segmentation pixels. The category represents one of the 5 
classes, in which the “Tree” category represents trees and buildings and the re-
maining 4 classes are cloud types. We empirically used a threshold of 80% for 
inference. 

We can see that the Tree class has the highest score, which is expected since 
the trees and buildings are virtually static, are present in basically all images, and 
can be easily distinguishable from clouds. Following that we have the Estrato-
cumuliform class as the cloud class with the highest score, this is likely due to the 
abundance of images with this type of cloud in the dataset. This class is present 
in 81.53% of the entire dataset. The classes Estratiform and Cirriform are present 
in 27.21% and 28.61% of the images in the dataset, respectively. However we can 
see that, even though we have basically the same amount of images for each class 
in the dataset, the model can distinguish better Cirriform clouds in both types of 
results. The Cumuliform class is only present in 9.04% of the images, therefore 
we believe that the results are a reflection of that as well. Overall results are 
shown in Figure 8. 

We also performed a qualitative evaluation in which we looked for the “loca-
lization” problem. We can see the result from examples in Figure 9. This prob-
lem is less common with this type of model, however, it’s still present but with 
different characteristics. On the right side of the image, we can observe a detection 
of multiple Estratocumuliform clouds where in fact there’s only one predominant  
 
Table 6. Detectron2 results separated by bounding box and segmentation pixels. Results 
are given by Average Precision (AP) per image category. 

Type Category AP Val AP Test 

Bounding box Tree 89.948 89.064 

Segmentation pixels Tree 85.603 84.029 

Bounding box Estratocumuliform 22.394 21.021 

Segmentation pixels Estratocumuliform 19.306 17.524 

Bounding box Estratiform 2.305 5.128 

Segmentation pixels Estratiform 2.063 4.939 

Bounding box Cirriform 9.676 9.419 

Segmentation pixels Cirriform 7.079 5.678 

Bounding box Cumuliform 0 5.941 

Segmentation pixels Cumuliform 0.594 6.733 
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Figure 8. Resulting Detectron2 segmentation examples. 

 

 
Figure 9. Example of localization problem where one big cloud is classified as two or more clouds of the same type. 

 
large cloud present with a few scattered on top. On the left side, we can see one 
Cirriform cloud being classified as two objects. We also identified a problem 
with the detected region, where sometimes the model tends to crop out some 
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parts of the object. We can see some examples of this situation in Figure 10. 
This is most likely due to the imposed threshold for plotting the bounding boxes. 
During inference, the threshold is utilized to filter out low-scored bounding 
boxes predicted by the model’s Fast R-CNN component. Predictions with a con-
fidence score lower than the threshold are discarded, therefore we can have re-
sulting inference with no cloud classification whatsoever. 

5. Discussion 

Comparing the results of our study with those in the existing literature presents 
several challenges, primarily due to the unique nature of our dataset and the par-
ticularities of cloud classification tasks. 

Firstly, the specific conditions that are represented in the dataset have a sig-
nificant impact on how well cloud classification models perform. The results can 
be significantly influenced by variables like the frequency of various cloud types, 
atmospheric conditions, and even the time of year. For instance, a dataset with a 
high percentage of images showing cirrus clouds that are challenging to categor-
ize or highly turbid weather could result in poorer performance metrics. On the 
other hand, a dataset with mostly clear skies and recognizable cloud formations 
might produce better results. Without using the same dataset for evaluation, this 
variability makes direct comparisons between studies challenging. 

Our study differs from most other studies in the field because we chose to use 
horizon-oriented images. Many studies employ images of the entire sky or of 
specific areas of the sky. Our method falls somewhere in the middle of these two, 
offering more context than patch images while falling short of an all-encompassing 
360-degree view like ASIs. Comparisons with other studies are made more diffi-
cult by the unique perspective’s own set of advantages and difficulties. Addition-
ally, there can be significant differences in the methodologies and performance 
metrics applied across studies, which further complicates any comparison. 

 

 
Figure 10. Example of threshold problem where clouds are not classified due to the confidence being lower than the imposed 
threshold. 
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We can see in Table 7 that (Fabel et al., 2022) achieved competitive perfor-
mance in cloud layer classification using both IP-SR* and DC** methods, with 
average accuracies of 0.8575 and 0.8522, respectively. These results indicate the 
effectiveness of their approaches in distinguishing cloud layers based on cloud 
height. In contrast, Ye et al. (2019) utilized a fine-grained algorithm and 
achieved an average accuracy of 0.7128 for classifying eight different cloud types 
in a dataset of 500 test images. In our study, our best model employed a U-net 
architecture in conjunction with ResNet18 (model b) and classified four distinct 
cloud types. Our proposed methodology achieved a comparable average accura-
cy of 0.8564 and demonstrated promising performance in terms of average pre-
cision, recall, and intersection over union. 

The primary reason behind choosing these references for comparison is that 
they both presented semantic segmentation results, which went beyond binary 
classification, and showcased good performance. However, it is essential to high-
light certain distinctions in their methodologies. In the case of (Fabel et al., 
2022), the authors focused on cloud layer classes, utilizing cloud height as the 
basis for their classification. While their approach provided valuable insights in-
to the vertical distribution of clouds, it did not differentiate between different 
cloud types within the same layer. This limitation is significant as it hampers a 
more fine-grained analysis of cloud properties and their associated effects. On 
the other hand, Ye et al. (2019) employed a more comprehensive classification 
scheme, incorporating four additional classes compared to our study. This ex-
panded categorization allowed for a more detailed representation of cloud types 
and their respective characteristics. By encompassing a broader range of cloud 
classes, Ye et al. (2019) captured a more nuanced understanding of cloud pat-
terns and behaviors, which may have implications for various applications. Since 
both (Fabel et al., 2022) and (Ye et al., 2019) compare their results to other stu-
dies in their respective papers, it establishes a precedent for further comparative 
analysis. By following this approach, we can extend the comparison and evaluate 
our results in relation to additional relevant studies in the field. 

By juxtaposing our results against these two works, we aimed to provide a tho-
rough evaluation of our methodology’s effectiveness and identify potential areas 
for improvement. Our comparison underscores the importance of considering  
 

Table 7. Comparative analysis of results between our study and the literature in terms of class type, methodology, number of im-
ages used for testing, and performance metrics including Average Accuracy (AA), Average Precision (AP), Average Recall (AR), 
and Average Intersection over Union (AIoU). 

Study Class Type Methodology 
No. of test 

images 
AA AP AR AIoU 

(Fabel et al., 2022) 3 cloud layers IP-SR* 154 0.8575 0.7791 0.7515 0.6222 

(Fabel et al., 2022) 3 cloud layers DC** 154 0.8522 0.7669 0.7427 0.6194 

(Ye et al., 2019) 8 cloud types fine-grained algorithm 500 0.7128 0.4275 0.4478 0.3406 

Ours 4 cloud types + tree U-net + Resnet18 (model b) 200 0.8564 0.7238 0.7283 0.6 
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both cloud layer distinctions and a diverse set of cloud classes in semantic seg-
mentation tasks, enabling a more comprehensive analysis of cloud-related phe-
nomena. 

Compared to the experiments performed during the exploratory phase of our 
research, we can see an improvement in overall metrics and the quality of the 
segmentation. It is clear to us that our problem of cloud segmentation does not 
need a complex architecture like the Resnet with 34 residual layers. On the con-
trary, we believe that it is best to keep the architecture simple. A lower resolution 
might also improve the performance compared to models using higher a resolu-
tion due to the resulting segmentation being too fine-grained. This can result in 
a performance drop in the final results with such high resolution test images and 
the fact that the ground-truth annotations are not that precise. It is worth men-
tioning that the Tree class is creates a favorable bias for the overall results of all 
models. Quantitatively speaking, the best overall model is model b, which is a 
U-net with Resnet18 using 486 × 648 resolution. It performed an average IoU of 
0.6. We can argue that model a, the HRNet model, also performs well, since it 
gives a finer segmentation inference (with higher resolution), even though it 
performs poorly with an average IoU of 0.3889. Even though the Detectron2 
model had good results for the tree class, it performed poorly for the remaining 
classes and presented some issues regarding the fixed threshold and localization 
problem, which was the main reason we opt to experiment with this model. 

The achieved results have raised questions about why a simpler model out-
performs a more complex one, leading to the need for future investigations. Six 
potential causes were identified for further exploration: 1) Overfitting, as com-
plex models with more parameters are prone to overfitting, while simpler mod-
els can generalize better; 2) Appropriate complexity, where the task of cloud 
segmentation may not be as complex for a machine learning model as initially 
thought; 3) Data availability, as complex models require more data to learn ef-
fectively, while simpler models may perform better with limited data; 4) Hyper-
parameter tuning, since complex models have more hyperparameters that need 
optimal tuning for optimal performance; 5) Regularization techniques like dro-
pout, weight decay, or early stopping, which can prevent overfitting in complex 
models; and 6) Data quality, where a simpler model may be more robust against 
noisy data. These factors will be addressed in future works to gain further in-
sights. 

An important disclaimer is that no detailed analysis was performed to validate 
if the results were actually representing the clouds better than the ground truth. 
Despite this, a few examples were detected, and the decision to include different 
models as part of the experiment was made, with the intent to reduce the prob-
lem as much as possible. 

6. Conclusion 

The initial experiments showed that it is possible and feasible to classify clouds 
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using current techniques of machine learning. Flat cameras pointing to the ho-
rizon allowed us to observe vertical distribution for classification, avoided image 
distortion of fish-eye lenses, and simplified image processing. We could see that 
the results were positive overall, even for initial results. This was a good proof of 
concept in the sense of giving us a better understanding of what techniques work 
best. Both models had satisfactory results for initial experiments, but it is evident 
that the data imbalance is affecting the performance. The HRNet model looks 
more promising as it works with different resolutions, thus leading to a more re-
fined segmentation, at the pixel level. However, it seems that such an intricate 
model is not necessary in order to detect the most predominant clouds in the 
sky. We were able to achieve the best results with a simpler model, using a much 
lower resolution. This can be useful in the future since our main objective is to 
use such models to predict cloud motion and forecast the impact it will have on 
solar power generation. We mapped out the data augmentation transformations 
for our next experiments and are currently working on balancing the dataset. 
We will also consider removing the Tree class in order to obtain more realistic 
results. For future studies, a better overall cloud classification model will be re-
searched and developed based on the results presented here. 

7. Future Work 

In this work, we focused on well-established semantic segmentation approaches. 
Since 2019, however, Vision Transformers (ViTs), a paradigm originally from 
the Natural Language Processing (NLP) field, have been applied with success to 
image processing and have achieved better results than “traditional” CNN mod-
els like ours on reference image datasets (Dosovitskiy et al., 2021). Transformers 
have been used for NLP in the last few years and have gotten very promising re-
sults in this field. One important feature in the transformer models is the atten-
tion mechanism that gives more value to some data than others. This process 
can lead to better results as the model might take the most important data more 
into account, instead of working equally with all of it (Wolf et al., 2020). The 
observed improvement aligns with the architectural distinctions between Con-
volutional Neural Networks (CNNs) and Vision Transformers (ViTs). While 
CNNs leverage convolutional layers to process spatial information in a local and 
hierarchical manner, ViTs employ self-attention mechanisms to process spatial 
relationships globally across the image. Specifically, CNNs operate on local re-
ceptive fields and aggregate spatial hierarchies layer-by-layer, whereas ViTs have 
the capacity to attend to any part of the image regardless of the spatial position, 
thereby enabling a global understanding of spatial dependencies. Consequently, 
ViTs may exhibit enhanced performance in certain image processing tasks that 
benefit from such global spatial processing. However, this type of model needs 
more data and training time to learn those relationships. For this reason, the ViT 
was not chosen for our initial set of experiments. In future work, we plan to 
compare results to be obtained with ViTs against the models presented in this 
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work. 
The present work used image validation based on a senior synoptic observer 

who trained the marking image team. But in the future, we are considering using 
additional equipment like LIDAR, stereo cameras, satellite images or sounding 
balloons that could help validate the developed methodology. 

Dataset Additional Improvements 

At the time of the experiments, our dataset was composed of 996 fully hand- 
annotated images, ranging from March to October of 2021. We are currently fi-
nishing annotating more images and intend to publish the new images soon. We 
understand that it is important to have at least one year of images to capture the 
different seasons. The dataset is unbalanced due to the lack of typical clouds that 
form more often during the southern hemisphere summer. These newly captured 
images will be used in future experiments, and we hope to mitigate this problem. 
Data augmentation can also help, but only a few transformations can be per-
formed on the dataset. For example, we cannot flip the image vertically, only ho-
rizontally. We mapped out: horizontal flip; brightness; contrast; Hue, Saturation, 
and Value (HSL); gamma; and the application of contrast-limited adaptive his-
togram equalization, as possible transformations. This dataset will be regularly 
improved, and we aim to increase its representativeness. New versions will be 
made available as soon as they have undergone review. 
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