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Abstract 
Global climate change affects many facets of avian ecology, such as shifts in 
breeding phenology and migration patterns. Migrating bird species respond 
to changes in climate by shifting their temporal patterns of spring migration. 
However, variation in species’ responses exists based on various life history 
traits, which exposes some species to an increased risk of phenological mis-
match. This study examined the spring arrival dates of 115 migrating species 
over 127 years (1889-2015) using archival sources in West Virginia, USA, 
making this research unique in the length of study, the high number of spe-
cies studied, and the historical crowd-sourced observations analyzed. Of the 
115 taxa, 45 showed significant negative slopes of spring arrival dates (arriv-
ing earlier in the spring) plotted against the year. In contrast, only nine species 
showed positive slopes (arriving later in the spring), albeit non-significant. 
The average advance of spring arrival date for all species was 1.7 days per 
decade, and an advance of 2.6 days per decade in species that showed signific-
ance. Arrival dates were associated with increasing spring temperatures—for 
each 1˚C increase, the arrival date advanced by 0.81 days/decade. Several life 
history traits were linked to species that advanced their first arrival dates, in-
cluding a shorter distance migrated to reach wintering grounds, increasing 
populations, and foraging habitat. Most avian species are advancing their 
spring arrival dates in response to climate change. However, the implications 
of earlier spring arrival are unclear. We draw attention to shifts in arrival 
dates and wintering ranges, leading to a possible increase in overwintering in 
the mid-latitudes of North America. 
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1. Introduction 

Phenological trends in plants and animals have been linked to changes in cli-
mate, including increased temperature (Butler, 2003; Mills, 2005; Vegvari et al., 
2010; Kullberg et al., 2015; McDermott & Degroote, 2016), varying precipitation 
patterns (Studds & Marra, 2011), and more instances of climate extremes (La 
Sorte et al., 2016). These changes lead to an increased risk of phenological mis-
matches (McKinney et al., 2012), decreased reproductive success (Kerby & Post, 
2013), and ultimately reduced biodiversity (Willis et al., 2008). Phenological 
mismatches, or decoupled phenologies, occur during species interactions, such 
as predator-prey or pollinator relationships, when the changes in the timing of 
one species’ life history trait (e.g., the timing of insect emergence) (Anderson, 
1997; Anderson et al., 2013) decrease the success of another dependent species 
(e.g., insect-foragers) (Crick, 2004; Both et al., 2006). These changes in climatic 
variables are linked to many facets of avian ecology, including shifts in breeding 
phenology (Both & Visser, 2001; Ahola et al., 2004; Visser et al., 2006; McDer-
mott & Degroote, 2016), patterns of migration (Butler, 2003; Cotton, 2003; Viss-
er & Both, 2005; Ellwood et al., 2010), and general distribution (Kullberg et al., 
2015; La Sorte et al., 2016).  

Migrating bird populations have been highlighted as a conservation concern 
(Langham et al., 2015) based on their complex life history strategies covering 
vast geographic areas, multiple habitat and land cover types, and various climatic 
pressures throughout the year. Given the myriad biotic and abiotic interaction 
opportunities presented to avian species each year, it follows that shifts in avian 
phenology can be attributed to several environmental variables (Both & Visser, 
2001) and changes in vegetative phenology (Marra et al., 2005). Understanding 
which specific life history traits contribute to these shifts is essential for con-
serving these species.  

Shifts in spring migration have been studied using first arrival dates (FADs) 
(Butler, 2003; Mills, 2005) or average arrival (Ellwood et al., 2010). Comparing 
the appearance of one species over time can reveal patterns of spring migration. 
Archival records have been used to collect the first arrival dates of migrants for 
temporal analyses in the past (Bradley et al., 1999; Butler, 2003; Ellwood et al., 
2010; McKinney et al., 2012; Travers et al., 2015). Evidence exists that spring ar-
rival is advancing due to several variables, including climatic factors such as in-
creasing spring temperatures (Swanson & Palmer, 2009), increased spring preci-
pitation (Arab et al., 2016), the North Atlantic Oscillation (Marra et al., 2005), 
increased temperatures in wintering grounds (Cotton, 2003), and changes in the 

https://doi.org/10.4236/ajcc.2023.124024


L. Petrauski et al. 
 

 

DOI: 10.4236/ajcc.2023.124024 529 American Journal of Climate Change 
 

length of the growing season (Travers et al., 2015). Avian migrants that have ad-
vanced their spring arrival correlate with increased abundance trends, demon-
strating survival benefits for highly adaptable species (Newson et al., 2016). 
There have been efforts to examine the factors relating to avian ecology and 
populations that would affect the timing of spring arrival, including changes in 
population sizes (Møller et al., 2008), foraging habitat (Butler, 2003), distance 
migrated (Kullberg et al., 2015; Gill et al., 2014), and sampling effort (Mil-
ler-Rushing et al., 2008). 

The population status of migratory birds has interested birders and research-
ers for decades. Based on analyses of 426 species from The North American 
Breeding Bird Survey (1966-2011), 57% of bird species are experiencing popula-
tion declines (Sauer et al., 2013). Of the 133 Neotropical migrants included in 
the study, 60% demonstrated negative trend estimates (Sauer et al., 2013), and 
these population declines were first noted several decades ago (Robbins et al., 
1989). These population reductions have sometimes been largely attributed to 
deforestation and fragmentation in the tropics (Robbins et al., 1989; Shaw et al., 
2013), which reduces habitat for Neotropical migrants. Species that show de-
clining populations over the study timeline could be deceptively arriving later 
due to decreased migration cohort sizes, leading to an underestimated change in 
FAD in these species (Miller-Rushing et al., 2008). A similar phenomenon oc-
curs in species with increasing populations—a bird’s spring arrival date is likely 
to be detected earlier with increased population sizes (Tryjanowski & Sparks, 
2001). Therefore, population status is an essential factor in explaining historical 
migration patterns. 

The distance traveled between the wintering grounds and breeding grounds 
differs among avian species. Migrations vary from 35,000 km for the Arctic Tern 
(Sterna paradisaea) that flies between the Arctic and Antarctic to less than 1000 
km for some populations of the Dark-eyed Junco (Junco hyemalis) that migrate 
only to higher elevations for breeding. The cues associated with the start of mi-
gration differ depending on the distance migrated each year. Short-distance mi-
grants that winter close to the breeding grounds are more inclined to follow 
changes in day length (Marra et al., 2005) and seasonal climatic shifts (Mil-
ler-Rushing et al., 2008). In contrast, species near the equator would not be af-
fected by photoperiod or weather at the breeding grounds (Jonzén et al., 2006). 
Long-distance migrants rely on circannual rhythms to cue their migration (Both 
& Visser, 2001; Gwinner, 1996). These different migration strategies could im-
pact species’ flexibility to respond to environmental changes. Advancement of 
spring arrival is greater in short-distance migrants than long-distance migrants 
(Butler, 2003; Mills, 2005; Vegvari et al., 2010; Sauer et al., 2013; Bitterlin & 
Buskirk, 2014), with few exceptions (Jonzén et al., 2006). Categorizing species by 
the distance migrated each year could bring insight into the factors affecting 
avian migration.  

Another factor that could contribute to changing population sizes and affect 
migration patterns is foraging habitat. Habitat destruction is a leading cause of 
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declining avian populations (Gilroy et al., 2016), so species occupying particular 
habitats may have experienced increased pressure from habitat loss, which could 
affect their ability to respond to environmental cues. Some studies indicate that 
habitat affects changes in migration time (Butler, 2003), while others show no 
significant effect on timing (Vegvari et al., 2010; Miller-Rushing et al., 2008), 
which supports the need for more research into this topic. Foraging habitats 
could also offer insight into species interactions affecting spring arrival. For ex-
ample, species that rely on insects as their main foraging item could suffer an 
increased risk of phenological mismatch if the insect populations respond diffe-
rently to changes in local climate (Robinet & Roques, 2010) or are more respon-
sive to changes in climate because they depend on the emergence of their prey 
(Anderson, 1997; Anderson et al., 2013). Avian migrants with a more genera-
lized diet advance their FADs more than species with specialized diets (Vegvari 
et al., 2010). If changes in FADs differ among species with different foraging 
niches, then increased conservation efforts could be identified for specific habi-
tats.  

This study analyzed FADs of 115 bird species over 127 years (1889-2015) to 
determine any shifts over time. Data were gathered as part of the West Virginia 
Climate History Project, a crowd-sourced effort to uncover long-term phenology 
data for the state of West Virginia, USA, by the West Virginia University Natu-
ral History Museum (Petrauski et al., 2019, 2020). Historical FADs were consi-
dered to be the observations before 1970 when global surface temperatures be-
gan to increase (IPCC, 2014) steadily. Species were also analyzed by distance 
migrated, habitat, and population status to understand better the complicated 
ecological factors of avian life history and how they relate to spring arrival. We 
predicted an overall advancement of spring arrival dates across species, with 
variation depending on life history variables. Observations across species from 
higher elevations were predicted to be later in the spring compared to lower ele-
vations, and years with warmer spring temperatures were expected to have ear-
lier first-arrival observations. Short-distance migrants were expected to advance 
their first arrival dates more than long-distance migrants, species with increasing 
populations to have advanced more than species with decreasing populations, 
and species associated with threatened habitats or insectivorous diets to advance 
their spring arrival less than species occupying more stable habitats or diets oth-
er than insects or other invertebrates.  

2. Materials and Methods 
2.1. Study Area 

West Virginia is a heavily forested, mountainous state in the Appalachian region 
of the United States. Temperature, elevation, and precipitation differ considera-
bly throughout the state. The average statewide yearly temperature is 6˚C - 17˚C, 
where the lower southern regions are warmer than the mountainous regions. 
The average elevation is 457 m, with the highest point (Spruce Knob) at 1482 m 
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and the lowest (Harper’s Ferry) at 149 m above sea level. Annual precipitation 
ranges between 81 and 132 cm statewide. West Virginia is 79% forested, and the 
forests are 94% deciduous hardwoods. Oak-hickory (Quercus spp.-Carya spp.) 
forest type covers 74% of West Virginia forestlands, followed by northern hard-
wood forest type (18%) (Morin et al., 2017). West Virginia has eastern hemlock 
(Tsuga canadensis) and red spruce (Picea rubens) forests in high elevations. The 
rich avian diversity of West Virginia offers itself well to studying phenology 
(Forcey & Anderson, 2002a; Veselka et al., 2010; Anderson & Chadbourne, 2015; 
Clipp et al., 2017; Bailey & Rucker, 2021; Becker et al., 2022).  

2.2. Historical Observations 

Observations of first arrival dates were gathered from multiple sources: Earl 
Brooks and his colleagues (1890-1916), members of the Brooks Bird Club 
(1929-2008), George Breiding (1955-2006), and members of the online birding 
community eBird (2003-2015) in the state of West Virginia (Table 1). The FADs 
for spring migrants were taken from the personal records of Earl Brooks and 
George Breiding, from the publication of the Brooks Bird Club, The Redstart, 
and eBird’s “First of the Year” spreadsheet. Daily temperatures were obtained 
through the United States Historical Climatology Network from 13 climate sta-
tions in West Virginia between 1879-2015 (Williams et al., 2007) (Figure 1).  

The spring arrival date was assumed to be closely associated with each species’ 
first-of-the-year sighting. Earl Brooks was a student at West Virginia University, 
class of 1897, who collected ornithological data, including first arrival dates, be-
tween 1889 and 1916. These observations eventually were compiled into 40 
Common Birds of West Virginia, a book considered a pioneering classic in the 
field of ornithology, along with several publications between 1900 and 1916. The 
handwritten lists Brooks and his coworkers collected are archived at the West 
Virginia Regional History Center in Morgantown, West Virginia. The observa-
tions were in Clay, Marion, Lewis, Kanawha, Mineral, Upshur, and Wood coun-
ties (Figure 1).  

The Brooks Bird Club is a nature club that has operated in West Virginia since 
1932. Starting in 1933, the Brooks Bird Club released a newsletter to the club’s 
members called The Redstart. This newsletter, which is still in operation today,  
 

Table 1. Sources used to find historical first arrival dates of migrating bird species in West Virginia, USA from 1890-2015. 

Collector Location of record Type of record Timeframe No. of observations 

Earl Brooks 
West Virginia Regional 

History Center 
Handwritten ornithological notes  

of breeding and migration 
1890-1916 674 

Brooks Bird Club 
West Virginia Regional 

History Center 
Printed spring bird arrival dates  

from the Redstart 1929-2008 4023 

George Breiding Personal Collection Handwritten and typed lists of arrival dates 1955-2006 729 

eBird https://ebird.org/home  Spreadsheet of first-of-the-year sightings 2003-2015 1101 

Total   1890-2015 6527 
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Figure 1. Map of West Virginia climate recording stations of the United States Historical Climate Network.  

 
includes a section called Field Notes. In the Field Notes section are comments 
about bird species that club members have sighted. FADs were located by 
searching through the spring section of the 1933-2008 Redstart’s Field Notes. 
These observations include the common name, date of first spring sighting, and 
sometimes county. The club was founded by a group of young birders, including 
John Handlan, whose personal records of FADs in Ohio County were tran-
scribed for the years 1929 and 1931, the years leading up to the creation of The 
Redstart.  

George Breiding was a naturalist who lived in Wheeling, West Virginia, and 
worked as a professor at West Virginia University from 1963-1979. He was an 
avid birder and took extensive notes on his observations. He also played an ac-
tive role in the Brooks Bird Club. Therefore, data gathered from his journals that 
were repeated in the data collected from the Brooks Bird Club were disregarded. 
His observations supplemented the data collected from 1955-2006. 

We obtained spring arrival dates using the online birding checklist program 
eBird (Sullivan et al., 2009). This program was launched in 2002 by the National 
Audubon Society and the Cornell Lab of Ornithology. The “First of the Year” 
spreadsheet, available online, documents the first observation date recorded on 
the West Virginia website. These data are comparable to the spring arrival dates 
recorded by The Redstart, where the Brooks Bird Club members would pool 
their observations, and the editor would produce a list of the earliest sightings. 
FADs were recorded for the years 2003-2015. 
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Species were categorized by population status (increasing, decreasing, or 
steady), distance migrated (short- or long-distance), and foraging habitat (aerial, 
grassland, scrub, forest, or wetland) (Tables 2-4). The population status of each 
species was determined using data from the Breeding Bird Survey (1966-2011) 
(Sauer et al., 2013). A short-distance migrant was primarily wintering in the 
southern United States, Mexico, into the Caribbean. A long-distance migrant 
primarily wintered south of the Caribbean. Each species was assigned one of five 
habitat categories (forest, wetland, aerial, scrub, grassland) based on its primary 
feeding habitat (Forcey & Anderson, 2002a, 2002b; Butler, 2003; Kahler & An-
derson, 2006; Veselka et al., 2010; Anderson & Chadbourne, 2015; Clipp et al., 
2017; Bailey & Rucker, 2021; Becker et al., 2022).  

 
Table 2. Species that demonstrated significant trends towards earlier first arrival dates (FADs) in West Virginia, USA. Habitat is 
denoted by f (forest), w (wetland), a (aerial), s (scrub), and g (grassland). Population status is denoted by + (increasing), − (de-
creasing), and = (steady). Distance is categorized by short-distance migrants (primarily wintering north of the Caribbean) or 
long-distance migrants (primarily wintering south of the Caribbean). Historical FAD is the average arrival date before 1970, and 
current FAD is the average arrival date of 1970 or after. Species are listed by change in days from highest to lowest. 

Species Common Name n Slope Status Distance Habitat 
Historical 

FAD 
Current 

FAD 
Change  
in Days 

Setophaga pinus Pine Warbler 32 −0.553 + Short f 16-Apr 11-Mar 36 

Tachycineta bicolor Tree Swallow 49 −0.66 − Short a 15-Apr 11-Mar 35 

Vireo solitarius Blue-headed Vireo 61 −0.38 + Short f 25-Apr 31-Mar 25 

Ardea herodias Great Blue Heron 17 −0.764 = Short w 29-Mar 4-Mar 25 

Dendroica coronata Yellow-rumped Warbler 68 −0.271 = Short f 20-Apr 28-Mar 23 

Charadrius vociferus Killdeer 21 −0.354 − Short g 16-Mar 23-Feb 22 

Anas discors Blue-winged Teal 38 −0.288 = Short w 9-Apr 19-Mar 21 

Setophaga virens Black-throated Green Warbler 92 −0.216 = Long f 25-Apr 4-Apr 21 

Rallus limicola Virginia Rail 17 −0.665 = Short w 4-May 14-Apr 20 

Passerculus sandwichensis Savannah Sparrow 54 −0.538 − Short g 15-Apr 26-Mar 20 

Petrochelidon pyrrhonota Cliff Swallow 37 −0.23 − Long a 3-May 13-Apr 20 

Pandion haliaetus Osprey 31 −0.637 + Long w 18-Apr 30-Mar 19 

Setophaga dominica Yellow-throated Warbler 54 −0.494 + Short f 24-Apr 6-Apr 18 

Stelgidopteryx serripennis Northern Rough-winged 
Swallow 

62 −0.362 = Short a 16-Apr 29-Mar 18 

Geothlpis trichas Common Yellowthroat 61 −0.203 − Long s 29-Apr 12-Apr 17 

Pheucticus ludovicianus Rose-breasted Grosbeak 60 −0.279 − Long f 5-May 18-Apr 17 

Tyrannus tyrannus Eastern Kingbird 72 −0.283 − Long f 1-May 16-Apr 15 

Actitis macularius Spotted Sandpiper 55 −0.149 − Short w 24-Apr 11-Apr 13 

Tringa solitaria Solitary Sandpiper 39 −0.229 = Long w 1-May 18-Apr 13 

Setophaga americana Northern Parula Warbler 81 −0.173 + Long f 28-Apr 16-Apr 12 

Chroicocephalus philadelphia Bonaparte’s Gull 28 −0.327 + Short w 11-Apr 31-Mar 11 

Seiurus aurocapilla Ovenbird 84 −0.121 = Short f 30-Apr 19-Apr 11 
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Continued 

Buteo platypterus Broad-winged Hawk 57 −0.186 + Long f 18-Apr 8-Apr 10 

Contopus virens Eastern Wood Pewee 67 −0.2 − Long f 7-May 27-Apr 10 

Hirundo rustica Barn Swallow 90 −0.209 − Long a 17-Apr 6-Apr 10 

Mniotilta varia Black and White Warbler 95 −0.133 − Long f 21-Apr 11-Apr 10 

Vireo flavifrons Yellow-throated Vireo 89 −0.148 + Short f 27-Apr 17-Apr 10 

Butorides virescens Green Heron 62 −0.169 − Short w 24-Apr 14-Apr 10 

Podilymbus auritus Horned Grebe 21 −0.532 = Short w 1-Apr 22-Mar 10 

Icterus galbula Baltimore Oriole 87 −0.086 − Long f 28-Apr 18-Apr 9 

Piranga olivacea Scarlet Tanager 83 −0.184 − Long f 27-Apr 18-Apr 9 

Setophaga citrina Hooded Warbler 84 −0.145 + Short f 28-Apr 19-Apr 9 

Toxostoma Rufum Brown Thrasher 83 −0.187 − Short s 9-Apr 31-Mar 9 

Archilochus colubris Ruby-throated Hummingbird 69 −0.255 + Long f 3-May 25-Apr 8 

Helmitheros vermivorus Worm-eating Warbler 74 −0.095 = Short f 29-Apr 21-Apr 8 

Leiothylpis ruficapilla Nashville Warbler 74 −0.088 = Long f 2-May 24-Apr 8 

Vermivora cyanoptera Blue-winged Warbler 77 −0.177 = Long s 29-Apr 21-Apr 8 

Cardellina Canadensis Canada Warbler 57 −0.088 − Long f 12-May 5-May 7 

Setophaga cerulea Cerulean Warbler 77 −0.117 − Long f 29-Apr 22-Apr 7 

Setophaga pensylvanica Chestnut-sided Warbler 80 −0.103 − Long s 3-May 26-Apr 7 

Setophaga Ruticilla American Redstart 91 −0.122 = Long f 29-Apr 22-Apr 7 

Polioptila caerulea Blue-gray Gnatcatcher 93 −0.202 + Short f 16-Apr 10-Apr 6 

Vireo gilvus Warbling Vireo 87 −0.078 − Long f 27-Apr 21-Apr 6 

Passerina cyanea Indigo Bunting 71 −0.124 − Long g 1-May 26-Apr 5 

Chaetura pelagica Chimney Swift 83 −0.083 − Long a 16-Apr 12-Apr 4 

 
Table 3. Species that demonstrated non-significant, later trends in first arrival dates (FADs) in West Virginia, USA. Habitat is 
denoted by f (forest), w (wetland), a (aerial), s (scrub), and g (grassland). Population status is denoted by + (increasing), − (de-
creasing), and = (steady). Distance is categorized by short-distance migrants (primarily wintering north of the Caribbean) or 
long-distance migrants (primarily wintering south of the Caribbean). Historical FAD is the average arrival date before 1970, and 
current FAD is the average arrival date of 1970 or after. Species are listed by change in days from highest to lowest. 

Species Common Name n Slope Status Distance Habitat 
Historical 

FAD 
Current 

FAD 
Change  
in Days 

Lanius ludovicianus Loggerhead Shrike 14 0.045 − Short s 4-Apr 21-Mar 14 

Empidonax flaviventris Yellow-bellied Flycatcher 15 0.001 = Short f 15-May 12-May 3 

Piranga rubra Summer Tanager 38 0.018 = Long f 25-Apr 26-Apr −1 

Ammodramus henslowii Henslow’s Sparrow 27 0.035 − Short g 2-May 5-May −3 

Botaurus lentiginosus American Bittern 38 0.094 = Short w 21-Apr 27-Apr −6 

Euphagus carolinus Rusty Blackbird 18 0.1 − Short w 16-Mar 25-Mar −9 

Limnothlypis swainsonii Swainson’s Warbler 35 0.145 = Short f 26-Apr 6-May −10 

Oxyura jamaicensis Ruddy Duck 11 0.177 = Short w 25-Mar 13-Apr −19 

Molothrus ater Brown-headed Cowbird 46 0.027 − Short g 27-Mar 15-Apr −19 
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Table 4. Species that demonstrated non-significant but earlier trends in first arrival dates (FADs) in West Virginia, USA. Habitat 
is denoted by f (forest), w (wetland), a (aerial), s (scrub), and g (grassland). Population status is denoted by + (increasing), − (de-
creasing), and = (steady). Distance is categorized by short-distance migrants (primarily wintering north of the Caribbean) or 
long-distance migrants (primarily wintering south of the Caribbean). Historical FAD is the average arrival date before 1970, and 
current FAD is the average arrival date of 1970 or after. Species that are bold would be significant if no Bonferroni corrections 
were used. Species are listed by change in days from highest to lowest. 

Species Common Name n Slope Status Distance Habitat 
Historical 

FAD 
Current 

FAD 
Change 
in Days 

Catharus guttatus Hermit Thrush 42 −0.2176 = Short f 17-Apr 20-Mar 28 

Gallinago delicata Wilson’s Snipe 19 −0.3399 = Short w 5-Apr 10-Mar 26 

Anas acuta Northern Pintail 12 −0.1426 − Short w 16-Mar 27-Feb 18 

Tringa Melanoleuca Greater Yellowlegs 29 −0.2798 + Long w 18-Apr 2-Apr 16 

Passerella iliaca Fox Sparrow 23 −0.4797 = Short f 3-Apr 21-Mar 13 

Nycticorax nycticorax Black-crowned Night Heron 20 −0.2558 = Short w 25-Apr 13-Apr 12 

Riparia riparia Bank Swallow 56 −0.0989 − Long a 30-Apr 19-Apr 12 

Tringa flavipes Lesser Yellowlegs 30 −0.2214 − Long w 23-Apr 12-Apr 11 

Melospiza georgiana Swamp Sparrow 26 −0.2629 = Short w 7-Apr 27-Mar 11 

Cathartes aura Turkey Vulture 22 −0.4018 + Short g 22-Mar 12-Mar 10 

Porzana carolina Sora 24 −0.1905 = Long w 3-May 23-Apr 10 

Chordeiles minor Common Nighthawk 59 −0.1793 − Long a 7-May 27-Apr 10 

Quiscalus quiscula Common Loon 30 −0.1816 = Short w 21-Apr 12-Apr 9 

Parkesia motacilla Louisiana Waterthrush 102 −0.1108 + Long f 8-Apr 30-Mar 9 

Melospiza lincolnii Lincoln’s Sparrow 23 −0.513 − Short s 8-May 29-Apr 9 

Anas americana American Wigeon 20 −0.2624 − Short w 29-Mar 21-Mar 8 

Icterus spurius Orchard Oriole 72 −0.1237 − Long f 1-May 23-Apr 8 

Anas clypeata Northern Shoveler 28 −0.1871 + Short w 26-Mar 19-Mar 7 

Fulica americana American Coot 21 −0.2159 = Short w 8-Apr 1-Apr 7 

Setophaga striata Blackpoll Warbler 64 −0.1007 = Long f 12-May 5-May 7 

Protonotaria citrea Prothonotary Warbler 33 −0.2867 − Long f 4-May 27-Apr 7 

Vireo olivaceus Red-eyed Vireo 98 −0.0747 + Long f 28-Apr 21-Apr 7 

Setophaga palmarum Palm Warbler 36 −0.109 = Short f 29-Apr 22-Apr 7 

Setophaga castanea Bay-breasted Warbler 54 −0.0717 = Long f 12-May 5-May 7 

Dendroica caerulescens Black-throated Blue Warbler 68 −0.0837 + Long f 4-May 28-Apr 6 

Dolichonyx oryzivorus Bobolink 35 −0.138 − Long g 5-May 29-Apr 6 

Setophaga magnolia Magnolia Warbler 67 −0.0769 = Long f 7-May 1-May 6 

Spizella passerina Chipping Sparrow 60 −0.2345 − Short s 30-Mar 24-Mar 6 

Sayornis phoebe Eastern Phoebe 78 −0.2744 = Short s 22-Mar 17-Mar 5 

Empidonax minimus Least Flycatcher 62 −0.0939 − Short f 7-May 2-May 5 

Cardellina pusilla Wilson’s Warbler 49 −0.0907 = Short f 13-May 8-May 5 

Geothlypis philadelphia Mourning Warbler 28 −0.0901 − Long f 12-May 7-May 5 
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Continued 

Catharus fuscescens Veery 48 −0.048 − Long f 6-May 1-May 5 

Leiothlypis peregrina Tennessee Warbler 77 −0.0853 = Long f 6-May 2-May 4 

Setophaga petechia Yellow Warbler 102 −0.0777 − Long f 20-Apr 16-Apr 4 

Vireo griseus White-eyed Vireo 55 −0.1277 + Short s 23-Apr 19-Apr 4 

Progne subis Purple Martin 91 −0.1018 − Long a 6-Apr 2-Apr 4 

Empidonax virescens Acadian Flycatcher 58 −0.1097 − Long f 5-May 1-May 4 

Setophaga fusca Blackburnian Warbler 80 −0.0463 = Long f 2-May 29-Apr 4 

Parkesia noveboracensis Northern Waterthrush 28 −0.0654 = Long f 6-May 2-May 4 

Spinus tristis American Goldfinch 9 −0.3416 = Short s 12-Apr 7-Apr 4 

Geothlpis formosa Kentucky Warbler 82 −0.0693 − Long f 29-Apr 26-Apr 3 

Troglodytes aedon House Wren 80 −0.1039 = Short s 17-Apr 14-Apr 3 

Catharus ustulatus Swainson’s Thrush 59 −0.0282 − Long f 3-May 30-Apr 3 

Scolopax minor American Woodcock 47 −0.1033 = Short f 19-Mar 16-Mar 2 

Caprimulgus vociferus Whippoorwill 66 −0.1193 − Short f 18-Apr 16-Apr 2 

Hylocichla mustelina Wood Thrush 106 −0.0588 − Long f 21-Apr 19-Apr 2 

Pooecetes gramineus Vesper Sparrow 56 −0.0845 − Short g 1-Apr 30-Mar 2 

Larus argentatus Herring Gull 13 −0.0392 − Short w 24-Mar 23-Mar 1 

Coccyzus americanus Yellow-billed Cuckoo 54 −0.0859 − Long f 6-May 5-May 1 

Sturnella magna Eastern Meadowlark 23 −0.0177 − Short g 9-Mar 8-Mar 1 

Icteria virens Yellow-breasted Chat 85 −0.0316 − Short s 1-May 30-Apr 1 

Myiarchus crinitus Crested Flycatcher 68 −0.0991 = Short f 26-Apr 25-Apr 1 

Spizella pusilla Field Sparrow 57 −0.0953 − Short g 24-Mar 23-Mar 1 

Coccyzus erythropthalmus Black-billed Cuckoo 49 −0.0944 − Long f 7-May 7-May 0 

Setophaga discolor Prairie Warbler 45 −0.0486 − Short s 23-Apr 23-Apr 0 

Vermivora chrysoptera Golden-winged Warbler 69 −0.0179 − Long s 3-May 3-May 0 

Agelaius phoeniceus Red-winged Blackbird 36 −0.2551 − Short w 18-Mar 18-Mar 0 

Dumetella carolinensis Gray Catbird 91 −0.0292 − Short s 24-Apr 24-Apr 0 

Ammodramus savannarum Grasshopper Sparrow 54 −0.0126 − Short g 25-Apr 27-Apr −2 

Setophaga tigrina Cape May Warbler 63 −0.0376 − Long f 5-May 8-May −3 

2.3. Statistical Analyses 

Species with at least four years of historical arrival dates (before 1970) and at 
least five years after 1970 were included in the analyses, which included 6527 
observations covering 52 of West Virginia’s 55 counties. Most (31.5%) of the 
observations occurred in 1929-1949, 25% in 1990-2015, 21.9% in 1950-1969, 
10.7% in 1970-1989, and 10.2% in 1889-1928. We performed three general cal-
culations using these data: the change in FAD for each species, the average 
change over time across all species, and the difference between average historical 
and current FADs for each species. Historic FADs were considered observations 
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before 1970, and current FADs were calculated from 1970 to 2015. All analyses 
were performed in program R Version 3.2.1 (R Core Team, 2013) with package: 
Car (Fox & Weisberg, 2011) at alpha level 0.05, unless specified.  

First, the Julian dates of the FAD for each species were regressed against year 
using a generalized linear model to assess changes in spring arrival for each spe-
cies over time. Overall normality was confirmed using the Shapiro-Wilk test (W 
= 0.99, P = 0.82), and equal variances were documented using Levene’s test (F = 
2.61, P = 0.34). Bonferroni corrections were made to the alpha value based on 
the number of species in each Order (Table 5) to counteract the increased 
chance of incorrectly rejecting a null hypothesis that comes with multiple com-
parisons. Second, the slopes for all species were averaged to determine the aver-
age change in spring arrival. Lastly, average historical and current FADs for each 
species were calculated. Both the historical (Shapiro-Wilk test, W = 0.92, P < 
0.01) and present (Shapiro-Wilk test, W = 0.95, P < 0.01) dates were non-normal 
with non-equal variances (Kolmogorov–Smirnov test, D = 0.23, P < 0.01) despite 
transformations. Therefore, the Wilcoxon signed-rank test assessed the differ-
ence between historical and current arrival dates. The Wilcoxon signed-rank test 
is a nonparametric version of the matched-pairs t-test that is robust to 
non-normality and unequal variances as long as the data distributions of the 
samples are similar (Kerby, 2014), which makes it suitable for these data.  

A 3-way Analysis of Variance test (ANOVA) was used to determine differ-
ences among changes in spring arrival based on population status (increasing, 
decreasing, or steady), distance migrated (short- or long-distance), and foraging 
habitat (aerial, grassland, scrub, forest, or wetland) (Tables 2-4). A Shapiro-Wilks 
test was used to confirm a normal distribution (W = 0.98, P = 0.15), and a Kol-
mogorov–Smirnov test was used to verify equal variances (D = 0.12, P = 0.052).  

 
Table 5. Bonferroni corrections were made to the alpha values (0.05) based on the num-
ber of species within an Order.  

Order Number of Species Alpha Value Significant Species 

Gaviiformes 1 0.0500 0 

Podicipediformes 1 0.0500 1 

Pelecaniformes 4 0.0125 2 

Cathartiformes 1 0.0500 0 

Anseriformes 5 0.0125 1 

Accipitriformes 2 0.0250 2 

Gruiformes 3 0.0167 1 

Charadriiformes 9 0.0056 4 

Cuculiformes 2 0.0250 0 

Caprimulgiformes 2 0.0250 0 

Apodiformes 2 0.0250 2 

Passeriformes 83 0.0006 32 
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Each year’s average March-April temperature (C) was calculated using data 
from the United States Historical Climatology Network (Williams et al., 2007) 
for West Virginia stations and regressed against the average FAD for each year 
using a generalized linear model. Normality was confirmed using a Shapiro- 
Wilk test (W = 0.99, P = 0.44), and equal variances were documented using a 
Kolmogorov-Smirnov test (D = 0.25, P = 0.08). Average county elevation (m) 
was included for observations with county information, and elevation was re-
gressed against arrival date using a generalized linear model. County-level data 
included 72.6% of the total observations (n = 4743). Normality was confirmed 
using a Shapiro-Wilk test (W = 0.99, P = 0.73). However, a Kolmogorov-Smirnov 
test revealed non-equal variances (D = 0.35, P < 0.01). Various transformations, 
including log and square root, did not improve results.  

3. Results 

Of the 115 taxa, 45 species showed significant negative slopes of spring arrival 
dates (arriving earlier in the spring) plotted against the year (Table 3). In con-
trast, only nine species showed positive albeit non-significant slopes (arriving later 
in the spring) (Table 4). The other 61 species showed negative, non-significant 
slopes (Table 5). The mean slope of arrival date against year is −0.17, equivalent 
to an average change (±SD) in migration of 1.7 ± 1.6 days earlier every decade 
(Figure 2). Current arrival dates were significantly earlier than historical arrival 
dates (W = 8479, P < 0.01), and the average difference between historical and 
current arrival dates was 8.2 days across species. Passeriformes (N = 5117) was 
the most represented order, including 83 species. 

Overall, there was a significant difference in change of arrival among species 
based on life history traits (F22,92 = 1.998, P = 0.012), based explicitly on popula-
tion status (F2,92 = 4.725, P = 0.011) and distance migrated (F1,92 = 4.036, P = 
0.047). Tukey’s posthoc test results showed that species with increasing popula-
tions ( x  = −2.65 days/decade, SE = 0.167) advance their spring migration sig-
nificantly more than species with declining populations ( x  = −1.40 days/decade, 
SE = 0.018). Short-distance migrants ( x  = −2.06 days/decade, SE = 0.026) are 
advancing more than long-distance migrants ( x  = −1.40 days/decade, SE = 
0.014). Therefore, it is not surprising that short-distance migrants with increas-
ing populations ( x  = −2.97 days/decade, SE = 0.156) advance their FADs sig-
nificantly more than long-distance migrants with declining populations ( x  = 
−1.29 days/decade, SE = 0.074). There was also a significant interaction between 
distance migrated and foraging habitat (F4,92 = 2.504, P = 0.046). Long-distance 
migrants that forage in forests ( x  = −1.16 days/decade, SE = 0.074) are not ad-
vancing their FADs as much as aerial foragers that migrated short distances ( x  
= −5.11 days/decade, SE = 0.210). 

Between 1970 and 2014, average spring temperatures (March-April) in West 
Virginia increased ten times as much as they did between 1879 and 1970 (Figure 
3). For every 1˚C increase in average spring temperature in West Virginia be-
tween 1892 and 2014, the first average arrival date advanced by 0.81 days (F1,6114  
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Figure 2. The average yearly first arrival date across 115 species in West Virginia, USA 
(1889-2015). 
 

 
Figure 3. Mean March-April temperatures in West Virginia, USA (1879-2014). Data rec-
orded by the United States Historical Climate Network. 
 
= 28.7, P < 0.001, N = 6115). The average spring temperature in West Virginia 
over the last century ranged from 5.4˚C (1960) to 11.6˚C (2012) (Figure 3). Av-
erage county elevation affected FAD (F1,4743 = 3.88, P = 0.049, N = 4743). For 
each 1000 m increase in elevation, FAD advanced by 4.0 days. However, this re-
sult is minor, given the range of observations ( x  = 381 m, SE = 127.7). 

4. Discussion 

The shift to earlier spring migration has substantial implications for the future of 
these 45 species. With the threats of climate change and habitat destruction 
(Root et al., 2003; Jetz et al., 2007), it is a concern that anthropogenic factors are 
changing global habitats too quickly for species to acclimate or evolve (Parmesan 
& Yohe, 2003; Crick, 2004). This research, however, demonstrates the plasticity 
of responses of some avian species and highlights several factors that could lead 
to increased risk to other species due to climate change. The average migrating 
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bird species arrive in West Virginia 1.7 days earlier each decade. Of the 115 spe-
cies, 45 showed a significant trend towards earlier spring arrival, and zero 
showed a significant trend towards arriving later. West Virginia migrants from 
12 orders indicated earlier spring arrival, demonstrating a definite pattern in 
spring migration.  

Avian migrants ideally arrive at their breeding grounds early enough to com-
pete for superior territory but not so early that foraging resources are unavaila-
ble. Individuals arriving too early experience harsh fitness consequences. How-
ever, arriving after competitors could also decrease reproductive success. Given 
that spring plant phenology, such as leaf-out, is advancing (Marra et al., 2005; 
Ellwood et al., 2010; Kelly et al., 2016) and the growing season has extended 
(Butler, 2003), the window of suitable spring arrival should also advance. There-
fore, historically, individuals that may have arrived too early may be rewarded in 
recent years. Several life history traits were associated with species that advanced 
their spring arrival, but we also acknowledge the importance of species-specific 
responses to changes in climate (McDermott & Degroote, 2016).  

Short-distance migrants are advancing their FAD more than long-distance 
migrants, which supports our predictions and the idea that short-distance mi-
grants are more affected by local weather conditions and can better respond to 
changing local climates by advancing their arrival. This advantage allows short- 
distance migrants to decide on the timing of migration based on local weather 
conditions that more closely match the requirements at the breeding grounds. 
The increased plasticity of short-distance migrants has been well-documented 
(Butler, 2003; Miller-Rushing et al., 2008; Ellwood et al., 2010; Sauer et al., 2013). 
When comparing migration between long-distance and short-distance migrants, 
it is crucial to consider the cues associated with spring migration. Long-distance 
migrants depend on endogenous circannual rhythms to cue the beginning of 
their spring journey (Hagan et al., 1991), and short-distance migrants are more 
prone to use environmental cues (Miller-Rushing et al., 2008). The stopover 
length can also vary with local habitat quality and food abundance (Marra et al., 
2005), contributing to the arrival date’s plasticity. Long-distance migrants do 
have the ability to adjust their timing of arrival by altering their rate of migration 
to maximize resource availability based on ambient temperatures (Marra et al., 
2005). However, since long-distance migrants are not advancing their spring 
migration at the same rate as short-distance migrants, long-distance migrants 
may be of increased conservation concern. 

In line with our predictions, species with declining populations are not ad-
vancing their spring arrival dates as much as species with increasing popula-
tions. This result may be due to thriving populations having greater plasticity in 
their responses or underestimated arrival dates in declining populations. FADs 
are especially susceptible to bias due to the prevalence of decreasing populations 
(Miller-Rushing et al., 2008). However, the bias leads to mistakenly observing 
later arrival dates due to fewer individuals in a population available for detec-
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tion. Therefore, any bias in the data due to population declines can be attributed 
to a conservative interpretation of the results. 

Habitat alone was not a significant factor when analyzing FADs. These results 
are consistent with others’ data (Miller-Rushing et al., 2008) but not all (Butler, 
2003), who found that grassland species were not advancing their arrival as 
much as others. An interaction between foraging habitat and distance migrated 
highlighted a disproportionate advancement of FADs between long-distance 
migrants that forage in forested habitats and short-distance migrants that are 
aerial foragers. Aerial foragers could advance their spring arrival more than oth-
er foragers due to their dependence on insects, given that insects are highly res-
ponsive to local changes in climate (Robinet & Roques, 2010). However, species 
occupying forested habitats are also likely to be insectivores. Perhaps the prey 
insects of aerial foragers emerge sooner than insects in forested areas, which 
would drive the aerial foragers to arrive earlier. It may be due to observer bias, 
given that aerial species could be seen more efficiently and, therefore, earlier. 
Since there was not an overall difference in FADs between aerial foragers and 
other species occupying different habitat types, the significant difference is only 
noticeable in short-distance migrants that also have the benefit of increased plas-
ticity to environmental change. The long-distance migrants that forage in fo-
rested habitats are advancing their FADs less than the average long-distance mi-
grant.  

The arrival dates were significantly related to decadal spring temperatures, 
supporting similar studies’ conclusions (Ellwood et al., 2010; Swanson & Palmer, 
2009). Advancing spring temperatures have been linked to advancing plant 
phenologies (Wang et al., 2015; Monahan et al., 2016; Petrauski et al., 2019), 
making the resource availability window for habitat and forage earlier in the 
spring. This scenario would reward earlier-arriving individuals and successfully 
explains the trend of earlier arrival for most avian migrants (especially short- 
distance migrants with increasing populations). Elevation had a surprising effect 
on FAD: as elevation increased, the FAD became earlier, which did not support 
our prediction. However, given the range of observed observations ( x  = 381 m, 
SE = 127.7), this result could be the consequence of several issues, including the 
low number of observations at high elevations. Most observations with specific 
locations (and therefore, elevations) were in the years before 1970, which would 
bias the data towards later FADs, or a combination of both. The state of West 
Virginia is highly variable geographically, so we argue that more exact location 
information is needed. Using the average county elevation for observations does 
not capture enough of the variability in each county to make definite conclu-
sions about the effect of elevation on spring arrival.  

Several biases from the data sources have been considered in the results. It has 
been shown that increased observers result in seemingly earlier arrival dates 
(Courter et al., 2013; Arab et al., 2016). However, an argument for the integrity 
of the sources in this study can be made. All observers were experienced natu-

https://doi.org/10.4236/ajcc.2023.124024


L. Petrauski et al. 
 

 

DOI: 10.4236/ajcc.2023.124024 542 American Journal of Climate Change 
 

ralists who visited a variety of habitats to observe migrating species. Earl Brooks’ 
notes were gathered by himself and several of his colleagues; the Brooks Bird 
Club, and eBird notes were compilations of observations from multiple observ-
ers; and most of George Breiding’s lists were first-of-the-year sightings for where 
he worked in Oglebay Park, Wheeling, WV, which the staff and visitors to the 
park compiled. The observer skill, time taken each week for birding, and dis-
tance covered during observations are still relatively unknown. However, similar 
datasets have been analyzed together with reputable results (Ellwood et al., 2010; 
Travers et al., 2015). 

Given that most avian migrants are advancing their spring arrival and, in 
some cases postponing autumn migration (Miles et al., 2017), a surge in the 
prevalence of individuals overwintering in the breeding grounds is increasingly 
possible (Kullberg et al., 2015; Newson et al., 2016), especially in short-distance 
migrants and species with increasing populations. This study included species 
such as the Eastern Bluebird (Sialia sialis), Brown Creeper (Certhia americana), 
Eastern Towhee (Pipilo erythrophthalmus), Common Grackle (Quiscalus quis-
cula), White-throated Sparrow (Zonotrichia albicollis), and White-crowned 
Sparrow (Zonotrichia leucophrys) that were not analyzed because only historical 
records of first arrival were found. These six species can now be found in West 
Virginia year-round, possibly due to increased temperatures, urbanization, or 
household feeder presence (Miller-Rushing et al., 2008). Further research on the 
potential of shifting wintering ranges would be necessary for the future man-
agement of avian migrants.  

5. Conclusions 

More than 39% of the birds we evaluated arrive in West Virginia earlier in the 
spring than historical arrival dates. These species are adapting to climate change 
and likely taking advantage of the early onset of appropriate conditions. Spe-
cies most at an increased risk of phenological decoupling and reduced success 
due to unchanging spring arrival include long-distance migrants and species 
with decreasing populations, especially those species that fall into both catego-
ries, such as the Cerulean Warbler (Setophaga cerulea) and Rose-breasted 
Grosbeak (Pheucticus ludovicianus). Species with these two characteristics were 
more likely not to have advanced their spring arrival. Responsiveness to changes 
in climate could predict a species’ ability to survive in a global climate change 
scenario.  
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