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Abstract 
Meteorological data is useful for varied applications and sectors ranging from 
weather and climate forecasting, landscape planning to disaster management 
among others. However, the availability of these data requires a good network 
of manual meteorological stations and other support systems for its collec-
tion, recording, processing, archiving, communication and dissemination. In 
sub-Saharan Africa, such networks are limited due to low investment and ca-
pacity. To bridge this gap, the National Meteorological Services in Kenya and 
few others from African countries have moved to install a number of Auto-
matic Weather Stations (AWSs) in the past decade including a few additions 
from private institutions and individuals. Although these AWSs have the po-
tential to improve the existing observation network and the early warning 
systems in the region, the quality and capacity of the data collected from the 
stations are not well exploited. This is mainly due to low confidence, by data 
users, in electronically observed data. In this study, we set out to confirm that 
electronically observed data is of comparable quality to a human observer 
recorded data, and can thus be used to bridge data gaps at temporal and 
spatial scales. To assess this potential, we applied the simple Pearson corre-
lation method and other statistical tests and approaches by conducting in-
ter-comparison analysis of weather observations from the manual synoptic 
station and data from two Automatic Weather Stations (TAHMO and 
3D-PAWS) co-located at KMD Headquarters to establish existing consisten-
cies and variances in several weather parameters. Results show there is com-
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parable consistency in most of the weather parameters between the three sta-
tions. Strong associations were noted between the TAHMO and manual sta-
tion data for minimum (r = 0.65) and maximum temperatures (r = 0.86) and 
the maximum temperature between TAHMO and 3DPAWS (r = 0.56). Simi-
lar associations were indicated for surface pressure (r = 0.99) and RH (r > 0.6) 
with the weakest correlations occurring in wind direction and speed. The 
Shapiro test for normality assumption indicated that the distribution of sev-
eral parameters compared between the 3 stations were normally distributed 
(p > 0.05). We conclude that these findings can be used as a basis for wider 
use of data sets from Automatic Weather Stations in Kenya and elsewhere. 
This can inform various applications in weather and climate related deci-
sions. 
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Meteorological Data, Manual Weather Station, Automatic Weather Station, 
Correlation 

 

1. Introduction 

Meteorological data is useful for varied applications across many socio-economic 
sectors. They can be used in weather and climate forecasting, disaster risk reduc-
tion and water resources management, landscape planning, and many others. 
However, the availability of meteorological data requires a good network of 
manual observation stations at the surface, upper-air, and on the ocean as well as 
other support systems which facilitate the collection, recording, processing, arc-
hiving, and other data management operations. In sub-Saharan Africa, such 
networks are limited due to low investment and capacity (Dupar et al., 2021). 
Such situations constrain the development, provision, and maintenance of qual-
ity climate services and their application. 

In Kenya and the East African region, meteorological data is a very important 
resource considering that weather and climate variability are driven by several 
global influences including the El Niño and La Niña phenomena in the tropical 
Pacific, the Congo air mass, the Inter-Tropical Convergence Zone, the Indian 
Ocean temperatures and local climatic-factors such as the lake circulation effects 
among others (Marchant et al., 2007; Berhane & Zaitchik, 2014) which require 
regular monitoring and evaluation. The region has had its fair share of severe 
weather and extreme climate impacts such as flooding, hailstorms, droughts 
which have caused loss of human life, and other adverse socio-economic and en-
vironmental impacts. To monitor and evaluate the weather patterns in Kenya, 
the National Meteorological Service (KMD) operates and controls 40 Synoptic 
Stations spread across the country (Figure 1, https://meteo.go.ke/) and about 
600 rain gauge stations operated by private observers. These stations are operat-
ed manually by KMD personnel on a continuous basis. Generally, the station 
network is sparse compared to the World Meteorological Organization’s (WMO)  
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Figure 1. Map of Kenya showing location of some of the Synoptic Stations (ringed sym-
bols) operated by KMD. The study location is indicated in red. Source:  
https://meteo.go.ke/ . 
 
recommended practice regarding the spacing between neighboring stations of 20 
km. Although the KMD has in the last few years installed a number of Automat-
ic Weather Stations (AWS), the data is not yet fully integrated into meteorologi-
cal applications or shared globally through the Global Telecommunication Sys-
tem (GTS) of the World Meteorological Organisation (WMO) as required. This 
is mainly because the quality of the AWS datasets is not yet well known.  

Most studies have carried out inter-comparisons of meteorological data but 
focused more on satellite based weather parameters and gridded data (Ayasha, 
2021; Rivoire et al., 2021; Schumacher et al., 2020; Ford & Quiring, 2019; Zeng et 
al., 2018). These have largely ignored the significant biases that can be addressed 
by data from Automatic weather stations relative to surface observation stations. 

The key advantage of comparisons between ground station observations and 
datasets from AWSs is that the datasets can provide more coverage in time and 
space and hence a better description of the weather and climate of a given area. 
Further, since ground station observations may have some uncertainties (espe-
cially when some data are missing) comparing with AWS data may bridge the 
gap and hence improve its quality and use. This study, therefore, provides the 
means to enhance the quality and quantity of available observational datasets 
through the calibration of the AWS data leading to improvements in early 
warning services. Recently in 2019, the WMO’s HIGH Impact Weather LAke 
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SYstem (HIGHWAY) project funded by the United Kingdom (UK) Department 
for International Development (DFID) have been promoting early warning sys-
tems (EWS) to improve resilience to weather and climate extremes for the local 
communities around the Lake Victoria region by exploring the potential of using 
AWS data sets in Kenya.  

Within the above context, this study aims at 1) Inter-comparison of the 
ground based observational data sets (rainfall, temperature, wind speed and di-
rection, surface pressure, and relative humidity) from a KMD synoptic weather 
station with data from the Trans-African Hydro-Meteorological Observatory 
(TAHMO) AWS and the 3D-Printed Automatic Weather Station (3D-PAWS), 
co-located at KMD; 2) Carrying out inter-comparison of data between the two 
AWSs (TAHMO and 3D-PAWS). 

This study is organized as follows. Section 2 describes the data sets used in the 
study including details of the study area. In section 3 statistical methods used in 
the analysis and comparison of the different data sets are presented. The results 
from the analyses are given in Section 4 while the discussion of the results is in 
Section 5. 

2. Data and Study Area 
2.1. Study Area Description 

The datasets used in this study are from the Dagoretti Corner Meteorological 
Station which is located in Nairobi Kenya. All three stations are located in sepa-
rate sites within the Meteorological Station compound. The manual synoptic 
weather station is located at Lon. 36.75˚E and Lat. 1.3˚S. The TAHMO AWS is at 
Lon. 36.7602˚E and Lat. 1.3018389˚S. The 3D-PAWS AWS is located at Lon. 
36.7601˚E and Lat. 1.30172˚S. The three stations are located at an average alti-
tude of 1790 m above mean sea level. The geographic positions of the AWSs and 
the synoptic weather stations clearly show that these stations are more or less 
collocated. 

The weather regime of the study area is semi-humid tropical with average 
annual rainfall of 1060 mm mean annual temperature of 17.8˚C, and maximum 
temperatures reaching about 25.5˚C. The rainfall distribution is bimodal occur-
ring in two seasons: March-May (long rains) and October-December (short rains) 
season. The January-February period is generally dry while June-September is 
cool and dry with occasional rains. 

2.2. Data 

The data sets used in this study are from the manual synoptic weather station, 
TAHMO AWS and the 3D-PAWS at the Dagoretti Corner Meteorological Sta-
tion in Nairobi. The manual synoptic station data sets of daily rainfall, daily 
temperature at 06Z and 12Z, daily minimum and maximum temperature, daily 
relative humidity, hourly wind speed, hourly wind direction, surface pressure 
and solar radiation were acquired from the National Climate Database at KMD. 
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Thus the data observations from the manual synoptic weather station are on 
daily and hourly intervals. The TAHMO observations were obtained from KMD 
and are at 5 minutes intervals while 3D-PAWS observations at 1-minute inter-
vals were obtained from the University Corporation for Atmospheric Research 
(UCAR).  

Quality controls and checks were carried out on the data from the three 
sources and examined for consistency. Subsequently, the parameters selected for 
the comparative analysis were Rainfall, Temperature, Pressure, Relative Humid-
ity, Solar Radiation, Wind speed and Direction. The data used in the analysis 
covered the period 2016 to 2018 and part of 2019. 

2.3. Data Structure 

Data sets for all the parameters from the manual station were prepared in a sin-
gle “.csv” file with daily values in a cross tab format while the TAHMO data were 
organized in five-minute values in a list in multiple files summarized in one 
“.csv” file per day. The 3D-PAWS data in ASCII format were stored in separate 
files for each sensor (e.g., humidity and temperature, rainfall, wind direction and 
speed, and surface pressure) with a resolution of 1-min records. All the AWS 
data from 3D-PAWS and TAHMO were processed to match the temporal reso-
lution of the manual station by aggregating the minute and hourly data into dai-
ly values using the R-statistical software (R Core Team, 2017) and Excel. To ena-
ble the analysis, the specific parameters were prepared as follows. 

2.4. Rainfall 

To match the daily observation period (24 hours) of the manual synoptic weath-
er station, the rainfall data from TAHMO and 3D-PAWS were accumulated to 
daily values starting from 0600Z of the current day to 0600Z of the next day and 
cast back by one day.  

2.5. Surface Pressure 

The observed surface pressure from the manual synoptic station is at hourly 
timescale and therefore the AWSs surface pressure data from TAHMO and 
3D-PAWS were processed to extract the observation from the top of each hour 
to match the observation time of the manual synoptic station. 

2.6. Relative Humidity 

The manual synoptic weather station data were at 0600Z and 1200Z and there-
fore AWSs observations from TAHMO and 3D-PAWS were matched for the 
0600Z and 1200Z times to match the observations from the manual synoptic 
weather station.  

2.7. Solar Radiation 

The hourly manual synoptic weather station daily total radiation data were not 
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considered in the analysis since they could not be matched with the observations 
from the 1-minute and 5-minute temporal resolutions from the 3D-PAWS and 
TAHMO stations. 

2.8. Wind Speed 

The wind speed data for the manual synoptic weather station was at the hourly 
time stamp and hence the AWSs data from TAHMO and 3DPAWS were matched 
at the top of each hour with the manual synoptic station observations. However, 
due to its structure, the 3D-PAWS data were aggregated to average the 10-minute 
observations before the top of the hour so as to match the procedure used for the 
manual observations. 

2.9. Wind Direction 

Similar to other hourly data sets the wind direction data from the manual syn-
optic weather station were matched with the AWSs data from TAHMO and 
3D-PAWS at the top of the hour. The 3D-PAWS data were also processed to 
match the manual observations using similar procedure as that of the wind 
speed. 

2.10. Temperature (Dry Bulb, Tmax, Tmin) 

The dry bulb temperature data from the manual synoptic weather station were at 
0600Z and 1200Z where maximum (Tmax) and minimum (Tmin) temperature data 
were extracted as single values for each day. To match, the AWSs temperature 
observations from TAHMO and 3D-PAWS were extracted at 0600Z and 1200Z 
on each day of the inter-comparison. Similar to solar radiation, the AWSs Tmax 
and Tmin were extracted from the 1-minute and 5-minute temperature values 
from 3D-PAWS and TAHMO, respectively for any given day. However, the Tmax 
and Tmin values for the TAHMO and 3D-PAWS were only extracted and matched 
with the manual data if a complete record was available for a given day. 

2.11. Data Processing, Quality Checks and Controls 

Missing data were not indicated after the initial extraction of the different pa-
rameters from the 3 data sources, leading to data sets of varying lengths. To 
correct this, identification and insertion of gaps were done in all the parame-
ters until they all had equal lengths. However, the rainfall data from the manual 
synoptic station was in a cross tab table format (Figure 2) which was converted 
to a list to enable inter-comparison with the AWS datasets before the gaps 
were inserted. The gaps that were identified in all the datasets were filled using 
“NA”.  

Further, the 3D-PAWS data files were in “.xml” format which was converted 
to the “.csv” format prior to extraction and aggregation. In addition, the 
3D-PAWS data posed some challenges in aggregating and selecting the right 
values since they contained multiple values for each top of the hours. This led to  
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Figure 2. Sample of rainfall data from the manual station in a crossbar format. 
 
the 3D-PAWS data being reprocessed into consistent, continuous ASCII for-
matted files that included missing records and bad data flags. Once this was 
achieved, it was possible to consistently compare the reformatted 3D-PAWS da-
ta (see Figure 3) and TAHMO data files in similar formats. From this process, 
the gaps in the AWSs datasets should be considered to be potential sources of 
errors in comparison analysis and data checks and tests of meteorological ob-
servations.  

2.12. Analysis Methods 

To address the objectives of this study, we used several statistical methods to as-
sess and carry out inter-comparison analyses. Graphical methods were used to 
visualize the data through line and scatter plots. To visually define a matching 
point between the different distributions of a data series from the three data 
sources, we checked on concurrent points that did not overlap. To gain better 
comparisons, each variable (e.g. rainfall) was plotted for all the three sources 
(TAHMO, 3D-PAWS and Manual) on one graph.  

We used the simple Pearson correlation method to assess the strength of asso-
ciation between the variables from the three sources (Zou et al., 2003). The 
Pearson correlation method measures the linear correlation between two va-
riables X and Y using the correlation coefficient (r) and is given by the equation: 

( ) ( )2 22 2

i i i i
XY

i i i i

N X Y X Y
r

N X X N Y Y

−
=

− −

∑ ∑ ∑
∑ ∑ ∑ ∑

            (1) 

where, rXY or r is the correlation coefficient, N is the number of observations, 
and ΣX is the sum of x scores (values), ΣY is the sum of y scores (values), while 
ΣXY is the sum of the products of x and y values. The values of r range between 
+1 and −1, with 1 showing that there is a perfect/positive linear correlation, 0 
showing no linear correlation, and −1 showing there is a negative linear correla-
tion. The higher the value of r is, the stronger the association between two va-
riables. 

We tested the statistical significance of the correlation coefficients (r) using 
the Shapiro-Wilk normality test (Emerson, 2015) and the Anderson-Darling 
normality test (Liebscher, 2016). Shapiro-Wilk’s method is based on the correla-
tion between the data and the corresponding normal scores and is widely  
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Figure 3. Screen shot of reformatted 3D-PAWS data (for Temperature and RH). 
 
used and recommended for normality tests because it provides better estimates 
compared to the Kilmogorov-Smirnov method. However, the Anderson-Darling 
method is efficient in analysis of samples with N > 5000 compared to the Shapiro 
Wilk method (N < 5000). 

These normality tests are done with the assumptions that for a test that is not 
significant it satisfies the condition of the null hypothesis for normally distri-
buted sample (p value > 0.05). Alternatively, if the test is significant, the distri-
bution is considered to be non-normal. All correlations are considered to be sig-
nificant at the 0.05 level. 

To support the analysis of normality tests we used the graphical method to 
visualize the associations between the variables.  

In particular, we used Q-Q (quantile-quantile) plots to assess how best the 
compared data set samples associated with the normal distribution. Overall, we 
summarized and dispalyed the coefficients from the comparisons using a corre-
lation matrix. 

Lastly, we used regression method to estimate the best line of fit from the cor-
relations between the variables from the three data sources. 

3. Results 
3.1. Pre-Analysis Results 

The initial analysis of the 3 datasets for the period 2017-2018, indicated that 
there was good agreement between the temperatures readings of the manual sta-
tion and TAHMO but comparatively lower agreement with the 3D-PAWS. 
Comparisons for rainfall and relative humidity were largely variable. One reason 
for this might be that the TAHMO AWS had a broken rain-gauge sensor, for a 
brief period between 2017 and June 2018.  
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3.2. Time Series Comparisons 

Figure 4 displays the variability in the time series of the Tmax, Tmin and T06, 
RH06 for the manual station and 3DPAWS from 2017-2019. The graph shows 
that only few of the values of Tmax, Tmin, and T06, RH06 overlap for both stations. 
This was apparently due to battery failure at night and thus more observations 
for temperature and RH at 12Z from the 3D-PAWS station which was mostly 
operational during daytime hours.  

Figure 5 compares the time series of minimum temperatures and maximum 
temperatures for 3 data sources for the periods with consistent data. The tem-
poral patterns indicated in the three data sets show reasonable agreements al-
though the 3D-PAWS minimum temperature indicates a high bias of about 10˚C 
higher compared to the TAHMO and manual station series. As earlier men-
tioned, the battery on the 3D-PAWS was not working properly during the 
non-daylight hours of the inter-comparison period. This problem calls for con-
tinuous monitoring and maintenance of AWS and all other stations to ensure 
measurements continue. Due to this, the reprocessing and computing of the 
temperature for the 3D-PAWS significantly reduced the number of matching 
records but also produced fair comparison between the stations. Similarly, the 
patterns of the maximum temperature indicate some disparities in some periods 
where all the three data sets are observed. For instance, there are considerable 
agreements for the maximum temperature between the manual station and 
3D-PAWS save for the manual temperatures indicating some spikes and missing 
data. These results show that the consistent concurrence for the maximum tem-
perature between 3D-PAWS and the manual station was because 3D-PAWS was 
working more efficiently during daytime hours relative to night-time hours. 
 

 

Figure 4. Time series of Tmax/Tmin from KMD and 3D-PAWS (top panel), temperature 
and RH at 06 UTC for KMD and 3D-PAWS (middle panel), and temperature and RH at 
12 UTC for KMD at 3D-PAWS. 
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Figure 5. Comparisons for (A) Daily minimum temperature (Dagoretti (red), TAHMO 
(blue), 3D-PAWS (green) within the period 2017/2018; (B) Daily maximum temperature 
between Dagoretti, TAHMO and 3D-PAWS; (C) Daily maximum temperature between 
Dagoretti and 3D-PAWS; (D) Between TAHMO and 3D-PAWS. 

3.3. Correlations Results 

Modestly higher correlations were observed for the minimum temperature be-
tween TAHMO and manual station (r = 0.65) and for the maximum tempera-
ture (r = 0.61 to r = 0.86) (Figure 6). The correlations for maximum tempera-
ture for TAHMO and 3D-PAWS were modest (r = 0.56). 

The Shapiro Wilk normality test showed that the distributions of the mini-
mum and maximum temperatures are not significantly different from normal 
distribution and hence normally distributed (p-value < 0.05). For example, the 
maximum temperature for the manual station had the best normal distribution 
pattern compared to the other data sets.  

Most of the other meteorological variables from the 3 different stations indi-
cated positive correlations. Strong correlations were indicated in the relative 
humidity at 1200Z between the manual and 3D-PAWS (r = 0.59) with lowest 
correlations being observed at 0600Z. The surface pressure and relative humidity 
displayed normal distribution compared to the other variables such as rainfall 
which is not normally distributed for all the 3 stations and can be described us-
ing non-linear distribution (Figure 7). Rainfall in Kenya has largely followed a 
log-normal distribution and other exponential distributions. Subsequently, sur-
face pressure at the manual stations was highly correlated with the TAHMO (r = 
0.67, p < 0.05) and 3D-PAWs (r = 0.65, p < 0.005) and between the two AWS 
datasets (Figure 9, p = 0.99). Similarly, several variables indicated normal dis-
tribution patterns which were statistically significant (<0.05, Table 1). 
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Figure 6. Correlations for daily minimum and maximum temperature between manual 
and TAHMO ((A) and (D)), manual and 3D-PAWS ((B) and (E)) and 3D-PAWS and 
TAHMO ((C) and (F)). The minimum and maximum temperatures are fitted with a li-
near regression line, while the gray envelope is the 95% confidence interval. 
 

 

Figure 7. Q-Q plots for normality test for daily rainfall ((A) and (B)), surface pressure at 
006Z ((C) and (D)), relative humidity at 006Z and at 12Z ((E) and (F)), wind direction 
and wind speed at 006Z between manual (Dagoretti) and 3D-PAWS (RH_3D_12Z) sta-
tions (G, H, I, and J). 
 

The correlations for wind speed and direction for the manual, 3D-PAWS and 
TAHMO were fairly strong. To validate this, the wind rose between 3D-PAWS 
and the manual station indicated consistent and strongly NE winds at the ma-
nual station location (Figure 8). However, the wind speeds were higher at the 
manual station than at the AWSs possibly due to height differences. This may 
need to be further examined. 
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Some earlier results had indicated that there was a very strong positive corre-
lation for surface pressure between manual and TAHMO (r = 0.67), between 
TAHMO and 3D-PAWS (r = 0.96) and between manual and 3D-PAWS (r = 
0.65) (Table 2 and Figure 9). 
 

 

Figure 8. Windrose for 3D-PAWS (left panel) and KMD (right panel) 
 

 

Figure 9. Correlation for hourly surface pressure between manual station and TAHMO 
AWS observations (left) and between the TAHMO and 3D-PAWS (right) and fitted with 
a linear regression line at the 95% confidence interval. 
 
Table 1. Shapiro-Wilk normality test for comparisons between manual station, TAHMO 
and 3D-PAWS meteorological variables. 

Variable W p-value 

Dagoretti daily rainfall 0.32531 <2.2e−16 

3D-PAWS daily rainfall 0.18067 <2.2e−16 

Dagoretti surface pressure 0.98414 0.0004962 

3D-PAWS surface pressure 0.35564 <2.2e−16 

Dagoretti relative humidity at 006Z 0.94811 5.348e−14 

3D-PAWS relative humidity at 006Z 0.96837 0.0008388 

Dagoretti wind direction at 006Z 0.81444 <2.2e−16 

3D-PAWS wind direction at 006Z 0.81444 <2.2e−16 

Dagoretti wind speed at 006Z 0.84307 <2.2e−16 

3D-PAWS wind speed at 006Z 0.87698 5.147e−13 
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Table 2. Summary of correlation coefficients for Dagoretti minimum and maximum 
temperatures between manual, TAHMO AWS and 3D-PAWS observations. 

Parameter (variable) Correlation variables Correlation coefficient (r) 

1) Minimum temperature 

Manual vs TAHMO AWS 0.651 

Manual vs 3D-PAWS 0.180 

TAHMO AWS vs 3D-PAWS 0.270 

2) Maximum temperature 

Manual vs TAHMO AWS 0.610 

Manual vs 3D-PAWS 0.610 

TAHMO AWS vs 3D-PAWS 0.560 

3) Relative humidity at 06Z 

Manual vs TAHMO AWS 0.832 

Manual vs 3D-PAWS 0.220 

TAHMO AWS vs 3D-PAWS 0.621 

4) Relative humidity at 12Z 

Manual vs TAHMO AWS 0.765 

Manual vs 3D-PAWS 0.590 

TAHMO AWS vs 3D-PAWS 0.858 

5) Wind direction 

Manual vs TAHMO AWS 0.0793 

Manual vs 3D-PAWS 0.0004 

TAHMO AWS vs 3D-PAWS 0.495 

6) Wind speed 

Manual vs TAHMO AWS 0.0054 

Manual vs 3D-PAWS 0.3636 

TAHMO AWS vs 3D-PAWS 0.0144 

7) Surface pressure 

Manual vs TAHMO AWS 0.6713 

Manual vs 3D-PAWS 0.6500 

TAHMO AWS vs 3D-PAWS 0.9859 

8) Rainfall Manual vs 3D-PAWS 0.3764 

4. Discussion and Conclusions 

Rainfall and other meteorological parameters such as temperature are invaluable 
for not only the monitoring and forecasting of the weather but also management 
of climate related disasters. However, sparseness of observation stations for 
measurements and collection of these data especially in sub-Saharan Africa and 
other developing countries is a major challenge. National Meteorological and 
Hydrological Services globally have been the main meteorological data collecting 
institutions. There is a need for enhancement of the observation network, through 
establishment of more automatic weather stations in most countries, as well as 
improved monitoring and prediction of weather and climate patterns. 

Our study of manual and AWS data sets has demonstrated that the two modes 
of weather observations compare well and can therefore guide decision making. 
The analyses of meteorological data and comparisons between the manual sta-
tion and AWSs revealed considerable agreements between most of the weather 
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parameters inspite of the low correlations found between the rainfall and wind 
observations compared to the other variables (Table 2). This is in agreement 
with other findings that have shown that meteorological parameters measured 
from a ground station can compare relatively well with other observations from 
a reference source e.g. AWS (Dombrowski et al., 2021).  

Whereas the surface pressure was highly correlated between the three stations, 
some studies have found uncertainties in the comparisons between on ground 
station pressure and the reference data, e.g. (Dombrowski et al., 2021). The high 
variability between some meteorological variables at different stations could be 
due to several factors such as instrument error, change of location, damages or 
lack of station maintenance (Ford et al., 2020).  

Overall, comparison of the manual station data and the TAHMO and 
3D-PAWS observations showed that there was potential for concurrences be-
tween the different variables even at some small spatial co-locations of the dif-
ferent measurement instruments (Table 2).  

Despite the strong correlations between the different variables, anomalies 
were present when assessing some parameters such as wind speed and solar rad-
iation due to complexities in aggregating such observations between the manual 
and automatic stations. This provides a challenge where such parameters may be 
required to complement monitoring and forecasting of the weather.  

Based on our findings, the different meteorological parameters compared 
reasonably well between the three stations. The correlation coefficients between 
the parameters from the manual station and the AWSs were within acceptable 
levels and can be used as a basis for validation and application of the data in fo-
recasting and other uses. There is high potential from the findings that observa-
tions from the 3D-PAWS and TAHMO stations compared well when both were 
in operation and relative to the manual station. 

In conclusion, manual station datasets can be used alongside observations 
from AWS after adequate assessment of the quality and agreements between the 
data sets have been done.  
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Figure S1. (A): Correlation matrix for minimum and maximum temperature for 3D-PAWS, 
Dagoretti (manual) and TAHMO; (B): QQ plots for minimum temperature for (a) 
TAHMO (b) Manual (Dagoretti) and (c) 3D-PAWS and for maximum temperature for 
(d) TAHMO (e) Manual (Dagoretti) and (f) 3D-PAWS; (C): Comparisons of daily rainfall 
(a), surface pressure at 0600Z (b), relative humidity at 0600Z (c), relative humidity at 
1200Z, wind direction at 006Z and wind speed at 006Z between manual (Dagoretti) sta-
tion and 3D-PAWS; (D): Comparisons of correlations for daily rainfall, surface pressure 
at 006Z, relative humidity at 006Z, relative humidity at 12Z, wind direction and wind 
speed at 006Z between manual (Dagoretti) and 3D-PAWS (RH_3D_12Z) stations; (E): 
Correlation matrix for daily rainfall, surface pressure at 006Z, relative humidity at 006Z 
and at 12Z, wind direction and wind speed at 006Z between manual (Dagoretti) and 
3D-PAWS (RH_3D_12Z) stations; (F): Correlation for hourly surface pressure between 
manual station and 3D-PAWS observations fitted with a linear regression line at the 95% 
confidence interval. 
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