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Abstract 

Agriculture is the mainstay of Ethiopian economy. Developing country like 
Ethiopia suffers from climate change, due to their limited economic capability 
to build irrigation projects to combat the trouble. This study generates cli-
mate change in rift valley basins of Ethiopia for three time periods (2020s, 
2055s and 2090s) by using two emission scenarios: SRA1B and SRB1 for fast-
er technological and environmental extreme respectively. First, outputs of 15 
General Circulation Models (GCMs) under two emission scenarios (SRA1B 
and SRB1) are statistically downscaled by using LARS-WG software. Proba-
bility assessment of bounded range with known distributions is used to deal 
with the uncertainties of GCMs’ outputs. These GCMs outputs are weighted 
by considering the ability of each model to simulate historical records. The 
study result indicates that LARS-WG 5.5 version model is more uncertain to 
simulate future mean rainfall than generating maximum and minimum mean 
temperatures. GCMs weight difference for mean rainfall is 0.83 whereas 
weight difference for minimum and maximum mean temperatures is 0.09 
among GCMs models. The study results indicate minimum and maximum 
temperatures absolute increase in the range of 0.34˚C to 0.58˚C, 0.94˚C to 
1.8˚C and 1.42˚C to 3.2˚C and 0.32˚C to 0.56˚C, 0.91˚C to 1.8˚C and 1.34˚C 
to 3.04˚C respectively in the near-term (2020s), mid-term (2055s) and 
long-term (2090s) under both emission scenarios. The expected rainfall 
change percentage during these three time periods considering this GCMs 
weight difference into account ranges from −2.3% to 7%, 0.375% to 15.83% 
and 2.625% to 31.1% in the same three time periods. In conclusion, the study 
results indicate that in coming three time periods, maximum and minimum 
temperature and rainfall increase is expected in rift valley of basins of Ethi-
opia. 
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1. Introduction 

Climate change is considered to be the biggest challenge facing by mankind in 
the twenty first century. The change in the climate mean state within a certain 
time period is referred to as climate variability which can be more detrimental 
than climate change. Both climate variability and change can lead to severe im-
pacts on different major sectors of the world such as water resources, agricul-
ture, energy and tourism [1]. In the United States and other developed nations, 
extensive studies on the impacts of climate change on agricultural production 
have been carried out [2]. There has been relatively little research in developing 
nations although recently, a few papers have been published [3], [4]. Yet, devel-
oping countries like Ethiopia are the ones which could suffer more from the ef-
fects of climate change, due to their limited economic capability for constructing 
irrigation projects to abbreviate climate change impact on crop production 
which is dominantly based on rainfall. Research conducted on climate change 
and Ethiopian economy explained that agriculture in Ethiopia is heavily depen-
dent on rain. In addition to its low adaptive capacity, its geographical location 
and topography make the country highly vulnerable to the adverse impacts of 
climate change. Results indicate that, over a 50-year period, the projected reduc-
tion in agricultural productivity may lead to 30 percent less average income, 
compared with the possible outcome in the absence of climate change [5].  

Extreme events are common in Ethiopia, especially droughts. According to an 
analysis in 2011, Ethiopia was ranked 5th out of 184 countries in terms of its risk 
of drought [6]. Between 1900 and 2010, twelve extreme droughts were recorded 
(killing over 400,000 people and affecting over 54 million) [7], of which seven 
occurred since 1980 and the majority of these resulted in famines [8]. The severe 
drought of 2015-2016 was exacerbated by the strongest El Nino in decades, 
caused successive harvest failures and widespread livestock deaths in some re-
gions. Apart from these major or extreme droughts, there have been dozens of 
local droughts with equally devastating effects. The country has experienced 
even more major floods in different parts of the country, though with fewer 
people affected: 47 major floods since 1900 (of which six since 1980) [8] killed 
almost 2000 people and affected 2.2 million [7]. 

General Circulation Models (GCMs) are “computer based version of earth’s 
system that mathematically simulates the climate system and the interaction 
between the system components” [9]. They simulate historical, present and fu-
ture climate scenarios taking into account the level of greenhouse gases and 
aerosols under different future projections. The process is achieved by dividing 
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the oceans and atmosphere into a horizontal grid with a horizontal resolution of 
20- 480 with 10 - 20 layers aligned vertically. This enables predictions of climate 
change for the next 100 years using a coarse grid scale [10]. In general, most 
GCMs are capable of simulating global and continental scale processes in detail 
and provide a reliable representation of the average planetary climate [9]. Global 
climate models “are the only credible tools currently available for simulating the 
response of the global climate system to increasing greenhouse gas (GHG) con-
centrations” [1]. GCMs are fully coupled mathematical representations of the 
complex physical laws and interactions between ocean/atmosphere/sea-ice/ 
land-surface [11]. They simulate the behavior of the climate system on a variety 
of temporal and spatial scales using a three-dimensional grid over the globe. 
GCM experiments simulate future climate conditions based on estimated 
warming effects of carbon dioxide (CO2) and other GHGs and the regional 
cooling effects of increasing sulphate aerosols, beginning in the late 19th century 
or early 20th century using scenarios of future radiative forcing. Ethiopia is one 
of the world’s lowest emitters of GHG emissions, ranking 182 of 188 countries 
on per capita emissions [12] and contributing 0.27% of global emissions [13]. 
However, Ethiopia is highly vulnerable to global climate change. 

The Intergovernmental Panel on Climate Change Third Assessment Report 
[14] published forty different emission scenarios provide a range of future possi-
ble GHG emissions and atmospheric concentrations from socio-economic sce-
narios labeled SRES (Special Report on Emission Scenarios) [15]. The SRES de-
scribes 4 narrative storylines (i.e. A1, A2, B1 and B2) which represent different 
demographic, social, economic, technological, and environmental and policy 
future, as emission drivers. The SRES emissions scenarios are the quantitative 
interpretations of these qualitative storylines. Typically of interest are the 
pre-industrial control experiments, which run for long periods holding the forc-
ing agents at fixed levels of the year 1850. They are used to assess the GCMs 
ability to reproduce historical natural climate variability and also provide refer-
ence for the 20th Century and SRES experiments. The 20th Century experiment 
begins in the middle of the 19th century continuing to the end of the 21st cen-
tury with the forcing agents representing the historical record. 

The main objective of this study is to generate future changes in maximum 
and minimum temperature and rainfall at three time periods (2020s, 2055s and 
2090s) in rift valley basins of Ethiopia. Two commonly used emission scenarios 
SRA1B and SRB1, are considered here in the analysis of the future climate 
change in rift valley basins of Ethiopia which is characterized by very rapid eco-
nomic growth (3%/yr), low population growth (0.27%/yr) and rapid introduc-
tion of new and more efficient technology. Globally there is economic and cul-
tural convergence and capacity building, with a substantial reduction in regional 
differences in per capita income for the first scenario and rapid change in eco-
nomic structures, “dematerialization” including improved equity and environ-
mental concern. There is a global concern regarding environmental and social 
sustainability and more effort in introducing clean technologies. The global 
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population reaches 7 billion by twenty first century for second scenario respec-
tively [1]. 

2. Materials and Method 

2.1. Study Area 

This study was conducted in Hawassa zuria district which surrounds Hawassa 
town the capital of SNNPR that constitutes different land forms, which can be 
broadly divided into highlands and low lands. The East African Rift valley bi-
sects the highland plateaus in to two physiographic regions i.e. east and west. In 
the east, there are highland plateaus of Sidama, Burji and Amaro lying between 
2300 to 3338 meters above sea level (masl). The study site is located in east of the 
rift valley in sidama zone (Figure 1). Hawassa zuria district is located in the 
Great Rift Valley of Ethiopia and at 273 km distance from Addis Abeba capital 
city of Ethiopia. It covers latitudinal area from 6.95˚N to 7.13˚N and longitudin-
al area 38.5˚E to 38.73˚E. Hawassa zuria has an annual average rainfall of 955 
mm with mean annual temperature of 20˚C [16]. The main rainy season gener-
ally extends from June to October. 
 

 
Figure 1. Map of the study area. 
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2.2. Baseline Period Data Selection 

The baseline period is the reference period on which calculation of future cli-
mate changes is based. Definition of the baseline period is important in order to 
select the observed climate dataset that combines with climate change informa-
tion to generate climate change projections [17]. [9], [18] and [19] outline four 
criteria that are commonly used in selection of the baseline period.  

1) The baseline period must truly represent the current or recent averages of 
climate conditions within the area.  

2) The baseline period must be sufficiently long and cover a wide range of 
climate variations, including extreme weather conditions.  

3) The suitable baseline period is the one for which the major climatic data 
like rainfall (precipitation), temperature, sunshine and relative humidity are rea-
dily available, easily accessible and adequately distributed over space.  

4) The baseline period should have high quality climate data (with few miss-
ing data, if any).  

Based on these four selection criteria mentioned a baseline period of 30 years 
meteorological data from (1985-2014) was used to generate synthetic weather 
data.  

2.3. Description of Long Ashton Research Department Station  
Weather Generator (LARS-WG) 

Long Ashton Research Station Weather Generator (LARS-WG Version 5.5, to 
date version) was used for this study to simulate future weather data for Ethiopia 
and the model used data of southern region of Ethiopia specifically Hawassa zu-
ria district as a case study. LARS-WG is implemented in C++ with full Windows 
interface and is freely accessible at  
http://www.rothamsted.ac.uk/mas-models/larswg.php (by providing LARS-WG 
specific site derivatives e.g. site parameter and diagnostics files, with the research 
community). The model simulates weather data at a single site under current 
and future conditions [20]. LARS-WG Version 5.5 also includes fifteen (15) 
General Climate Models (GCMs) which have been used in the IPCC 4th As-
sessment Report (2007). The simulated data from the model are in form of daily 
time-series for the following climate variables [21].  

Maximum and minimum temperature (˚C), precipitation (mm) and solar 
radiation in Mega joule per square meter per day (MJ/m2/day)  

Table 1 presents General Climate Models (GCMs) incorporated in LARS WG 
5.5 with their respective grid resolution, emission scenarios and time periods 
based on baseline.  

2.4. Model Calibration and Validation  

The process of generating synthetic weather data can be grouped into three dis-
tinct steps [21]: 1) model calibration, 2) model validation and 3) generation of 
synthetic weather data analysis.  
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Table 1. Global climate models from IPCC AR4 incorporated into the LARS-WG stochastic weather generator version 5.5 used in 
this study. B: baseline; T1: 2011-2030; T2: 2046-2065; T3: 2080-2099 [22]. 

Research Centre Country 
Global 

Climate Model 
Model 

Acronym 
Grid 

Resolution 
Emission 
Scenarios 

Time 
Periods 

Commonwealth Scientific and 
Industrial Research Organization 

Australia CSIRO-MK3.0 CSMK3 1.9 × 1.9˚ SRA1B, SRB1 B, T1, T2, T3 

Canadian Centre for Climate 
Modelling and Analysis 

Canada CGCM33.1 (T47) CGMR 2.8 × 2.8˚ SRA1B B, T1, T2, T3 

Institute of Atmospheric Physics China FGOALS-g1.0 FGOALS 2.8 × 2.8˚ SRA1B, SRB1 B, T1, T2, T3 

Centre National de Recherches Meteorologiques France CNRM-CM3 CNCM3 1.9 × 1.9˚ SRA1B, SRA2 B, T1, T2, T3 

Institute Pierre Simon Laplace France PSL-CM4 IPCM4 2.5 × 3.75˚ SRA1B, SRA2, SRB1 B, T1, T2, T3 

Max-Planck Institute for Meteorology Germany ECHAM5-OM MPEH5 1.9 × 1.9˚ SRA1B, SRA2, SRB1 B, T1, T2, T3 

National Institute for Environmental Studies Japan MRI-CGCM2.3.2 MIHR 2.8 × 2.8˚ SRA1B, SRB1 B, T1, T2, T3 

Bjerknes Centre for Climate Research Norway BCM2.0 BCM2 1.9 × 1.9˚ SRA1B, SRB1 B, T1, T2, T3 

Institute for Numerical Mathematics Russia INM-CM3.0 INCM3 4 × 5˚ SRA1B, SRA2, SRB1 B, T1, T2, T3 

UK Meteorological Office UK 
HadCM3 HADCM3 2.5 × 3.75˚ SRA1B, SRA2, SRB1 B, T1, T2, T3 

HadGEM1 HADGEM 1.3 × 1.9˚ SRA1B, SRA2 B, T1, T2 

Geophysical Fluid Dynamics Lab USA GFDL-CM2.1 GFCM21 2.0 × 2.5˚ SRA1B, SRA2, SRB1 B, T1, T2, T3 

Goddard Institute for Space Studies USA GISS-AOM GIAOM 3 × 4˚ SRA1B, SRB1 B, T1, T2, T3 

National Centre for Atmospheric Research 
USA PCM NCPCM 2.8 × 2.8˚ SRA1B, SRB1 B, T1, T2, 

USA CCSM3 NCCCS 1.4 × 1.4˚ SRA1B, SRA2, SRB1 B, T1, T2, T3 

2.4.1. Calibration of the Model 
Calibration is the first step that is executed by the model in order to generate 
synthetic weather data. Calibration of LARS-WG is carried out by a function on 
the main menu called “Site Analysis”. The process is done so as to determine 
statistical characteristics and site parameters of the observed weather data. In 
this study, site analysis was performed on observed data for a period of 30 years 
(1985-2014). Once the program encounters “illegal data” during execution, an 
“error” is displayed. “Illegal” data includes the value of minimum temperature 
being greater than maximum temperature and being precipitation values less 
than zero (negative precipitation) [21].  

During calibration period the model calculates the mean and standard devia-
tion for generated and observed data based on 30 years input data and t, K-S and 
f-statistics with their respective p-value for the three climate variables (rainfall, 
maximum and minimum temperature). 

2.4.2. Model Validation 
Once LARS-WG has been calibrated, its ability to simulate future weather data 
in the representative study site is assessed. Validation is a process that is used to 
determine how well a model can simulate potential future climate variables. The 
process involves comparing and analyzing the statistical characteristics of the 
observed and synthetic weather data in order to determine the existence of any 
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statistically-significant differences between them. Validation of the model can be 
conducted in two different ways: 1) using the GENERATOR option to synthesize 
daily weather data based on the information in the site parameter files and then 
undertake comparisons between the observed and synthetic data “off-line”, or 2) 
using the Q-test option that executes statistical comparisons between climate 
parameters derived from observed weather data and synthetic weather data gen-
erated using LARS-WG. The Q test function was used to determine the ability of 
LARS-WG to rationally estimate future climate variables. This was achieved us-
ing three statistical tests; chi-square test (X2), t-test and K-S (Kolmogo-
rov-Smirnov) which is output Q test function to test the performance of 
LARS-WG. The chi-square test was used to determine the existence of any sig-
nificant difference between the simulated and observed frequencies in the me-
teorological data. A t-test was used to check the existence of any reliable differ-
ence between the means of the generated and observed data sets. Additionally; a 
K-S test was used to decide if a sample comes from population with a specific 
distribution. The Kolmogorov-Smirnov (K-S) statistic ∆  is the absolute maxi-
mum differences between observed cumulative probability P(Xm) and the theo-
retical cumulative probability F(Xm). 

( ) ( )max m mF X P X∆ = −  

Observed cumulative probability is computed using Weibul’s formula 

( ) 1
 1m

n
n

P X m+ −
+

=  and theoretical cumulative probability is obtained for each 

ordered observation using the selected distribution. 
Where n is sample size and m is ordered sequence or rank. 
By using two statistical tests X2 (chi-square) and t-test we calibrate and vali-

date LARS-WG model. In addition to these two tests K-S test is used to cross 
check whether observed and generated distribution is from the same population 
or not. Large X2 and t values indicate the existence of real difference between 
observed and estimated/generated climate variables. Conversely, smaller X2 and t 
values indicate that there is less difference between observed and estimated data 
sets. K-S value also should be less than critical value to accept the null hypothesis 
Ho that says the generated data distribution has the same population distribution 
as observed data sets. Each X2, t and K-S value has a corresponding p-value out-
put from the model Q-test button, which is the probability that the pattern of 
data in the sample could be produced by random variables. A p-value of 0.05 
simply means there is a probability of 5% that there is no difference between ob-
served and simulated data. P-values below the set significance level indicate that 
the simulated climate variables are far from the true climate values. For the pur-
pose of this study, a p-value was set at 0.05 which is commonly used in statistical 
tests and climate change studies [23].  

2.4.3. Generation of Synthetic Weather Data 
Once LARS-WG has been calibrated (Site Analysis) and the performance of the 
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weather generator has been verified (Q-test), the “Generator” option then gene-
rates synthetic weather data. Synthetic weather data generated from this option 
have the same characteristics as observed weather data. This option also enables 
one to generate synthetic weather data analogous to a scenario of climate 
change. The following output data is obtained from this function:  
 Relative change in monthly mean rainfall  
 Relative change in duration of wet and dry spell  
 Absolute change in monthly mean minimum temperature  
 Absolute change in monthly mean maximum temperature  
 Relative changes in daily temperature variability  
 Absolute change in monthly mean radiation  

LARS-WG is based on the series weather generator described in [19]. It utiliz-
es semi-empirical distributions (SED) for the lengths of wet and dry day series, 
daily precipitation, minimum and maximum temperature and daily solar radia-
tion. The semi-empirical distribution { }0 , ; , 1, , 23i iEmp a a h i= =  , is a histo-
gram with 23 intervals, (ai−1, ai), where ai−1 < ai, and hi denotes the number of 
events from the observed data in the ith interval. Random values from the 
semi-empirical distributions are chosen by first selecting one of the intervals 
(using the proportion of events in each interval as the selection probability), and 
then selecting a value within that interval from the uniform distribution. Such a 
distribution is flexible and can approximate a wide variety of shapes by adjusting 
the intervals [ai−1, ai). The cost of this flexibility, however, is that the distribution 
requires many parameters (24 parameters for the edges and 23 parameters for 
the number of events in each interval) to be specified compared with, for exam-
ple, 3 parameters for the mixed-exponential distribution used in an earlier ver-
sion of the model to define the dry and wet day series [24].  

2.5. Uncertainty Analysis of GCMs 

2.5.1. Weighting of GCMs 
The first step of this technique involves weighting each of the 15 GCMs used in 
the study based on the Mean Observed Temperature-Precipitation (MOTP) 
method [25]; [23]. In order to weight each GCM, the ability of the model to 
project weather data is considered. In other words, the method considers the 
monthly average difference between observed and simulated climate variables 
(precipitation and minimum and maximum temperature).  

15

1

1

1

ij
ij

j
ij

d
w

d=

∆
=

 
 
∆  

∑
 

where wij is the weight of GCM j in month i; and ijd∆  is the absolute differ-
ence between the average precipitation (rainfall) or temperature between ob-
served value and the value simulated by GCM j in month i. 
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2.5.2. Generation of Probability Distribution Functions (PDFs) 
This step implies generation of PDFs of changes in climate variables based on 
the calculated weights. The PDFs outline the relationship between the weight of 
each GCM and the average changes in monthly precipitation, minimum tem-
perature and maximum temperature. With 15 GCMs and 2 emission scenarios 
used in this work, 30 PDFs are thus constructed for each month. The generated 
discrete PDFs of the main variables are ultimately converted to cumulative 
probability functions (CDFs). Several studies have identified the use of Gamma 
distribution function as an important tool for analysis of climate data [23]; [26]; 
[27]; [28]. Based on similar studies that were carried by [29], [30] and [23], the 
Gamma function has been selected for generation of cumulative distribution 
functions as follows; 

( ) 11 e ; 0
 ( )

xf x X xα β
αβ α

− −= ≥
Γ

 

where α and β are shape and scale parameters of the Gamma distribution func-
tion respectively, −x is the climate variable (temperature or precipitation), and is 
the incomplete Gamma function as given in Equation below. 

( ) 1
0

e dxx xαα
∞ − −Γ = ∫  

By changing values of α and β, we obtain the best fit based on maximum like-
lihood model. The summation of squared error (Equation (19)) has been used to 
show how best the Gamma function fits the data. 

( )
1
 

n

i i
i

SSE y y
=

= −∑  

where yi is the data point; iy  is the estimation of Gamma function and n is the 
number of data points. For this study, n = 15. 

2.5.3. Generation of Cumulative Distribution Functions (CDFs) 
In this step, the PDFs generated in the second step are converted to CDFs for 
each of the 12 months (January-December). Next, values of climate change va-
riables at three probability percentiles are extracted from the generated CDFs at 
the following risk levels: 25th, 50th, and 75th probability percentiles. The 25th 
probability percentile indicates a scenario of high changes in precipitation and 
low temperature changes. The 75th probability percentile represents a scenario 
with low changes in precipitation but high temperature changes. The 50th 
probability percentile is the median probability percentile for both precipitation 
and temperature. The generated PDFs were converted to CDFs using the gamma 
distribution function whose shape and scale parameters alpha (α) and beta (β) 
were as coded in MATLAB programming language which was resulted in high 
strength correlation coefficient (r = 0.999). 

3. Result and Discussion 

3.1. Calibration and Validation of LARS-WG 

The output from Q-test of the model is used for calibration and validation of the 
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software [21]. The χ2, t- and p-tests assume that the observed weather is a ran-
dom sample from some existing distribution, which represents the ‘true’ climate 
at the site. In the absence of any changes in climate, this true distribution could 
be estimated accurately from observed data over a very long time period. Figure 
2 presents the monthly p-values of X2, K-S and t-tests for rainfall; K-S and t-tests 
plot for minimum and maximum temperatures based on [21]. The figure indi-
cates p-value for chi-square and t-test varies among months whereas p-value for 
k-S test approaches to unity for all months which shows generated and observed 
climate variables are from the same population [23]. The results indicate that 
p-values in all months for both rainfall and temperatures are higher than the se-
lected significance level of 0.05 for the three tests. Thus the model is satisfactori-
ly to simulate future climate data.  

Indeed Figure 3 shows that the mean and standard deviation of monthly ob-
served data resemble with generated data for three climate variables rainfall, 
maximum and minimum temperatures. This ensures our confidence to use 
LARSWG5.5 for future synthetic meteorological weather data generation. 

3.2. Future Climate Variables Generation 

Future mean climate variables (rainfall and temperatures) for fifteen (15) 
GCMs are generated using Generator key function of LARS-WG 5.5 with pers-
pective to two emission scenario (SRA1B and SRB1) in the model. Figures 4-6 
show the simulated mean monthly values of rainfall, minimum and maximum  
 

 
 

  
Figure 2. Plot of P-values for X2, K-S and t-tests for rainfall and temperatures. 
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Figure 3. Comparison of generated and observed monthly weather data using mean and 
standard deviation. 
 
temperature in each time horizon in each emission scenarios at different proba-
bility percentiles. The box plots indicate the lower (25%) and upper (75%) quar-
tiles, the line between them is the median, and the lower and upper whiskers 
represent the mean ± standard deviation. The straight line shows the historical 
observed mean monthly rainfall, maximum and minimum temperature based on 
[23]; [26]; [27]; [28]. The figures present that historical observed rainfall mean 
remain in the range of synthetic rainfall mean for three time horizons (2020s, 
2055s and 2090s) under both emission scenarios; whereas historical observed 
maximum and minimum temperatures mean coming out of the ranges of syn-
thetic generated mean temperatures in coming three time periods (2020s, 2055s, 
2090) respectively which indicate that temperatures (maximum, minimum) in-
crease is significant in coming time periods under both scenarios whilst synthet-
ic relative rainfall increase or decrease is ambiguous in coming three time pe-
riods in each scenario. Figures 4-6 also present the 15 GCMs predictions that 
indicate a wide range in synthetic climate variables [23]. For instance, consider 
the estimated rainfall amount in the month of March estimated under emission 
scenario A in 2055s (SRA1B-2055s). Simulated rainfall amount by all GCMs for 
this month ranges approximately between 58 mm (BCM2) GCM model to 136 
mm (NCPCM) GCM model where the difference is about 70 mm. 
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Figure 4. Box plots showing the simulated mean monthly rainfall for 15 GCMs under 
scenarios A and B for three different time steps. 
 

Figures 4-6 clearly present that there are predictions variations among each 
15 GCMs model for the three climate variables (maximum, minimum tempera-
ture and rainfall) but the variation is high in rainfall than temperatures. Consid-
er the estimated maximum temperature amount in the month of June estimated 
under emission scenario A in 2090s (SRA1B-2090s); The simulated maximum 
temperature amount by all GCMs for this month ranges approximately between 
27.46˚C (GIAOM) GCM model to 30.23˚C (MPEH5) GCM model where the 
difference is about 2.768˚C. Similarly simulated minimum temperature in the 
month of December under emission scenario B in 2090s (SRB1-2090s) by all  

SRB1-2020s

Months

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Si
m

ul
at

ed
 R

ai
nf

al
l

0

20

40

60

80

100

120

140

160

Simulated mean percentile
Observed mean

SRA1B-2020s

Months

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Si
m

ul
at

ed
 R

ai
nf

al
l

0

20

40

60

80

100

120

140

160

Simulated mean percentile
Observed mean

SRA1B-2055s

Months

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Si
m

ul
at

ed
 R

ai
nf

al
l

0

20

40

60

80

100

120

140

160

180

Simulated mean pertentile
Observed mean

SRB1-2055s

Months

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Si
m

ul
at

ed
 R

ai
nf

al
l

0

20

40

60

80

100

120

140

160

180

200

Simulated mean percentile
Observed mean

SRA1B-2090s

Months

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Si
m

ul
at

ed
 R

ai
nf

al
l

0

20

40

60

80

100

120

140

160

Simulated mean percentile
Observed mean

SRB1-2090s

Months

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Si
m

ul
at

ed
 R

ai
nf

al
l

0

20

40

60

80

100

120

140

160

180

Simulated mean percentile
Observed mean

https://doi.org/10.4236/ajcc.2019.84030


K. N. Disasa et al. 
 

 

DOI: 10.4236/ajcc.2019.84030 573 American Journal of Climate Change 

 

  
 

   
 

  
Figure 5. Box plots showing the simulated mean monthly maximum temperature for 15 
GCMs under scenarios A and B for three different time steps. 
 
GCMs ranges between 11.76˚C (NCCCSM) GCM model to 14.02˚C (INCM3) 
GCM model where the difference is about 2.25˚C. This range in magnitude of 
output data simply confirms the notion that output weather variables from 
GCMs are associated with uncertainties [23]. This phenomenon recurs in the 
rest of the months, scenarios and in all time periods both in simulated rainfall 
and minimum and maximum temperature data. It is therefore significant that 
such uncertainties are accounted for before outputs of GCMs are used in climate 
change assessment studies. 
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Figure 6. Box plots showing the simulated mean monthly minimum temperature for 15 
GCMs under scenarios A and B for three different time periods. 
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Table 2 shows the weight of each GCM in simulating future changes in rainfall; 
Table 3 shows the weight of each GCM in simulating future changes in mini-
mum temperature and Table 4 shows the weight of each GCM in simulating fu-
ture changes in maximum temperature in each month. Generally, the expected 
relative precipitation changes are more uncertain about 0.83 weight differences 
among GCMs models whereas the relative expected temperature change among  
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Table 2. Calculated weight of each GCM in simulating future rainfall. 

 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

BCM2 0.05 0.15 0.01 0.08 0.06 0.33 0.26 0.06 0.06 0.05 0.01 0.06 

CGMR 0.02 0.04 0.26 0.05 0.03 0.02 0.02 0.04 0.05 0.05 0.01 0.04 

CNCM3 0.02 0.06 0.02 0.17 0.08 0.03 0.05 0.05 0.06 0.03 0.01 0.03 

CNCM3 0.04 0.11 0.02 0.12 0.06 0.17 0.07 0.05 0.05 0.09 0.02 0.09 

FGOALS 0.03 0.04 0.02 0.03 0.06 0.04 0.09 0.05 0.06 0.03 0.01 0.04 

GFCM21 0.03 0.1 0.03 0.15 0.12 0.02 0 0.04 0.16 0.05 0.01 0.1 

GIAOM 0.07 0.07 0.04 0.04 0.04 0.04 0.19 0.06 0.06 0.05 0.01 0.07 

HADCM3 0.05 0.04 0.01 0.03 0.16 0.07 0.11 0.06 0.06 0.06 0.01 0.05 

HADGEM 0.02 0.16 0.23 0.06 0.1 0.07 0.01 0.03 0.04 0.22 0.83 0.2 

INCM3 0.01 0.03 0.02 0.04 0.05 0.03 0.01 0.16 0.07 0.03 0.01 0.04 

IPCM4 0.44 0.06 0.04 0.03 0.02 0.02 0.02 0.07 0.08 0.05 0.01 0.05 

MIHR 0.02 0.04 0.09 0.03 0.02 0.02 0.07 0.05 0.06 0.05 0.01 0.04 

MPEH5 0.13 0.05 0.09 0.11 0.1 0.08 0.04 0.18 0.09 0.05 0.01 0.06 

NCCCSM 0.06 0.05 0.13 0.05 0.05 0.02 0.01 0.06 0.05 0.06 0.01 0.05 

NCPCM 0.01 0.01 0 0.02 0.05 0.05 0.04 0.04 0.05 0.13 0.04 0.08 

 
Table 3. Calculated weight of each GCM in simulating future minimum temperature. 

 
Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec 

BCM2 0.06 0.06 0.06 0.06 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 

CGMR 0.05 0.06 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.05 0.06 0.06 

CNCM3 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.05 

CSMK3 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.09 0.10 0.09 0.08 0.08 

FGOALS 0.09 0.08 0.08 0.09 0.09 0.08 0.08 0.08 0.08 0.08 0.09 0.09 

GFCM21 0.06 0.06 0.06 0.05 0.06 0.06 0.06 0.07 0.06 0.06 0.07 0.06 

GIAOM 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.09 0.08 0.07 0.08 

HADCM3 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.06 0.05 0.06 0.06 0.06 

HADGEM 0.09 0.09 0.09 0.09 0.08 0.08 0.07 0.07 0.08 0.08 0.09 0.08 

INCM3 0.04 0.04 0.04 0.04 0.05 0.05 0.06 0.06 0.06 0.05 0.04 0.04 

IPCM4 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 

MIHR 0.04 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.05 

MPEH5 0.05 0.06 0.05 0.05 0.05 0.04 0.04 0.05 0.05 0.05 0.06 0.06 

NCCCSM 0.08 0.08 0.08 0.07 0.07 0.08 0.07 0.07 0.07 0.07 0.07 0.08 

NCPCM 0.11 0.10 0.11 0.13 0.12 0.12 0.12 0.11 0.13 0.10 0.09 0.10 
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Table 4. Calculated weight of each GCM in simulating future maximum temperature. 

 
Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec 

BCM2 0.08 0.06 0.05 0.05 0.05 0.06 0.06 0.07 0.07 0.08 0.09 0.09 

CGMR 0.05 0.05 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.05 

CNCM3 0.05 0.04 0.05 0.04 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 

CSMK3 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.08 0.08 0.07 

FGOALS 0.08 0.08 0.08 0.08 0.09 0.08 0.08 0.08 0.08 0.08 0.08 0.08 

GFCM21 0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.07 0.06 0.06 0.05 0.05 

GIAOM 0.10 0.11 0.09 0.10 0.10 0.09 0.09 0.09 0.09 0.09 0.09 0.10 

HADCM3 0.05 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

HADGEM 0.08 0.10 0.09 0.09 0.08 0.08 0.07 0.07 0.07 0.08 0.08 0.08 

INCM3 0.08 0.08 0.08 0.08 0.07 0.08 0.09 0.10 0.10 0.10 0.11 0.09 

IPCM4 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.05 

MIHR 0.05 0.04 0.05 0.04 0.04 0.05 0.05 0.05 0.04 0.04 0.04 0.05 

MPEH5 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.05 0.05 0.05 0.04 0.05 

NCCCSM 0.07 0.07 0.07 0.07 0.07 0.08 0.07 0.07 0.07 0.07 0.06 0.07 

NCPCM 0.10 0.12 0.10 0.13 0.14 0.13 0.11 0.11 0.11 0.10 0.09 0.09 

 
GCMs is about 0.09 weight difference. This result shows that LARS WG 5.5 
model is more certain to generate statistically monthly absolute mean tempera-
tures than generating monthly relative mean rainfall [23]. 

3.3.2. Probability Distribution Functions (PDFs) 
Figures 7-9 show sample monthly discrete PDFs for the 15 GMs under scenarios 
A (SRA1B) and B (SRB1) against weight of each model to simulate climate va-
riables in coming three time horizons [23]. For instance, first figure under Fig-
ure 7 shows relative rainfall change against GCMs weight for the month of 
March for the period of 2020s under scenario SRA1B. The figure shows that big 
rainfall changes from 0.8 to 1.2 ranges in GCM weight of 0 to 0.1.  

3.3.3. Cumulative Distribution Functions (CDFs) 
In this step, the developed PDFs are converted to CDFs [23], [29], [30] using 
gamma distribution function with two parameters. Here, exceedance probability 
curves or CDFs can be developed based on the constructed PDFs from Figures 
7-9 for Figures 10-12.  

3.4. Generation of Probability Percentiles 

The magnitude of the expected changes in rainfall, minimum and maximum 
temperature at three different probability percentiles (25%, 50% and 75%), were 
determined from the synthetic CDFs for both scenarios (SRA1B and SRB1) and 
in three time steps (2020s, 2055s and 2090s). Figure 13 shows the expected 
changes in future rainfall amounts under two scenarios [23]. The simulated  
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Figure 7. Sample Discrete PDFs outlining the relationship between weights of 15 GCMs 
and monthly changes in relative rainfall. 
 

  
 

  
Figure 8. Sample Discrete PDFs outlining the relationship between weights of 15 GCMs 
and monthly changes in relative minimum temperature. 
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Figure 9. Sample Discrete PDFs outlining the relationship between weights of 15 GCMs 
and monthly changes in relative maximum temperature. 
 

  
 

  
Figure 10. Sample CDFs for rainfall based on sample PDFs shown above under Figure 7. 
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Figure 11. Sample CDFs for minimum temperature based on sample PDFs shown above 
under Figure 8. 
 

  
 

   
Figure 12. Sample CDFs for max temperature based on sample PDFs shown above under 
Figure 9. 

SRA1B-2020s,Oct

Relative Minimum Temperature Change

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

E
xc

ee
da

nc
e 

Pr
ob

ab
ili

ty

0.0

0.2

0.4

0.6

0.8

1.0

SRB1-2020s,Aug

Relative Minimum Temperature Change

0.2 0.3 0.4 0.5 0.6 0.7

E
xc

ee
da

nc
e 

Pr
ob

ab
ili

ty

0.0

0.2

0.4

0.6

0.8

1.0

SRA1B-2055s,Dec

Relative Minimum Temperature Change

0.5 1.0 1.5 2.0 2.5 3.0 3.5

E
xc

ee
da

nc
e 

Pr
ob

ab
ili

ty

0.0

0.2

0.4

0.6

0.8

1.0

SRA1B-2090s,Dec

Relative Minimum Temperature Change

1.5 2.0 2.5 3.0 3.5 4.0 4.5

E
xc

ee
da

nc
e 

Pr
ob

ab
ili

ty

0.0

0.2

0.4

0.6

0.8

1.0

SRA1B-2055s,May

Relative Maximum Temperature Change

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

E
xc

ee
da

nc
e 

Pr
ob

ab
ili

ty

0.0

0.2

0.4

0.6

0.8

1.0

SRA1B-2020s,May

Relative Maximum Temperature Change

0.1 0.2 0.3 0.4 0.5 0.6 0.7

E
xc

ee
da

nc
e 

Pr
ob

ab
ili

ty

0.0

0.2

0.4

0.6

0.8

1.0

SRA1B-2090s,May

Relative Maximum Temperature Change

1.5 2.0 2.5 3.0 3.5 4.0 4.5

E
xc

ee
da

nc
e 

Pr
ob

ab
ili

ty

0.0

0.2

0.4

0.6

0.8

1.0

SRA1B-2090s,Sept

Relative Maximum Temperature Change

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

E
xc

ee
da

nc
e 

Pr
ob

ab
ili

ty

0.0

0.2

0.4

0.6

0.8

1.0

https://doi.org/10.4236/ajcc.2019.84030


K. N. Disasa et al. 
 

 

DOI: 10.4236/ajcc.2019.84030 580 American Journal of Climate Change 

 

   
 

  
 

  
Figure 13. The estimated future changes in relative rainfall at three probability percen-
tiles. 
 
results show that higher rainfall changes are expected under scenario A than 
scenario B in all three time periods except in period 2055s at 25% probability 
percentile. The expected changes in monthly rainfall for each time period varies 
between risk levels. Results indicate high increase in rainfall in some months like 
December, January, and February (DJF) which is winter (“bega”) season of the 
country. The United Nations Development Programme (UNDP) country profile 
study projections consistently indicate increases in annual rainfall in Ethiopia, 
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largely due to increased rain in the short rainy season of October-December in 
southern Ethiopia [31] that supports this study. However, some months of year 
like May to August indicate low increase in rainfall under both scenarios for 
three time periods at each risk level and very low rainfall increase is generated in 
summer (“kiremt”) season of the country from June to August (JJA). Table 5 
under shows the general seasonal rainfall variability at each time period under 
both emission scenarios at three probability percentile. On average, summer 
rainfall amounts are expected to increase and/or decrease with the ranges of 
−2.34% to 2.67%, −5.5% to 4.67% and −4% to 8.34% in 2020s, 2050s and 2090s 
respectively and winter rainfall amounts are expected to increase and/or de-
crease with ranges −3.67% to 15%, 6.34% to 37.5% and 7.84% to 66.34% in 
2020s, 2050s and 2090s respectively. However, overall mean monthly rainfall 
generation indicates that rainfall will increase in the study area in range of −2.3% 
to 7%, 0.375% to 15.83% and 2.625% to 31.0% in three time periods 2020s, 2055s 
and 2090s respectively. Ethiopia national meteorological agency (NMA) released 
climate projections for Ethiopia that has been generated using the software 
MAGICC/SCENGEN (Model for the Assessment of Greenhouse-gas Induced 
Climate Change)/(Regional and global Climate SCENario GENerator) coupled 
model (Version 4.1) for three periods centered on the years 2030, 2050 and 2080. 
Rainfall prediction for coming three time periods based on 19 GCMs models for 
different parts of the country under scenario A1B and B1 with relative to base-
line period of 1961-1990 normal. The study result outlined that rainfall projec-
tions from different models in the ensemble are broadly consistent in indicating 
increases in annual rainfall in Ethiopia. However these increases are likely to 
occur in the October, November and December rainfall season (OND) in south-
ern Ethiopia and in an increasing amount of rainfall occurring in “heavy 
events.” Annual changes in heavy events range from −1% to +18%. The largest 
increases are seen in JAS and OND rainfall [27]. Projections of change in the  
 
Table 5. Seasonal rainfall variability output under each scenario and in each time hori-
zons at different risk levels. 

Periods Seasons 
Scenario A Scenario B 

Range 
25A 50A 75A 25B 50B 75B 

2020s 

DJF ('bega') −3.67 9 15 −0.17 5.34 12.34 −3.67 15 

MAM ('belg') −1.34 1.67 5.5 −1.84 2 5.67 −1.87 5.67 

JJA ('kiremt') −2.34 −0.67 2.17 −0.5 0.67 2.67 −2.34 2.67 

SON ('tseday') −1.84 3.34 5.34 −0.17 2.67 6.34 −1.84 6.34 

2055s 

DJF ('bega') 6.34 20.67 37.5 10 18.34 25.5 6.34 37.5 

MAM ('belg') −3.67 4.67 10.34 −2.34 3 9.84 −3.67 10.34 

JJA ('kiremt') −5.5 −0.67 1.84 −2.84 0.34 4.67 −5.5 4.67 

SON ('tseday') 4.34 8 13.67 5.67 10.34 16 4.34 16 

2090s 

DJF ('bega') 27 55.67 66.34 7.84 24 36.5 7.84 66.34 

MAM ('belg') −4 9 19.67 −2 5.34 16.84 −4 19.67 

JJA ('kiremt') −4 0.67 8.34 −3.34 1 5.34 −4 8.34 

SON ('tseday') 17 20.34 30 8 11.34 15.5 8 30 
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rainy seasons April, May, June (AMJ) and July, August, September (JAS) rainfall 
seasons which affect the larger portions of Ethiopia are more mixed, but tend 
towards slight increases in the south west and deceases in the north east [32] 
which rely the result of this study. Figures 13-15 present estimated future 
changes in rainfall, maximum temperature and minimum temperature at three 
probability percentiles. 

Figure 14 and Figure 15 are plots of minimum and maximum temperatures 
for scenarios A and B under three percentiles at three time periods. Overall, 
temperature is expected to increase in all cases, with higher temperature changes 
expected under scenario A than in scenario B. The mean annual temperature is 
projected to increase by 1.1˚C to 3.1˚C by the 2060s, and 1.5˚C to 5.1˚C by the 
2090s [31]. Absolute values for changes in minimum temperature for 2020s, 
2055s and 2090s are 0.34˚C to 0.58˚C, 0.94˚C to 1.8˚C and 1.42˚C to 3.2˚C re-
spectively. Similarly, changes in maximum temperature for the same time pe-
riods were estimated as follows; 0.32˚C to 0.56˚C, 0.91˚C to 1.8˚C and 1.34˚C to 
3.035˚C respectively.  

The same study released by national meteorological agency (NMA) of Ethi-
opia as explained above for rainfall using the IPCC mid-range (A1B) emission 
scenario, the mean annual temperature will increase in the range of 0.9˚C - 
1.1˚C by 2030, in the range of 1.7˚C - 2.1˚C by 2050 and in the range of 2.7˚C - 
3.4˚C by 2080 over Ethiopia compared to the baseline 1961-1990 normal. Other 
sources of data have also substantiated the variability of climate and its trends in 
a somewhat similar way. Historical climate analysis for Ethiopia indicates that 
mean annual temperature has increased by 1.3˚C between 1960 and 2006, an av-
erage rate of 0.28˚C per decade. The result of the study also declared that an in-
crease in temperature in Ethiopia has been most rapid in June, August and Sep-
tember at a rate of 0.32˚C per decade [32] whereas the result of this study indi-
cates rapid temperature increase is simulated in December, January and March. 
A summary of average changes in precipitation, minimum and maximum tem-
perature for each scenario and time period is shown in Table 6. 
 
Table 6. Summary of mean annual and overall ranges of estimated climate variables in 
each time period, at different scenarios and probability percentiles. 

Climate Variable 
Scenario 

percentile 
A B 

Range 
25A 50A 75A 25B 50B 75B 

Rainfall 
Change (%) 

2020 7 3.33 −2.3 6.75 2.67 0.67 −2.3 7 

2055 15.83 8.17 0.375 14 7.83 2.625 0.375 15.83 

2090 31.1 22.17 9 18.54 10.42 2.625 2.625 31.1 

Minimum 
Temperature 
Change (˚C) 

2020 0.37 0.51 0.58 0.34 0.45 0.55 0.34 0.58 

2055 1.3 1.6 1.8 0.94 1.18 1.4 0.94 1.8 

2090 2.11 2.67 3.2 1.42 1.75 2.29 1.42 3.2 

Maximum 
Temperature 
Change (˚C) 

2020 0.33 0.47 0.56 0.32 0.41 0.5 0.32 0.56 

2055 1.18 1.58 1.8 0.91 1.04 1.36 0.91 1.8 

2090 1.98 2.54 3.035 1.34 1.6 2.14 1.34 3.035 
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Figure 14. Estimated future changes in minimum temperature at three probability per-
centiles. 

4. Conclusion 

The study result indicates that LARS-WG 5.5 model is more ambiguous to si-
mulate future mean rainfall than generating maximum and minimum tempera-
ture whereby weight difference among GCMs is 0.83 for rainfall and 0.09 for 
temperatures. The results of this study also indicate that mean annual rainfall 
changes of the area range from −2.3% to 7%, 0.375% to 15.83% and 2.625% to  
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Figure 15. Estimated future changes in maximum temperature at three probability per-
centiles. 
 
31.1% in 2020s, 2055s and 2090s respectively. However, mean monthly rainfall 
patterns depicted both increase and decrease behavior in different months and 
time periods; indicating relatively rainfall decrease in summer (“Kiremt”) and 
rainfall increase in winter (“Bega”) for all three time periods and three probabil-
ity percentiles. Ironically an overall increase in mean monthly temperature in all 
three time periods was observed. Average minimum temperature changes’ range 
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for 2020s, 2055s and 2090s is 0.34˚C to 0.58˚C, 0.94˚C to 1.8˚C and 1.42˚C to 
3.2˚C respectively. Similarly, changes in maximum temperature for the same 
time periods are 0.32˚C to 0.56˚C, 0.91˚C to 1.8˚C and 1.34˚C to 3.04˚C respec-
tively. An overall temperature change for three time periods ranges from 0.32˚C 
to 0.58˚C, 0.91˚C to 1.8˚C and 1.34˚C to 3.2˚C in 2020s, 2055s and 2090s respec-
tively. Generated temperature change in coming time periods results indicates 
nearest result as compared with the 2007 report of the Intergovernmental Panel 
on Climate Change (IPCC) which indicates that in sub-Saharan Africa, temper-
atures will rise by over 3˚C in 21st century.  

The same study released by national meteorological agency (NMA) of Ethi-
opia as explained above for rainfall using the IPCC mid-range (A1B) emission 
scenario, the mean annual temperature will increase in the range of 0.9˚C - 
1.1˚C by 2030, in the range of 1.7˚C - 2.1˚C by 2050 and in the range of 2.7˚C - 
3.4˚C by 2080 over Ethiopia compared to the baseline 1961-1990 normal. Other 
sources of data have also substantiated the variability of climate and its trends in 
a somewhat similar way. Historical climate analysis for Ethiopia indicates that 
mean annual temperature has increased by 1.3˚C between 1960 and 2006, an av-
erage rate of 0.28˚C per decade. 
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Figure A1. Monthly 15 GCMs model output of Simulated Versus Observed Rainfall 
mean under two emission scenarios and three time periods. The solid lines show mean of 
each 15 GCMs output and short dash black line is observed historical mean. 
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Figure A2. Monthly 15 GCMs model output of Simulated Versus Observed maximum 
temperature under two emission scenarios and three time periods. The solid lines show 
mean of each 15 GCMs output and short dash black line is observed historical mean. 
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Figure A3. Monthly 15 GCMs model output of Simulated Versus Observed minimum 
temperature under two emission scenarios and three time periods. The solid lines show 
mean of each 15 GCMs output and short dash black line is observed historical mean. 
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