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Abstract 
Effects of wastewater discharge on the coastal area in Gaza strip Palestine are 
not fully investigated. This study investigated the effect wastewater discharge 
of the physical and chemical properties of marine water in the coastal area 
over a period of 2 year. Sea water and sediment samples were collected from 
about 20 different sites. The water and the sediments were collected wastewa-
ter/sea water mixing zone at depth 0, 2.5 and 5 m water column depth at a 
direct wastewater discharging pipe line from different location and similarly 
from other locations. Water temperature T, electric conductivity (EC), dis-
solved oxygen (DO), pH, total dissolved solid (TDS) and salinity were deter-
mined for water samples using field equipment such as pH-meter, DO meter, 
TDS-/ and EC-meter. On the other hand, 3NO− , 2

4SO − , 3
4PO −  were deter-

mined in the laboratory using chemical methods, details are described in ma-
terials and method section. Results showed average and standard deviation of 
T, EC, DO, pH, TDS and salinity were 22.02˚C ± 4.1˚C, EC: 58.41 ± 4.8 
ms/cm; DO: 6.96 ± 1.8 mg/L; pH: 7.69 ± 0.37; TDS: 30.51 ± 3.29 and salinity 
4.39 ± 0.12 (%); whereas, average and standard deviation of 3NO− : were 299.8 

± 204.1 mg/L; 2
4SO − , 5736.9 ± 817.1; and 3

4PO − : 164.35 ± 120.7 mg/L. The 
measured values indicate significant differences due to high value of standard 
deviation of some measured parameters. This indicates the influence of waste-
water discharge in sea water as shown inside the manuscript in the appropri-
ate section. The study recommends efficient treatment of wastewater and reus-
es it for agricultural purposes instead of discharging it in sea. 
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1. Introduction 

Seawater physical parameters such as temperature, dissolved oxygen, electric 
conductivity, and total dissolved salts are important parameters for healthy 
environment of fish. Partial changes and/or disturbances of these parameters 
may impact fish lives. Disturbances of physical parameters of the seawater may 
occur due to discharging raw or partially treated wastewater of different origins 
by different coastal cities and ships. It has been shown the industrial waste water 
from coastal cities contained potentially toxic materials [1] [2], fertilizer and 
pesticide residues [3]. Additionally, shipping and/or fishing activities along the 
sea shore have been shown to add contaminants to the marine water system [4]. 
Furthermore, physicochemical parameter of the seawater was affected by at-
mospheric temperature, rainfall quantity, and other parameters [5]. Discharging 
of wastewater in Gaza Strip, may contain different types of hazardous chemicals 
such as pharmaceuticals, pesticides and fertilizers, detergents, heavy metals and 
dissolved organic compounds. These chemicals may undergo certain reactions 
in seawater that result in toxic effects to the marine life, changing the physical 
and the chemical properties of water resulting in changing or disturbing the 
geochemical cycles of main elements in the sea. However, wastewater is a prob-
lem of major concern worldwide. It may contain pesticides residue [6]-[11], 
pharmaceutical, industrial waste and/or petroleum products [12]. These conta-
minates may harm aquatic organisms (phytoplankton and zooplankton). It has 
been shown that pesticide caused damage to marine algae and cyanobacteria 
[13], harmfully fish [14] and phytotoxicity [15] [16]. It has been reported that 
wastewater contained considerable levels of heavy metals [17]. Discharging treated 
waste water to Gabou river in France dramatically changed the concentration of 
dissolved organic compound [18] [19] [20] and similar result were recorded in 
the coastal area and marine water in France. Furthermore, five wastewater treat-
ment plants distributed all over the coastal zone ad discharging the wastewater 
to sea. Almost more than 100,000 m3/day are discharged to the sea. This large 
quantity of wastewater neither meets the international nor the Palestinian stan-
dards. Effects of discharging waste water to the sea are not fully investigated, ad-
ditionally the available reports do not providing enough information about the 
physicochemical properties of the Mediterranean Sea in Gaza. This study inves-
tigated the effects of discharging wastewater on the physicochemical properties 
in the seawater and its effect on geochemical cycles of carbon, nitrogen, sulfur 
and phosphorus. 
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2. Material and Methods 

All materials used in the analytical determination of nitrate sulfate and phos-
phates were HPLC grade, purchased from Sigma Aldrich in Tel Aviv via local 
commercial representative in Gaza. The coastal zone of Gaza strip was subdi-
vided into two subsections. Each section includes 8 sites for monitoring and 
sampling. The nombres of waste water pipe line that discharge wastewater di-
rectly to the sea was counted and presented in Figure 1. Only five pipe lines dis-
charge waste water directly to the sea. These pipe lines are marked with red ar-
row in the map.  

The investigated sites are: Rafah 2, Rafah, Khan Younis, Aquaculture, Khan 
Younis fish fresh, Khan Younis mixing zone, Dair Albalah S, Dair Albalah N, 
Gaza fish production, Wadi Gaza 1, Wadi Gaza, Shakh Ejjleen, Sea Port baisin, 
Sea port out, Sea port out, Sea port, Abu Saif, Abu hassera, Baghdad, Abu Ameera, 
Ebad Arahman, Kaldi. Mathaf, Sudania and Waha. 

2.1. Seawater Sampling 

About 192 sea water samples were collected from the tested sites (Figure 2) 
along the sea shore in Gaza during two years experimental period. Using a rental 
motor boat, sea water samples were collected from all tested sites using plastics 
cups. The cups were washed with sea water, about 0.5 L of sea water was col-
lected from different location in each site and mixed together to form 5 L then 
the sea water were mixed together to form a pool of sea water Then 1 L was tak-
en in plastic bottle and used for physical and chemical analysis [21] [22] [23]. 
The sample were kept in Ice box and analyzed in the next day. 
 

 
Figure 1. Distribution of sampling sites along coastal zone in Gaza Strip. Red and black 
arrow indicates treated and raw unofficial wastewater discharge pipe line respectively. 
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Figure 2. Physical features of the sampling sites along the coastal area in Gaza Strip. This figure includes the photos in the above 
page. 

2.2. Sediment Collections 

About 28 marine sediment samples were collected from the potentially polluted 
and non polluted-sites (Figure 2). Three sediment samples were collected from 
each site at a water level of 2.5 m with the help of driver. The sediments were air 
dried for 24 h, sieved through 2 mm mesh size sieve. The sieved samples were 
kept in plastic bottles in the laboratory for further analysis. 
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2.3. Determination of Organic Load in Marine Sediments 

Two replicates of 10 g of air dried sediment from each sample were transferred 
to Porcelain cups. The cups were transferred to a muffle furnace. Then the fur-
nace was operated at 550˚C for 12 h then the system was allowed to call down to 
the room temperature. Each cup was weighted dry empty, and with sediments. 
Knowing, the weights of empty cups air dry sediments and the total weight of 
sediments and cup of the muffle Furnace enable to collect the loss of sediment 
weight which reflects the organic carbon content. Using the equation below 
enables the calculation of % of organic matters  

Wtb Wab%OC 100
Wtb
−

= ∗                     (1) 

where Wtb, Wab are the Total weight of cup before and after burning, respec-
tively. Following the procedure describe previously [24]. 

2.4. Determination of pH, EC, TDS and DO 

Following previous reports [25] [26], pH, EC, and TDS were determined using 
field equipment. Samples were also taken to the laboratory for quality assurance 
measurements. The temperature was measured immediately on the field using 
digital and regular thermometers. Water samples were not taken to the labora-
tory for quality assurance of water temperature measurements to avoid atmos-
pheric heating or cooling possibilities to the samples.  

So far, specifications and names of the equipments used in the study are 
EC-meter (LF 318/Set, Best.-Nr 300,231, made in Germany). A field pH meter 
electrode (Jenway 3310 UK), laboratory thermometer, a digital DO meter (HI 
8043). 

2.5. Determination of Nitrate Concentration 

The idea behind this method is to undergo nitrification reaction to the salicylic 
acid using nitrate concentration as a nitrification reagent under acidic media 
using sulfuric acid to produce a colorless para-nitro-salicylic acid according to 
Equation (2). Then an alkaline solution (NaOH) 6 molar was added to the sys-
tem to neutralize the sulfuric acid to produce Na2SO4. This resulted in the ap-
pearance of yellow color. The optical density of yellow color indicates the con-
centrations of nitrate solution which can be measured at 420 µm. 

 

      (2) 

2.5.1. Preparation of the Standard Solution to Measure Nitrate  
Concentration 

Step 1. Preparation of the stock solution, in this step about 0.5 g NaNO3 was 
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dissolved in 1 L of distilled water and form the required stock solution. 
Step 2. Preparation of the standard curve solution by series of gradient diluted 

concentrations 0.1, 0.001, 0.001, 0.0001, 0.00001, 0.000001 g/L.  
Step 3. Preparation of stock solution of salicylic acid. In this step five gram of 

salicylic acid was dissolved in 100 ml sulfuric acid under contentious stirring for 
4 hours to insure complete solubility of salicylic acid. 

Step 4. Five ml of salicylic acid stock solution was added to a 50 ml round 
bottom flask containing 3 ml seawater sample/standard solution. The system left 
for 20 min reaction or until the glass cool down. Because this reaction is an exo-
thermic one.  

Step 5. Fifteen ml NaOH (6 molar solution) was added to each flask to neu-
tralize the sulfuric acid and to allow the yellow color appear. This procedure was 
typically applied to the unknown samples. 

2.5.2. Spectroscopic Determination of the Optical Density Nitrate  
Concentrations 

Nitrate ( 3NO− ) concentration was determined according to the salicylic acid me-
thod, which converts the nitrate concentration under acidic media to the cor-
responding nitro-salicylic acid with yellow color according to the chemical reac-
tions shown in. The intensity of the yellow color (absorbance) represents the ni-
trate concentration, and it was determined using a spectrophotometer at 420 nm 
according to ref [27]. 

2.5.3. Calculation of Nitrate Concentrations 
Regressing the optical density of the standard solution vs concentration enable 
the formation of a trend line. Then taking the best fit enable generating the suit-
able equation to determine the unknown samples.  

2.6. Determination of Sulfate 

Sulfate ( 2
4SO − ) concentration was determined using the turbidity method using 

barium chloride as previously described in details Ref [24]. In this procedure, 10 
ml of seawater sample was transferred to 50 ml capacity Erlenmeyer flask. Then 
excess amount of Barium chloride (BCl2) were to the flask under magnetic steering 
to allow the formation of a suspension of barium sulfate (Equation (3)). The reac-
tion time was 5 ± 0.5 min. The optical density of the suspension was determined 
at by spectrophotometer at 420 nm. The resulted absorbance was then compared 
with a curve prepared from a serial dilution of standard sulfate solution reacted 
with Barium chloride at the same conditions mentioned above. 

( )Sulfateion Bariumion Bariumsulfate pricipitate+ →         (3) 

The idea behind adding excess amount of BCl2 is based on the fact that it is 
soluble in water. We measured the suspended BSO4 which would represent the 
concentration of sulfate. 

Standard solution for sulfate was prepared from pure sulfuric acid by adding 
100 µl in 1 L distilled water to form 100 ppm concentration. Then excess amount 
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of BCl2 to form the required suspension of BSO4 which then diluted to form the 
following serial dilution. M, M/10, M/100, M/1000 and M/10,000 where M is the 
concentration of the standard solution (100 ppm). 

2.7. Determination of Phosphate 

Phosphate ion ( 3
4PO − ) concentration was determined in seawater sample by as-

corbic acid method [17] and some modification of Neal et al. [28], our method 
based on dilution the seawater to 10 - 20 times. Then a 10 ml of the diluted sam-
ple was transferred to 50 ml capacity Erlenmeyer flask. All the samples were 
prepared on the same time. The blue color developing solution was added to 
each flask. The color developing solution contains ammonium molybdate, An-
timony, and a ascorbic acid. The idea behind this procedure is to promote the 
reaction of ammonium molybdate with soluble reactive phosphate ion under 
acid media to form 1,2-phosphomolybdic acid which is then reduced by ascorbic 
acid to give a phospho-molybdenum blue complex. Antimony is added to in-
crease the rate of color formation. Then, the optical density of the produced so-
lution was measured at 880 nm. 

Details of stock solutions used to prepare the developing blue color are shown 
below. 

1) About 140 ml sulfuric acid 98% were transferred to were transferred to 1 L 
distilled water.  

2) About 40 g ammonium molybdate were dissolved in 1 L distilled water. 
3) About 2.74 g potassium antimony tartrate were dissolved in 1 L distilled 

water. 
4) About 17.6 g ascorbic acid were dissolved in 1 L distilled water. 
Preparation of color developing reagent. A mixture reagent consisted of 50 ml 

of sulfuric acid, 15 ml ammonium molybdate, 5 ml potassium antimony tartrate 
and 30 ml potassium antimony tartrate was prepared and and mixed together. 
Then this mixture was used as color developing reagent to determine phosphates 
in seawater. The procedure of the reaction was as follows. 

About 10 ml sample was transferred to around flask bottom then additional 
10 ml of blue color developing reagent was added to each flask and left for 30 
min to allow the blue color appears. Then the blue color was measured at 880 
nm. 

Similarly, standard solutions of orthophosphate ion was prepared as men-
tioned above, then 10 ml of each concentration was transferred to a round bot-
tom flask and 10 ml of blue color developing agent was transferred to each flusk 
and left to for 30 min. 

Then the optical density of blue color was determined at 880 nm and re-
gressed vs concentration to obtain a linear regarrison mode for determination of 
the unknown samples. 

The tested sites are distributed along the sea shore of Gaza strip. It appears 
that sites in the southern part of Gaza such as: Rafah 2, Rafah, Khan Younis, 
Aquaculture, Khan Younis fish fresh, Khan Younis mixing zone, Dair Albalah S, 
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Dair Albalah N, Gaza fish production, Wadi Gaza 1, Wadi Gaza, Shakh Ejjleen, 
are sandy shore Sea Port baisin, Sea port out, Sea port out, Sea port, whereas 
rock shore included Abu Saif, Abu hassera, Baghdad, Abu Ameera, Ebad Arahman, 
Kaldi. Mathaf, Sudania and Waha. 

2.8. Statistical Analysis 

Average, standard deviation of each set of parameters were calculated using ex-
cel software program version 2016. The data were presented as boxplot to have 
an over view of each measured parameters in the coastal area. Differences among 
sites were determined using Reference average and reference standard error and 
reference confidence intervals as recently developed [29] [30]. 

Forest plots were presented to illustrate the differences among the tested site. 
Measurements were repeated 5 times by different sampling in some cases. Stan-
dard errors were used to compares means. An overlapping of standard errors in-
dicates no significant different where’s no overlapping indicates significant differ-
ences of mean, where necessary ANOVA test was used to detect significant dif-
ferences among treatments. P-values ≤ 0.05 indicates significant differences 

3. Results 

Measured data of seawater temperature, EC, TDS, DO, and pH are shown in 
Table 1. 

It can be seen that sea water temperature ranged from 17.1˚C - 31.07˚C, with 
an average of 22.07 and a standard deviation of 4.10. The changes in sea water 
temperature are due to measurement at different seasons during the experimen-
tal period. The electric conductivity (EC) of sea water ranged from 46.82 - 66.48 
with an average 58.41 ms/cm. and standard deviation of 4.83. 

The TDS value ranged from 23.15 - 36.14 ppt (part per thousand) with an av-
erage value of 30.51 and standard deviation of 3.29. The wide range of TDS value 
may due to the wastewater discharge to the sea.  

The value of DO ranged from 2.09 - 9.48 mg/L, with an average value 6.96 
mg/L and standard deviation of 1.75. These differences may due to wastewater 
discharge to the sea. 
 
Table 1. Seawater temperature, EC, TDS. DO, pH and salinity. 

Parameter Min. Max. Median Average SD Range 

Temp 17.1 31.07 20.45 22.02 4.10 13.97 

EC 46.82 66.48 59.98 58.41 4.83 19.66 

TDS 23.15 36.14 30.64 30.51 3.29 12.99 

DO 2.09 9.48 6.92 6.96 1.75 7.39 

pH 7.10 8.67 7.65 7.69 0.37 1.57 

Salinity 4.10 4.6 4.40 4.39 0.12 0.50 

Min., Max. and SD are minimum, maximum and standard deviation, respectively. 
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Value of pH ranged from 7.10 - 8.67 with an average of 7.69 and standard 
deviation of 0.37. The changes in the salinity are very narrow. 

However, the measured data in Table 1 were presented as boxplots in Figure 
4 to test the homogeneity and the outliers of in all tested sites. However, it is 
well-known that a boxplot is a standard way to displaying the distribution of da-
ta based on a five key statistical parameters such as minimum value, first quartile 
of data ( the minimum value of the box) the median, the 3rd quartile of the data 
which is the upper line of the box and finally the maximum value. Additionally, 
the outliers which are the data points presented as a point either below the mini-
mum value or above the maximum value. These values suggest extreme varia-
tions of the presented data. For our case we have only 2 boxes having outlies. 
These are dissolved oxygen and temperature. 

The data shown in Figure 3 show the homogeneity of values in some sites and 
the presence of outliers. Nevertheless, this can be quite normal since the seawa-
ter is an open aquatic ecosystem that receives pollutant from different sources. 
 

  
(a) 

     
 

 
(b) 

Figure 3. Field measurements (a) and laboratory experiments (b). 
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Moreover, the tested sites are distributed along the coastal area of Gaza strip 
(45 Km long). It appeared from the field investigation that all site are extremely 
polluted except Rafah, Deir Al-Balah, Waha and Frusia sites due to low popula-
tion density and the efficiency of waste water treatment plants in the area.  

To determine the differences among sites in each parameter, we calculate the 
reference average. And used to estimate the relative average of each site and 
plotted as forest plot. So far, Forest plots of % oxygen saturation in water are 
presented in Figure 4. 

Concentration of nitrate sulfate and phosphate in the tested sites are presented 
in Figure 5. 

The data shown in Figure 6 show the heterogeneity of nitrate, Sulfate and 
phosphate values in tested sites. Nevertheless, this can be quite normal since the 
seawater is an open aquatic ecosystem that receives pollutant from different sources. 
So far, Table 2 shows the statistical parameters of nitrate, Sulfate and phosphate 
in the tested sites in Gaza. 
 

 

Figure 4. Boxplots of the measured physical parameters in all sites. The presented points 
outside the box indicate the lowest or highest outliers and x in the middle of the box in-
dicate the average value whereas the line indicate the median of the measured parameters. 
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Figure 5. Forest plots of oxygen saturation %, pH. And OC. Effect size represent the Ref-
erence avenge of oxygen pH, and OC. Sites have size effect lower than the Ref Ave (1) are 
present on the left side whereas those in the right side have size effect larger than one in-
dicating high extreme values. The points in contact with the dotted line have close value 
to reference average. 
 

 

Figure 6. Boxplots of nitrate, sulfate and phosphate in the tested sites. 
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Table 2. Nitrate, sulfate and phosphate profiles in some sites in Gaza. 

Parameter Min. Max. Median Average SD Range 

Nitrate 22 690 225.5 299.8 204.07 668 

Sulfate 4065 7608 5763 5736.9 817.14 3543 

Phosphate 34 489 141 164.35 120.70 455 

Min., Max. and SD are minimum, maximum and standard deviation, respectively. 
 

It can be seen that the minimum concentration of nitrate is 22 mg/L, the 
maximum concentration is 690 mg/l with an average 299.8 mg/L and SD is 
204.07. Sulfate profile is quite different, the minimum concentration is 4065 mg/L, 
the maximum concentration 7608 mg/l, with an average 5736.9 mg/l and SD 
817.14. Phosphate profile is quite similar to nitrate, the minimum concentration 
is 34 mg/L, the maximum concentration 489 mg/L, with an average 164.35 mg/L 
and SD 120.70. The differences among sites can be visualized in Forest plots 
(Figure 7). 

4. Discussion 

The data in Figure 1 clearly show 14 tested sites distributed along the sea shore. 
Some of the sites change treated wastewater to the seashore and some other dis-
charge untreated wastewater. The red color denoted the stations that discharge 
untreated wastewater. It is obvious that 6 pipe lines are discharging untreated 
wastewater. Additionally the stations are denoted also by geographical position 
system (GPS). Furthermore, the physical features of the sampling sites are shown 
in Figure 2. It can be seen that 8 sampling sites in the southern part of Gaza 
have sandy sea shore that enabled easy sampling. These sites are distributed 
from the south to the Seaport and included the following sites: Rafah, Khan 
Younis, Aquaculture, Dair Albalah S + N, Wadi Gaza, Baider, Shakh Ejleen, 
Seaport and its surroundings. In the other hand, the northern part of Gaza 
showed 8 sampling sites with a rocky shore that made the sampling process quite 
difficult. These sites are Abu saif, Abu Amera, Ebad Arahman, Baghdad, Abu 
Hassera, Khaldi, Mathaf and Sudania. 

Furthermore, the photos in Figure 3 clearly show part of the field measure-
ments and laboratory experiments. 

Furthermore, the data in Table 1 clearly demonstrated statistical parameters 
of Temperature, EC, TDS, DO. pH and salinity. It can be seen that the range of 
all parameters are quite high except for pH and salinity. This suggests the buf-
fering capacity of sea. However, the high range of Temperature (13.97) may be 
due to the fact that atmospheric temperature is changed during seasons resulting 
in change the temperature of sea water. This is due to the specific heat of water. 
Additionally, high range of EC and TDS appear from the influence of discharg-
ing wastewater directly to the seashore. 

Moreover, the range of DO is 7.39 indicating a wide range of potential pollu-
tion. The minimum DO concentration is 2.09 mg/L indicating high pollution. 
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Figure 7. Forest plots of 3NO− , 2
4SO −  and 3

4PO −  concentrations in different sites. Reference avenge of nitrate, sulfate and 
phosphate are donated by the vertical line. Sites have size effect lower than the Ref Ave are present on the left side whereas those 
in the right side have size effect larger than one indicating high extreme values. The points in contact with the dotted line have 
close value to reference average. 
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4.1. Sources of EC and TDS in Aquatic Ecosystems 

So far, the source of EC and TDS appear from the continuous solubility of highly 
soluble salts and low soluble salts beside the fact that biodegradation of organic 
molecules may result in discharging cell minerals to sea water resulting in in-
creasing the TDS. Since these molecules are ionized fragments, this may result in 
increasing the EC value of seawater. 

So far salt in the sea may come from two sources: runoff from the land and 
openings in the seafloor. Rocks on land are the major source of salts dissolved in 
seawater. In some cases, rainwater is slightly acidic, so it erodes rocks. This may 
result in releasing ions that are carried away to streams and rivers that eventually 
feed into the ocean. Some of dissolved ions are consumed by aquatic organisms 
and removed from the water whereas other ions are not removed. This process 
may result in changing the EC value of the seawater. Furthermore, discharging 
treated and non-treated wastewater to the seawater may result in changing the 
pH value of the resulting precipitation of some divalent cations such as calcium, 
magnesium. Our explanation is in agreement with recent published work [31] 
[32] [33]. 

4.2. Sources of Dissolved Oxygen in Aquatic Ecosystems 
4.2.1. Atmospheric Sources 
Oxygen in the atmosphere may dissolve in water directly according to Ficks low, 
which depends on water temperature and oxygen partial pressure.  

4.2.2. Aquatic Photosynthesis 
Dissolved oxygen may be produced by the photosynthetic activity of blue green 
algae, cyanobacterial mats and aquatic plants (Equation (5)). This may be the 
major source of dissolve oxygen in the aquatic ecosystems. On the other hands, 
geochemical reactions may be additional source of dissolved oxygen in the ocean 
as shown the following equations  

3 2 2 2HCO H O phytoplankton light CH O O− + + + → +           (4) 

4.3. Sources of Acidity in Aquatic Ecosystems 
4.3.1. Direct Reaction of CO2 
Acidity in the aquatic ecosystem may occur due direct reaction of CO2 produced 
from respiration of aquatic organisms and water body as in Equation (5).  

2 2 3CO H O H HCO+ −+ → +                       (5) 

During the day the phytoplankton uses 3HCO−  after converting it to CO2 in-
side their cell to form carbohydrate and oxygen throughout normal photosyn-
thetic activity according to reaction (4). So far reaction Equation (4) and Equa-
tion (5) are responsible on increasing dissolved oxygen (Equation (4)) and in-
creasing acidity of the ocean (Equation (5)). 

In general, CO2 may be the key player in the ocean acidity. However, increas-
ing the acidity of the ocean due to excess production of H+ ion may deteriorate 
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the oxygen production in the ocean due to inhibition of carbonic acid anhydrase 
that responsible in converting bicarbonate to CO2 inside the aquatic plant cells. 
Accordingly, partial or total inhibition of the photosynthetic activity may occur. 
Additionally, increasing ocean acidity may also harm the zooplankton directly 
due to dissolving shells and coral reeves according to Equation (6)  

( ) ( )3 3CaCO sold H HCaCO soluble++ →               (6) 

( )3 3HCO 2Ca zooplankton shell fish CaCO− + + →           (7) 

Nevertheless, at optimal ocean pH the phytoplankton (Equation (4)) and the 
zooplankton (Equation (7)) may maintain the ocean acidity and oxygen produc-
tion at the optimal levels. Our explanation and proposed reactions are in accor-
dance of with McLaskey et al. [34] and El-Nahhal et al. [35] who found quite 
similar role of phytoplankton on the ocean. Additionally, Kohlbach et al. [36] 
reported the role of antarctic zooplankton species on the sea acidity. In contrast, 
ocean acidity caused certain damage to phyto-and zoo-plankton in the ocean 
[37]. 

4.3.2. Biodegradation of Dissolved Organic Carbon 
Dissolved organic carbon such as carbohydrate like compounds (Equation (8)) 
and protein like compounds (Equation (9)) may undergo biochemical degrada-
tion reaction at different rates in aquatic ecosystem resulting in increasing the 
production of acidity (H+).  

6 12 6 2 2 3C H O 2H O 2CO 2CH COO 10H 9e− + −+ → + + +         (8) 

( ) ( ) ( )1 2 2 2

2 1 2 2 2 3 2

R CH NH CONHCH COOH CH SH R 3H O

CO R CH COO R CH COO 2NH H S 2H− − +

+

→ + + + + +
      (9) 

4 2 2 32CH 3H O 2HCO 12H 10e− + −+ → + +              (10) 

As obvious reactions (Equations (8)-(10)) produced considerable fraction of 
H+ ion, hydrogen sulfide and ammonia, very soluble inorganic compounds. This 
is in agreement with previous reports [7] [35] [38] that revealed photo-degradation 
of DOM may produce even larger amounts of dissolved inorganic carbon in 
global freshwater and seawater. Produced hydrogen ion contributes to ocean 
acidity. The other ionic fragments (CO2, H2S and NH3) contribute to the geo-
chemical cycles of carbon, nitrogen and sulfur.  

4.3.3. Oxidation of Inorganic Molecules 
Hydrogen sulfide, and ammonium hydroxide produced in Equations (8) and (9) 
may undergo oxidation reaction to produce H+ ion that contribute to the pH 
changes in aquatic systems. These reactions may occur in surface water, pho-
toactive zones as in river and oceans wastewater treatment plant specially oxida-
ton ponds,  

2
2 2 4H S 2O SO 2H− ++ → +                  (11) 

2 2 3 3H O O NH NO 5H 4e− + −+ + → + +              (12) 
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It can be concluded most equations mentioned above produce hydrogen ion 
that contribute to pH changes. Additionally, reactions 4 and 5 maintain the 
acidity in river and sea water. Our explanation is in accordance with previous 
reports [35] [39] that reported the contribution of ammonia oxidation to che-
moautotrophy in antarctic coastal waters. Additionally, Findlay et al. [40] re-
ported the oxidation of hydrogen sulfide by phototrophic bacteria in the anoxic 
zone of the Chesapeake Bay. 

On the other hand the reaction rates of dissolved organic compounds in water 
are affected by the intensity of sunlight. This is in accordance with Wang et al. 
[41] who found enhanced photochemical degradation of nebivolol in different 
natural organic matter solutions under simulated sunlight irradiation. Further-
more, Gornik, et al. [42] revealed the photodegradation of sertraline in aqueous 
systems due to exposure to sunlight. Moreover, Sun et al. [43] reported the de-
gradation of N,N-diethyl-3-methylbenzamide and caffeine, by ultraviolet light 
and simulated sunlight in different water matrices.  

Furthermore, exposure to sunlight may generate heat that enhances the 
chemical reactions in aquatic systems. Our explanation is in accordance with 
previous reports [44] [45] [46] [47] which revealed losing biological activities of 
pesticides due to direct exposure to sunlight and changes of maximum absorp-
tion due indirect exposure to sunlight. The data in Figure 4 clearly demonstrat-
ed the boxplots presentation of the measured physical parameters in all sites. For 
each tested parameter, the boxplot indicates homogeneity of the present results 
except some outliers. This suggests a precision of the experimental work. In 
contrast the presence of outliers may emerge from the fact the sea is an open 
ecosystem in continues dynamic movements that usually create changes in the 
tested parameters. Furthermore, the data in Figure 5, clearly demonstrated the 
Forest plots of the data in tested sites. It is obvious that most tested sites have 
nearly similar oxygen saturation % except seaport and Abu amera have the low-
est. Nevertheless, the differences are quite clear in pH values. It is obvious that 
Seaport, Baghdad and Wadi Gaza have the highest relative average of pH. This is 
due to direct discharge of wastewater. The other sites have relative average less 
than one suggesting less pollution. Furthermore, relative average of organic car-
bon in marine sediment clearly shows that Waha, Abu Hassera, Shakh Ejleen 
and Wadi Gaza have the highest relative average indicating high organic con-
tents. The explanation of these results is similar to that given above.  

So far the concentration profile of nitrate, sulfate and phosphate are clearly 
presented in Figure 6 as boxplot. In the three tested parameters nitrate and 
phosphate have extreme low values and extreme high values suggesting the 
presence of outliers although they are not exist. This suggests extreme difference 
among sites due discharges of treated and untreated wastewater. The explana-
tion of these results is that nitrate may be rapidly be uptake by aquatic phytop-
lankton, plants and weeds to for organic nitrogen that may be transported to 
protein in fish and zooplankton in the ocean. Additionally, nitrate may undergo 
photochemical degradation that result in a disappearance of considerable levels  
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Figure 8. Molecular form of phosphate ion due to potential changes of pH. 
 
of nitrate from water. This is in agreement with Shaban et al. [48] who investi-
gated the reduction of nitrate in seawater. In the other hand phosphate may dis-
appear from sea water according to pH to the alkaline form instance at acidic pH 
as in the seashore or photoactive zone all phosphates present in the soluble form 
as phosphate whereas at alkaline pH it form pyrophosphate or poly phosphate 
molecules these molecules are insoluble and precipitate down to deep ocean 
which may converted to soluble fraction due to the acidity that may emerge 
from biodegration of organic and dead animals in the sea (Figure 8). 

In the other hand sulfate concentration profile does not have extremely low 
value, suggesting homogeneity. So far, the homogeneity of sulfate concentration 
may emerge from the fact that sulfate is a highly soluble and active anion that 
can react with many species in sediments to form organic and/or inorganic salt. 
According to Equation (11) it is in a continuous formation in the ocean.  

5. Conclusion 

The rational of this work emerges from the fact that seawater is a natural re-
source that should be protected from pollution. The limitation of this study is 
that field measurement was not possible all the time because at rough sea it was 
not possible to collect samples from the rocky shore. Meanwhile, our investiga-
tions showed average and standard deviation of Temp of, 22.02˚C ± 4.1˚C, EC: 
58.41 ± 4.8 ms/cm; DO: 6.96 ± 1.8 mg/L; pH: 7.69 ± 0.37; TDS: 30.51 ± 3.29 and 
salinity 4.39 ± 0.12 (%); whereas, average and standard deviation of 3NO− : were 
299.8 ± 204.1 mg/L; 2

4SO − , 5736.9 ± 817.1; and 3
4PO − : 164.35 ± 120.7 mg/L. 

Using Boxplot presentation of the results provides an over view on the homo-
geneity of data whereas using forest plots provides excellent tool to discriminate 
the difference among data. We recommend the use of boxplot and forest plots 
for presentation of results. Furthermore, our observations indicate the influence 
of wastewater discharge in changing the physicochemical properties sea water. 
The study recommends efficient treatment of wastewater and reuses it for agri-
cultural purposes instead of discharging it in sea.  
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