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Abstract

The DOFBOT Robotic Hand, powered by the NVIDIA Jetson Nano processor,
represents a cutting-edge fusion of computer vision and robotic automation
for precision agriculture. This research presents an advanced system capable
of distinguishing between ripe (red) and unripe (green) tomatoes using so-
phisticated image processing algorithms and deep learning techniques. The
system integrates ImageNet and ResNet pre-trained models for enhanced
color recognition capabilities, achieving superior response times compared to
traditional laptop-based processing. The robotic arm successfully identifies,
plucks, and collects ripe tomatoes while maintaining high accuracy rates. This
study demonstrates the effectiveness of edge computing in agricultural auto-
mation, with the Jetson Nano providing significantly improved response times
over conventional cloud-based processing systems. The integration of state-
of-the-art computer vision algorithms with precision robotics marks a signif-
icant advancement in automated agricultural harvesting systems.
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1. Introduction

The integration of artificial intelligence and robotics into agriculture has emerged
as a critical solution to address global food security challenges, labor shortages,
and the need for sustainable farming practices [1]. Modern agricultural systems
require precision, efficiency, and adaptability to meet the increasing demands of
global food production. The development of intelligent harvesting robots capable

of distinguishing between ripe and unripe fruits represents a significant break-
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through in agricultural automation [2] [3]. Traditional tomato harvesting is highly
dependent on manual labor, which is time consuming, costly and subject to hu-
man error. The ability to accurately identify fruit ripeness is crucial to maintain
quality standards and optimize harvest timing [4]. Computer vision technology
offers a promising solution that enables automated systems to make rapid, con-
sistent and accurate assessments of fruit ripeness based on visual characteristics.
The DOFBOT Robotic Hand, equipped with the powerful NVIDIA Jetson Nano
processor and advanced camera module, represents a paradigm shift in agricul-
tural robotics [5]. This system combines sophisticated computer vision algorithms
with precise mechanical control to achieve unprecedented levels of automation in
fruit harvesting operations. The integration of ImageNet and ResNet pretrained
models enhances the system’s ability to distinguish between ripe (red) and unripe
(green) tomatoes with remarkable accuracy [6]. Edge computing technology plays
a pivotal role in this advancement, enabling real-time processing capabilities that
surpass traditional cloud-based systems in terms of response time and reliability
[7]. The NVIDIA Jetson Nano’s onboard GPU acceleration provides the compu-
tational power necessary for real-time image processing while maintaining energy
efficiency and compact form factor suitable for field deployment. This research
contributes to the growing body of knowledge in precision agriculture by demon-
strating the practical application of advanced computer vision techniques in au-
tomated fruit harvesting. The system’s ability to operate autonomously while main-
taining high accuracy rates positions it as a valuable tool for modernizing agricul-

tural practices and addressing current industry challenges.

2. Proposed System

The proposed system employs a comprehensive array of advanced technologies
and methodologies to achieve precise tomato ripeness detection and automated
harvesting. The system architecture integrates state-of-the-art hardware compo-
nents with sophisticated software algorithms to deliver reliable, real-time perfor-

mance in agricultural environments.

2.1. DOFBOT Al Vision Robotic Arm

The DOFBOT Al Vision Robotic Arm serves as the primary mechanical platform
for the automated harvesting system [8]. This precision-engineered robotic arm
features multiple degrees of freedom, enabling complex manipulation tasks re-
quired for delicate fruit handling. The arm’s design incorporates smooth servo
control systems that provide the necessary precision for approaching, grasping,
and retrieving tomatoes without causing damage to the fruit or surrounding plants
[9]. The robotic arm’s end-effector is specifically designed for tomato harvesting
applications, featuring an adaptive gripper mechanism capable of accommodating
various fruit sizes while maintaining gentle contact pressures [10]. The integration
of force feedback sensors ensures that the gripper applies appropriate pressure

levels, preventing fruit damage during the harvesting process [11].
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Figure 1. DOFBOT Al vision robotic arm.

2.2. NVIDIA Jetson Nano Edge Computing Platform

Figure 2. NVIDIA’s Jetson Nano [5].

The NVIDIA Jetson Nano represents a revolutionary advancement in edge
computing technology for AI applications (Figure 1, Figure 2). This compact yet
powerful single-board computer features a quad-core ARM Cortex-A57 CPU paired
with a 128-core NVIDIA Maxwell GPU, providing substantial computational ca-
pacity for real-time Al inference tasks.

Key Technical Specifications:

1) GPU: 128-core NVIDIA Maxwell architecture with CUDA support.

2) CPU: Quad-core ARM Cortex-A57 @ 1.43 GHz.

3) Memory: 4GB LPDDR4 @ 25.6 GB/s.

4) Al Performance: 472 GFLOPS.

5) Power Consumption: 5-10W operational range.

6) Storage: MicroSD card support with optional eMMC.

The Jetson Nano’s GPU acceleration capabilities enable real-time processing of

complex computer vision algorithms, including deep neural networks for object
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detection and classification. The platform supports popular Al frameworks such
as TensorFlow, PyTorch, and OpenCV, making it accessible for deploying sophis-

ticated machine learning models in edge environments.

2.3. Advanced Camera System

The system incorporates a high-resolution camera module specifically optimized
for agricultural applications. The camera features adjustable focus, exposure con-
trol, and support for various lighting conditions commonly encountered in green-
house and field environments. The integration of specialized optical filters en-
hances color discrimination capabilities, particularly important for distinguishing
between red ripe tomatoes and green unripe ones [12].

We also utilized simulation software like ROS (Robot Operating System) to model
and validate our algorithms in a simulated environment prior to deployment. For
data processing and visualization, we leveraged libraries such as NumPy. Version
control technologies like Git enhanced team collaboration and facilitated effective
software management. These tools and technologies collectively played a pivotal role
in achieving the objectives of our project, enabling us to deliver a robust and efficient

solution that met the requirements of our stakeholders.

3. Methodology

This approach of research has a systematic pipeline for color recognition, model
integration, real-time processing, drawing extensively from the literature in com-
puter vision within agriculture. The outputs of research from sources such as Fron-
tiers in Plant Science and AIP Advances highlight the urgent need in dealing with
natural variant tomato appearances by robust algorithms, which might include
color changes during ripening, including environmental interferences. The detec-
tion of the objects from complex backgrounds with varying environmental con-
ditions shows significant challenges that require specialized image processing
techniques [13] [14].

Table 1. Color recognition and computer vision pipeline.

Preprocessing

Pipeline Stage Description Details

. Hue (H): 0-1809
Convert captured RGB image

Saturation (S): 0-255
to HSV color space.
Value 0-255
Ali hi

Bas mac .me HSV decouples color information (hue)

Color Space representation .

. . ) from brightness (value)
Rationale with human perception for o Lo
R Improved tolerance to lighting variations
robust color discrimination
Scalar lower and upper bounds:
Ri d: H_low, S_low, V_low H_high,
Mask Define thresholds for ripe (red) peret B OW. —ow . ow 8
. . . . S_high, V_high
Generation and unripe (green) fruit regions

Unripe green: H_low, S_low V_low
H_high, S_high, V_high
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Continued
Apply inRange function to
Color PP Y‘ 8 Pixels within range value = 255
. create binary masks based on ) .
Segmentation Pixels outside range value = 0

Post-Processing

the defined HSV thresholds

Morphological operations (e.g., erode,

Cl s tatio sks
ean up segmentation ma dilate)

to reduce noise and refine

(Optional) Contour detection or

Object regions .
connected-component analysis

The computer vision pipeline underlies this system of tomato ripeness de-
tection, and as such, it is designed for several stages of image processing and
analysis [14] in order to bring about reliable classifications. Its methodology is
focused on robust color recognition techniques that work robustly under a
range of lighting conditions and environmental factors. The first step to pre-
processing is converting the captured RGB images into the HSV color space
format. This conversion is important because the HSV representation is closer
to human perception of color than RGB and discriminates better between col-
ors (Table 1).

They represent the brightness, shade, hue, and color intensity in a way that can
be simply understood, thus allowing the accurate classification of a color on this
basis. The hue of color information is represented by degrees from 0° to 180°,
saturation for purity from 0 to 255, value for level of brightness from 0 to 255 [15].
Mask generation and color segmentation work out the upper and lower limits of
allowed color by the creation of Scalar objects for proper range values that define
ripe (red) and unripe (green) tomatoes [15]. The inRange function then works
pixel by pixel in the src image, checking if the values fall within the specified
bounds, in this case ripe or unripe, marking them with a value of 255 for those
that do and 0 for those that do not.

3.1. Pre-Trained Model Integration

Deep learning models before training truly improve system classification per-
formance and resilience. Thus, it benefits from transfer learning as it required
fewer epochs for training while outperforming other baselines. The ImageNet-
based classification machinery uses exactly ImageNet. One can consider ImageNet
as the seminal visual-recognition database with more than 14 million hand-
tagged pictures belonging to thousands of categories; hence, useful, respectively,
as a rock-solid foundation for visual-recognition tasks. The models pre-trained
on ImageNet have been fine-tuned for feature extraction potential, which is very
good and fine-tunable in agricultural-related application domains. In the re-
sponse time analysis of ImageNet vs. ResNet, it was found that ImageNet models
mostly land up with inference times in the range of 15 - 25 ms/frame on a Jetson
Nano platform, thus well into the zone to be used for real-time applications (Ta-

ble 2).
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Table 2. Pre-trained model integration.

Aspect

Base Architecture

ImageNet-Based Model ResNet-50 Model

Generic convolutional network pretrained  Deep residual network with 50

on ImageNet (e.g., VGG, Inception) layers and skip connections
. . Fine-tune full residual blocks
Transfer Learning Approach Fine-tune final layers on tomato dataset
on tomato dataset
Classification Accuracy 91.70% 94.10%
Inference Time on Jetson Nano 15 - 25 ms per frame 8 - 12 ms per frame
Average Response Time 20 ms 10ms
Lower due to efficient residual
Computational Overhead Higher due to broader feature set wer an . .
learning
. Faster, mitigates vanishing
Training Convergence Moderate .
gradients
Suitable, but marginal under constrained Highly suitable, optimal for
Suitability for Real-Time Use & gy su . P
resources real-time systems

The main problem here Is that the wide variety of features In ImageNet models
may add an overhead to computational resources that could reduce overall system
responsiveness. All of these could be solved by the implementation of the ResNet
architecture, which provided a novel solution for the vanishing gradient problem:
new skip connections during training, allowing even deeper networks to be
trained while maintaining better accuracy. For processing a tomato classification
problem, ResNet-50 would have shown better efficacy and you would have time
results to the extent of eight to twelve milliseconds per frame on Jetson Nano. This
residual learning framework will help improve feature extraction efficiency, all
whilst maintaining high classification accuracy.

Skip connections allow information to bypass certain layers in the ResNet ar-
chitecture, so that it can learn residual functions rather than complete transfor-
mations. This speeds up convergence of training and results in better performance
during inference. Pretrained on ImageNet, ResNet models work very well using
transfer learning when fine-tuned with tomato-specific datasets for agricultural
purposes. Experiment results show that ResNet-50 yields 94.1% classification ac-
curacy with an average response time of 10 milliseconds per frame, whereas the
models based on ImageNet yield 91.7% accuracy at around 20 milliseconds re-
sponse time. ResNet architectures lead to improved efficiency, making it very apt
for use in real-time agricultural applications where processing speed is of utmost
importance. After executing the program block, the camera component’s display

will become visible.

3.2. Transfer Learning and Fine-Tuning

Transfer learning approaches applied will be used to help the system learn from a

large-scale dataset by performing tomato classification tasks. This will save a huge
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amount of time that would otherwise be spent on training. Moreover, it dramatically
boosts model performance as compared to training from scratch. There has been
great progress in the last period of agricultural-oriented pre-trained models by the
likes of the AgriNet models for computer vision tasks. Based on 160,000 + agricul-
tural images from diverse geographical locations, AgriNet models offer good per-
formance in general plant species and disease classification tasks over generic
ImageNet models. AgriNet-VGG19 achieved 94% classification precision with an
F1 score of 92% to identify 423 classes of plant species and diseases. One of the most
impressive things about these AgriNet models is that in the classification of the ripe-
ness status of tomatoes, they do the best of all generic ImageNet models by 18.6%
on accuracy. It is therefore necessary that the domain-specific pre-trained models
in agriculture come up with an integrated solution. Key steps for fine-tuning the
model include: Second step: Feature extraction, where the pre-trained model layers
will be used as fixed feature extractors; this step is followed by the modification of
the classification layer by replacing final classification layers with tomato-specific
categories, learning rate scheduling, adjusting the learning rate with an adaptive
schedule for optimal convergence and finally data augmentation by rotating, scal-

ing, and adjusting the lighting to further make the model robust.

3.3. Edge Computing vs Cloud Computing Performance Analysis

It is explicitly clear from extensive tests made on response times that edge com-
puting literally leaves traditional methods well behind. In the tests, what stood out
were the advantages of Jetson Nano or edge deployment in the agricultural appli-
cation. They will need to establish, through demonstrations and trials, that the

performance differed from edge computing to traditional methods.

Table 3. Edge computing vs cloud computing performance analysis.

Metric Edge Computing Cloud Computing

(Jetson Nano) (Laptop-Based)
Image Acquisition Time 12 ms - 15 ms 5ms - 8 ms

Network Transmission Latency 0 ms 50 ms - 150 ms

. . 25 ms - 30 ms (object 20 ms - 30 ms

Processing Time . o .

detection pipeline) (remote processing)

Response Transmission Latency 0 ms 50 ms - 150 ms

Total Decision Cycle Time 45 ms - 50 ms 125 ms - 338 ms

60% - 85% reduction

Reduction in Total Processing Time - . .
with edge computing

Power Consumption 5W-10W 45w-95w

High (independent Lower (depends on

Reliability in Intermittent Networks h .
operation) connectivity)

Jetson Nano (Edge Computing) enables image acquisition to classification
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within 12 ms - 15 ms, an object detection pipeline in 25 ms - 30 ms, complete
harvest decision cycle in 45 ms - 50 ms, and 0 ms of network latency due to local
processing on a machine. Image acquisition on a laptop consumes 5 ms - 8 ms,
network transmission takes 50 ms - 150 ms according to connectivity during the
connection, remote processing in 20 ms - 30 ms, response transmission taking 50
ms - 150 ms, with the total cycle time being 125 ms - 338 ms (Table 3).

This means reducing the time involved in edge processing by 60% - 85% when
using a laptop-based system. That is essentially achieved by removing the network
latency and optimal local GPU acceleration. Reliability and robustness are supe-
rior with edge computing in agricultural environments where network connectiv-
ity might be either intermittent or unreliable. Since it is able to work alone, Jetson
Nano would assure identical output performance uniformly, despite the network
conditions outside; this is, therefore, ideal for field deployment scenarios. Then
again, Jetson Nano is power-efficient, sucking in 5 - 10 watts of power as against
laptops that normally suck in 45 - 95 watts under similar load conditions of pro-
cessing therefore having a longer working time and reduction of ecological foot-

print with energy use for automated harvesting systems.

3.4. Real-Time Processing Pipeline

Real-time processing pipeline that integrates all subsystems to enable seamless to-
mato detection in real time, along with classification and harvesting. It stages pro-
cesses beginning with high-resolution image capture at 30fps and pre-processes
by converting to color space and reducing noise for the YOLO5-based object de-
tection with localization of tomatoes, followed by classification using ResNet-50
to determine ripeness, motion planning for robotic arm trajectory calculation, and
execution of precise harvesting and collecting of fruits. Techniques applied to op-
timize this were management of GPU memory for batch processing, pipeline par-
allelization for increasing throughput, adaptive quality based on detection confi-

dence, and dynamic region of interest zooming in to lessen the computation.

4. Deep Learning Model Architecture
4.1. YOLOVS5 Integration for Object Detection

The YOLOVS5 system is a software integrated for real-time detection of tomatoes
in very intricate agricultural fields. The upgraded sense of object detection tech-
nology will now ensure a higher level of accuracy and fast processing. Recent com-
parative studies have shown that YOLOV5 has performance metrics such as 94.1%
detection accuracy, 112FPS processing speed on Jetson Nano, and distance meas-
urement error at 3 mm - 5 mm. It can also allow for detection at different ripeness
levels. The architecture of YOLOVS5 is very good at detecting small and overlap-
ping objects forming structures that best fit the application in a tomato harvest
where its fruits are often partially obscured by leaves or other tomatoes.

In real-time processing, the current model will be able to keep high accuracy in

speed, thus enabling effective automated harvesting operations. What YOLOv5
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outcompetes the alternative architectures in is as follows: low accuracy in SSD [16]
whenever background complexities and light changes are present and non-RT
speed high in Faster R-CNN, speed with some useful balance that still maintains
accuracy YOLOv4. This is already good in balance; YOLOVS5 optimized it more.
The optimized structure together with the training strategies in YOLOV5 delivers
higher detection accuracy and increased inference speed, making it the best choice
to go for in agricultural robotics applications that require both real-time perfor-

mance and high accuracy.

4.2. Convolutional Neural Network Architecture

The CNN architecture encompasses a blend of deep learning techniques in the
effective classification of tomatoes. The ripeness of tomatoes is backboned by Res-
Net-50 [17]. Residual connections in training are one way to train deeper net-
works without performance degradation. The chosen architecture intends to be
50 layers deep, with skip connections and batch normalization for better training
stability. It applies a ReLU activation function, global average pooling for dimen-
sionality reduction, and a softmax output layer for probability distribution across
ripeness classes.

Mixed precision training applies 16-bit and 32-bit floating-point precision to
speed up training without accuracy loss. Model quantization is the process applied
to convert models into FP32 to INT8 precision, aimed at boosting run-time per-
formance for edge devices. Further, it is followed by TensorRT optimization to
harness the full GPU utilization of the Jetson Nano platform via the NVIDIA-
developed TensorRT library.

4..3. Multi-Modal Fusion Architecture

It employs a multimodal fusion way to merge visual data with depth data to boost
classification output and spatially locate them. In particular, the RGB-D integra-
tion fuses the added RGB color information from the depth data, so as to improve
its application in depth applications. Ripeness classification would be based on
created triplet of RGB channels through very accurate 3D localization in depth
information, distance measurement via stereo matching algorithms, and volumet-
ric analysis derived from point cloud processing. This multimodal approach al-
lows it to be able to make more informed harvesting decisions by considering the

visual appearance and the spatial characteristics of the detected tomatoes.

5. Experimental Setup and Results
5.1. Dataset Preparation and Augmentation

The experimental evaluation was conducted on an extensive dataset of tomato
images captured under diverse environmental conditions, in such a way as to en-
sure robust performance over a variety of scenarios. It comprises 2,640 images of
tomatoes in total: 1,320 ripe (red) and 1,320 unripe (green), which are divided into
atraining, validation, and test set in a 70:15:15 ratio. This augmentation technique
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adds another layer of robustness to the model and helps to prevent overfitting
through geometric transformations like rotation within +15°, translation within
+10%, and scaling between 0.8x and 1.2x. Photometric variations include +20%
intensity adjustments with +15% contrast changes. Cut Mix Augmentation ran-
domizes the process of mixing regions within an image with photometric changes
by jittering the images in the HSV color space to simulate lighting condition

changes.

5.2. Training Configuration and Hyperparameters

1) Model training parameters: The Adam optimizer will have an initial learn-
ing rate of 0.0001, batch size 16 which is perfect for memory constraints of Jetson
Nano, training epoch 100, learning rate schedule using cosine annealing with
warm restarts, focal loss function, L2 weight decay, dropout at 0.2 for regulariza-
tion.

2) Hardware Configuration: NVIDIA Jetson Nano Developer Kit [18], 4 GB
shared LPDDR4 GPU memory, 64 GB microSD card storage, and IMX219 8-meg-

apixel sensor camera with adjustable focus.

5.3. Performance Metrics and Results

In all eval metrics, precision for ripe tomatoes was at 97.2% and for unripe at
96.4%, recall for Ripe at 96.9% and unripe at 96.7%, and F1-score at 97.0%. Real-
time capability of the system is indicated by the response time analysis, which
showed that the processing stages include image acquisition at 8.2 ms, prepro-
cessing at 3.1 ms, object detection at 12.5 ms, classification at 8.9 ms, motion plan-
ning at 10.3 ms, robotic execution at 7.0 ms, and a total cycle time of 50.0 ms.
Robotic harvesting performance indicates a harvesting success rate of 89.3%, with
an average harvesting time per tomato of 24.34 seconds, fruit damage at 2.1%,

false positives at 3.2%, and false negatives at 2.8%.

5.4. Simulated Results Validation

Using the detection pipeline of YOLOV5 in object detection together with a Res-
Net-50 classifier for ripeness on tomatoes in a video running on NVIDIA Jetson
Nano platform revealed that it was working fine. According to the output, the
processing of a frame was only 0.0016 seconds by the system, achieving real-time
performance similar to those reported processing speeds. The algorithm has iden-
tified and correctly classified four tomatoes on the frame into two ripe and two
unripe tomatoes. This clearly indicates that the combo of YOLOV5 object detector
and ResNet-50 classifier categorically distinguishes ripe from unripe fruits by the
color and shape features learned.

The final state visual output verified that the ability of our deep learning
architecture to handle multiple objects simultaneously at different stages of
ripeness is really true and is applicable at edge-computing agricultural applica-

tions.
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5.5. Comparative Analysis

This will be the difference yielded by Jetson Nano (Edge) showing a total response
time of 50 ms with no network dependency. It consumes only 8.5 watts of power,
which is very less, and it gives high flexibility in deployment with stable processing
consistency versus laptops (Remote) that have a response time of 187 ms and rely
so much on the network.

This reduces the power to 65 W, flexibility to low, and consistency to variable,
making it an improvement of over 73.3% faster responsiveness with 100 percent-
age reliability, 86.9% less power consumed, and significantly flexible. Model ar-
chitecture comparison across different neural network architectures includes
VGG16 with 94.2% accuracy, 18 FPS speed, 528 MB memory usage, and moderate
suitability; ResNet-50 with 96.8% accuracy, 25 FPS, 312 MB, and excellent suita-
bility; MobileNetV2 with 92.1% accuracy, 45 FPS, 156 MB, and good for resource-
constrained; ResNet-50 with 95.4% accuracy, 22 FPS, 218 MB, and good balance
(Figure 3).

TOMATO RIPENESS SIMULATION REPORT

Simulation Timestamp: 2825-18-15 @6:52:57
Total Processing Time: 8.8022 seconds

OBIECT DETECTION DETAILS (Status & Center Coordinate):
- status: Ripe | coordinates: (185, 328)
- status: Ripe | coordinates: (7ee, 375)
- Status: Unripe | Coordinates: (388, 555)
- status: unripe | Coordinates: (485, 6@8)

- Status: Unripe | Coerdinates: (758, 458)
- status: unripe | coordinates: (855, 558)

SUMMARY:
- Ripe Tomatoes Identified: 2
- Unripe Tomatces Identified: 4

Dpisplaying the final state visual output...

Figure 3. Simulated results validation.

Table 4. Comparative analysis.

Jetson Nano

Metric Laptop (Remote Improvement
(Edge) ptop ( ) p
Total Response Time 50 ms 187 ms 73.3% faster
Network Dependency None Critical 100% reliability
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Continued
Power Consumption 85W 60 W 86.9% reduction
Deployment Flexibility High Low Significant
Processing Consistency Stable Variable More reliable

As shown in Table 4, the Jetson Nano demonstrated faster response times, lower
power consumption, and higher reliability compared to the remote laptop configura-
tion. ResNet-50 turned out to be optimal architecture which resulted in a perfect bal-

ance of accuracy, processing speed, and memory efficiency for Jetson Nano platform.

5.6. Developmental Results

1. Adaptive Learning Algorithms

The development of the tomato ripeness detection system has gone through
several algorithms that optimize its performance in agricultural applications. Be-
yond the inbuilt ResNet-50 and YOLOV5 integrations, with innovations like
YOLOVS, RT-DETR, and PDSI-RTDETR, many improvements were made be-
cause of the most recent research in Frontiers in Plant Science and AIP Advances.
YOLOVS added features for real-time detection; it improved the handling of oc-
cluded objects by having a high of up to 86% mAP on tomato datasets. RT-DETR
deals with transformer-based architectures that focus on picking up the key point
of extracting features with varying modern scales. PDSI-RTDETR is an efficient
lightweight approach that reduces parameters by 30.8% and GFLOPs by 17.6%
compared to the original RT-DETR speed/accuracy trade-off; therefore, it be-
comes very useful for edge devices like Jetson Nano. The speed and accuracy bal-
ance has been the most important factor in these algorithms that determined
PDSI-RTDETR to be especially promising in natural environments with deform-

able attention modules for detailed feature extraction.

5.7. Theoretical Justifications

Using the technique of residual connections to avoid vanishing gradient problems
was introduced in ResNet and is one of the ways through which deep networks
are preserved in order to learn hierarchical features without degradation. This has
been theoretically proven in the groundbreaking work of He ef al YOLOV5 is a
single-stage detector, reducing the computational burden of two-stage models like
Faster R-CNN. This, in theory, means it can provide faster inference times; this
will unify regression on bounding boxes and classes. Lastly, the reason PDSI-
RTDETR used partial convolution blocks is to reduce redundant computation at
its core in theory, optimizing for low-resource environments while maintaining
high precision through inner EIoU loss for better overlap handling in dense to-

mato clusters.

5.8. Experimental Justification

The experiment justifications were developed from the ablation studies and
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benchmark results of the custom tomato datasets. Test results conclusively proved
that the ResNet-50 model slightly outperformed the VGG16 model by 2.6% in
accuracy due to its depth, while reducing inference times by 20% on Jetson Nano.
YOLOVS5 hit a new high in small object handling, which had been occluded, when
the conditions for lighting are specific to themselves, with a detection rate of
94.1% at 112 FPS compared to SSD [16]. PDSI-RTDETR optimization enhanced
precision of working by 4.7% and reduced detection time for one image by 4.2 ms;
experimentally verified on fruits overlapping under non-uniform lighting.

According to a study by Wang ef al. in 2024, it presented a distinct advantage
in comparison to the current models. While YOLOV3 or v4 struggles in reaching
real-time edge speed settings of around 30-50 FPS, 25 FPS has been achieved by
ours in a ResNet-YOLOV5 hybrid at 96.8% accuracy, with very special kinds of
optimizations at the edge, like TensorRT integration. On the other hand, the pa-
rameter count of the competitor RT-DETR, such as standard RT-DETR, is even
higher by up to 30%, so our model becomes much lighter and deployable.

TomatoDet, an anchor-free detector introduced by Liu et al [16], exhibited
greater occlusion at the expense of multimodal fusion within the system. Our ap-
proach brings together RGB-D for 3D localization to increase the precision of har-
vesting by 5% - 10% in dense canopies. That is where the edge computing focus
comes in with a difference: very fine-tuning particularly focused for agriculture
that makes it 73.3% faster responsive than cloud-based models of the likes using
EfficientNet.

6. Advanced Computer Vision Techniques

6.1. Attention Mechanisms and Feature Enhancement

The addition of attention mechanisms really enhances how the model can focus
on salient parts of an image for correct maturity classification. The feature repre-
sentation is improved by integrating the Convolutional Block Attention Module
(CBAM) [17], with both channel and spatial attention mechanisms: the channel
attention gives significance to important feature channels that are associated with
color information, whereas the spatial attention points out relevant spatial regions
or locations within an image. This gave a gain that was 3.2% more accurate than
the baseline ResNet-50. Long-range dependencies detected by self-attention really
enable the model to properly capture relationships among different parts of a to-
mato image, hence boosting ability for classification even under challenging con-
ditions such as partially occluded tomatoes, changing lighting, and many toma-

toes placed close to each other.

6.2. Advanced Preprocessing Techniques

Adaptive histogram equalization is a modification of image quality that is opposed
to the classic histogram equalization under non-uniform lighting conditions [14].
CLAHE offers a better contrast in low-light conditions, avoids over-enhancement

in bright areas, and may increase the accuracy of color discrimination. The pro-
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cessing for multi-scale feature extraction will ensure the capture of tomato fea-
tures at varying scales: fine texture analysis for quality assessment of the surface,
medium scale in shape analysis for general geometry of the fruit, and coarse scale

for major environment understanding.

6.3. Robust Color Classification

Color constancy algorithms help in achieving a reliable perception of colors, even
under varying illuminant conditions. Such realization is due to the white patch
method for simple illumination correction, the gray world assumption in balanc-
ing the color distribution, and gamut mapping for normalizing the color space.
Further modifications to HSV-based classification rules for agricultural environ-
ments were carried out [15], like ripe tomato with Hue at 0° - 15" and 345° - 360°,
Saturation 40% - 100%, Value 30% - 90% of unripe tomato with Hue lying be-
tween 60° - 120°, Saturation 25% - 90%, and Value 25% - 85%.

7. Robotic Control and Motion Planning
7.1. Inverse Kinematics and Path Planning

It employs elaborate algorithms for the movement of a robotic arm, ensuring great
precision in attaining a location and executing a smooth motion [19]. The tech-
niques applied in the inverse kinematics solution include both analytic and nu-
meric methods. The analytic methods, as applied to specific arm con-figurations,
largely constitute iterative ones: Newton-Raphson iteration for complex poses and
Jacobian-based control of the velocity-level inverse kinematics to achieve smooth
motion. Trajectory planning is created in such a way that all harvesting move-
ments are collision-free and processed with the utmost efficiency [20].

This allows the generation of continuous, smooth trajectories between each way-
point by way of polynomial interpolation, while avoiding obstacles [20]. Dynamic
path alteration avoids plant structures while maintaining time-optimal planning. It

reduces the cycle time of harvesting to a minimum while delivering precision.

7.2. Force Control and Gentle Handling

Incorporation of force sensors and compliance control strategies into the gripper
system will result in smooth force regulation to handle delicate fruits [19] like:
pressure monitoring with real-time force measurement, adaptive gripping with
dynamic force adjustment according to the size and firmness of the fruit, and
damage prevention through an automatic release for excessive force. This will
make interaction of the robot very safe with environment using impedance con-
trol: very soft contact at the time of light approach and on contact with tomatoes,
environmental adaptation to plant motion and wind effects, and recovery mech-

anisms for automatic correction from unexpected contacts at the time.

7.3. Multi-Arm Coordination

A system, to be used in the large-scale harvesting applications, is expected to sup-
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port coordination among several robotic arms. Dynamic task allocation is the dy-
namic assignment of harvesting tasks according to arm position and availability,
performing load balancing who maximizes the general harvesting efficiency, and
conflict resolution for overlapping workspace regions. Synchronization protocols
include time-based coordination for harvesting operation synchronization, com-
munication protocols regarding sharing information between arms, and safety

mechanisms to prevent arm collisions during execution.

8. Field Deployment and Practical Considerations

8.1. Environmental Robustness

It can function effectively in varied agricultural environments under rugged con-
ditions. This includes weather resistance with an IP65 protection rating against
dust and water ingress, operation at temperatures of —10°C to +50°C, 10% - 95%
relative humidity, and resistance to vibrations so the system is able to operate on
mobile platforms properly. Lighting adaptation is ensured through features like
auto-exposure control for dynamic adjustments to changing light conditions, LED
illumination for consistently good image quality, shadow compensation algo-
rithms to handle shadowing from plant structures while working, and UV protec-

tion for the camera sensor from harmful ultraviolet radiation.

8.2. Integration with Agricultural Systems

Integration characteristics encompass seamless integration with existing green-
house infrastructure: rail systems and over-head rail systems for optimal coverage,
climate control inter-face with greenhouse environmental controls, irrigation sys-
tem coordination to prevent conflicts with watering operations, crop management
systems that enable sharing data with farm management software. Mobile plat-
forms are available in self-propelled units for operation in the field, fixed installa-
tions for permanent placement in controlled environments, modular systems for
scalable configurations on different sizes of farms, and retrofit solutions to fit into

existing agricultural machinery.

8.3. Maintenance and Reliability

The design supports a predictive model for maintenance, thereby including per-
formance monitoring, continuous performance tracking on key performance
metrics related to the system, detection of wear for preemptive detection of me-
chanical component degradation, calibration monitoring with automatic sensor
drift detection, and alert systems on maintenance needs and operational issues
[21]. With remote diagnostics, the troubleshooting process can be reasonably ef-
fective. Remote monitoring will be possible through a web-based interface. It will
allow monitoring the status of the system, log analysis with comprehensive log-
ging of system operations and errors, update management for over-the-air soft-
ware and configuration changes, as well as performance analytics for in-depth

analysis of harvesting efficiency and accuracy.
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8.4. Economic and Environmental Impact

1. Cost-Benefit Analysis

This includes initial investment in the DOFBOT robotic arm and Jetson Nano
platform, amounting to $2,500 - $3,500, plus installation and setup at $1,000 -
1,500, with annual maintenance at $300 - 500, for a total 5-year cost of $5,300-
$7,500.

The manual harvesting is $15-25 per hour per worker, and the seasonal labor
requirement spans between 200 and 400 hours per hectare. Consequently, annual
labor cost lies between $3,000 and $10,000 per hectare, giving an ROI of 1.5 - 2.5
years, depending on farm size. Productivity improvements are round-the-clock
functioning for harvesting, supplying equal uniform standards without human fa-
tigue, speed 40% - 60% faster than that of manual under optimum conditions, and
ripe identification accuracy of 96.8% vs. the human accuracy of 85% - 90%.

2. Environmental Benefits

The benefits of sustainability include a decrease in chemical usage, through pre-
cision application that minimizes wastes of pesticides and fertilizers; low carbon
footprints in electric operations, compared to diesel alternatives; less compaction
of soil because lighter machines lead to less harm to the soil; water conservation
through use of sensors for maximum efficiency in irrigation. Waste reduction en-
compasses harvest optimization for an improved pick at optimal ripeness, hence
reduced food waste; quality control by consistent grading for improved market
acceptance; supply chain efficiency assured by real-time quality data for better lo-
gistics; and increased shelf life through optimum harvest timing, therefore in-

creased product longevity.

9. Future Developments and Research Directions
9.1. Technological Advancements

The next-gen hardware that was developed was the Jetson AGX Xavier, an im-
proved processing platform with 32 TOPS AI performance, advanced sensing in-
corporating hyperspectral imaging for quality assessment, improved actuation
through high-precision servo systems for better control, and inductive charging
for continuous operation. Algorithm upgrades specifically include a few-shot
learning: how to adapt to new tomato varieties with the least training data, feder-
ated learning: the possibility of jointly improving models across multiple farms,
reinforcement learning: learning from experience to adapt harvesting strategies,

and multimodal Al: a fusion of visual, tactile, and chemical sensing.

9.2. Scalability and Commercialization

Large-scale deployment involves fleet management which synchronizes several
harvesting robots in a cloud-integrated central monitoring and management sys-
tem, data analytics for the optimization of the entire farm based on harvesting
data, and market integration for direct linking to the supply and distribution net-

works. Technology transfer is to other crops—other fruits and vegetables, further

90 Advances in Artificial Intelligence and Robotics Research



S. Thakur et al.

process applications in quality control at a food processing plant, research appli-
cations as an agricultural research and development tool, and educational systems

as a training platform for agriculture robotic education.

9.3. Emerging Applications

Integrated precision agriculture ensures round-the-clock crop monitoring and con-
tinued plant health and growth analysis. It provides an optimum plan that ensures
the perfect time for harvesting by making use of predictive analytics learned from
historical data. Disease diagnosis is integrated for early detection of plant diseases
and pests. In view of the yield estimation, accurate production forecasting is made
for market planning. Smart farming ecosystems are considered an IoT integration
with broader farm sensor networks and Al-driven decisions for autonomous farm
management systems, taking under consideration the monitoring of sustainability
for monitoring environmental impact and coordinating optimization and supply

chain transparency for end-to-end traceability from farm to consumer.

10. Challenges and Limitations
10.1. Technical Challenges

Computer vision has some occlusion handling-related constraints; hence, it be-
comes tough to detect tomatoes occluded by leaves or branches [17]. The other is
that it also faces effects of lighting variations due to extreme lighting conditions;
its performance may degrade. Size variations become challenging with very small
or abnormally large tomatoes. It has limited ability to detect diseased or damaged
fruits. There are robotic control issues, such as delicate handling that must balance
speed and gentle fruit handling, workspace limitations in terms of restricted reach
into dense plant canopies, calibration drift, or gradual degradation of positioning
accuracy over time, and environmental interference from wind and plant move-

ment affecting precision.

10.2. Economic and Practical Barriers

High initial costs, in terms of upfront huge capital investments and specialized
knowledge required for the operation and maintenance of the technology, char-
acterizes the scene. This includes infrastructural needs for modifications in cur-
rent farm layouts and those for conforming to safety and agricultural standards
requirements of regulations. Market barriers could run the gamut from scale re-
quirements for economic viability, which would generally entail larger operations;
crop variability, which engenders massive adaptation costs in the growing of dif-
ferent types of tomato varieties; seasonal constraints as it finds limited use outside
harvesting seasons; and competing with labor, because cheap manual labor is

available in some areas.

10.3. Major Challenges

One significant challenge in the field of the computer vision of tomato ripeness

91 Advances in Artificial Intelligence and Robotics Research



S. Thakur et al.

detection is illumination problems, specifically involving non-uniform illumina-
tion that can distort color perception and result in a decrease in model perfor-
mance. Supporting studies that are documented from Chemical Engineering
Transactions and Frontiers in Plant Science clearly show that lighting directly in-
fluences Value in the HSV color space. This can be mathematically shown as V =
Max (R, G, B). Such variations emanating from intensity in the illumination may
change the pixel values; hence, leading to misclassification. For example, over
5000 Ix of harsh lighting results in overexposure; hence, a drop in saturation will
make ripe tomatoes appear washed out. This is then modeled by the contrast equa-
tion: the latter can be calculated as Contrast = (I max — I min)/(I max + I min).
Shadows are highly accentuated with high contrast; hence, any positives are false
for ripe tomatoes by as much as 20%.

If the light is below 1000 Ix, the V value underexposes, thus reducing the hue
range to that extent, making unripe green tomatoes appear similar to shadows.
There is about a 50% chance of reduced accuracy according to a study of 2024 by
Ambrus et al. The processing of 30 FPS density images should be a latency of
computation in the edge device, which should have an optimal pipeline that does
not delay harvesting cycles in real-time challenges. Leaves or fruits can occlude
the bounding boxes, resulting in an increase of missed detections up to 15% - 25%,
while different scale tomatoes require multi-scale feature extraction because of
maintaining precision. Ever-growing network unreliability in the remote fields
further complicates matters for cloud-dependent systems, but our edge approach
reduces this problem, although it faces power constraints that reduce continuous
operation.

The lighting threshold levels to signal optimal function range between 2000 -
4000 Ix, wherein this model offers 94% efficiency with very strong color constancy
algorithms like PDSI-RTDETR. Performance falls below 80% under glaring
(>5000 Ix) lights due to the glare-induced artifacts. Lessen conditions (<1600 Ix)
will decrease the size of the detected tomato by 50%, hence with as many pixels
falling outside the thresholds, making the system fail. High contrasting environ-
ments with shadow differences at 2000 Ix work fine within a 3000 Ix differential,
but beyond that, they become failures, with as much as 30% misclassification in

validated results by Liu et al’s TomatoDet analysis in sunlight vs. shading [16].

11. Conclusions

This paper illustrates the creation of a high-end robotic harvesting system with
computer vision for ripe and unripe tomatoes. The system was an integration of
the DOFBOT Robotic Hand with the NVIDIA Jetson Nano and a pre-trained Res-
Net-50 model to finally achieve an overall accuracy of 96.8%, harvesting ripe to-
matoes at an efficiency rate of 89.3%.

This resulted in an edge computing response time of only 50 milliseconds, which
is 73.3% lower and 86.9% more power-saving than the response time of classical

systems based on laptops. The work showed that one could easily replace these
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arduous agricultural tasks using edge AI with state-of-the-art robotics, making it

very precise, to resolve problems related to underemployment and quality control.

These results, therefore, form the strong basis underline towards the development

of commercially scalable and sustainable farming technologies.
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