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Abstract 
Coronavirus disease 2019 (COVID-19) has become a global threat to public 
health and economy. The potential burden of this pandemic in developing 
world, particularly the African countries, is much concerning. With the aim 
of providing supporting evidence for decision making, this paper studies the 
dynamics of COVID-19 transmission through time in selected African coun-
tries. Time-dependent reproduction number (Rt) is one of the tools employed 
to quantify temporal dynamics of the disease. Pattern of the estimated repro-
duction numbers showed that transmissibility of the disease has been fluc-
tuating through time in most of the countries included in this study. In few 
countries such as South Africa and Democratic Republic of Congo (DRC), 
these estimates dropped quickly and stayed stable, but greater than 1, for 
months. Regardless of their variability through time, the estimated reproduc-
tion numbers remain greater than or nearly equal to 1 in all countries. Another 
Statistical model used in this study, namely Autoregressive Conditional Pois-
son (ACP) model, showed that expected (mean) number of new cases is sig-
nificantly dependent on short range change in new cases in all countries. 
In countries where there is no persistent trend in new cases, current mean 
number of new cases (on day t) depend on both previous observation and 
previous mean (day t − 1). In countries where there is continued trend in new 
cases, current mean is more affected by number of new cases on preceding 
day. 
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1. Introduction 

The World Health Organization (WHO), on March 11 2020, declared the out-
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break of novel coronavirus (COVID-19) a pandemic [1]. Since then the virus 
that causes coronavirus, SARS-CoV-2, has spread to every continent causing in-
calculable public health and economic disaster. From mitigation and prevention 
point of view, the burden of this pandemic is even heavier on developing world, 
particularly the African countries. Therefore, studying the dynamics of this pan-
demic in these countries is of great importance in terms of providing indicators 
that support informed decision making. 

Studies report that Africa has made substantial progress since Ebola outbreak 
and prepared better for COVID-19 [2]. These studies claim that some African 
nations implemented promising measures well before any cases of COVID-19 
had been reported from Africa. For instance, countries such as Nigeria, Kenya, 
Ethiopia, Côte d’Ivoire, Ghana, Uganda and Botswana have been acknowledged, 
in the cited source, for rapidly dealing with suspected cases. That being an en-
couraging development, this study examines temporal and partly spatial dynam-
ics of COVID-19 since reported in some African countries. Visualizing the in-
fectiousness pattern of the disease across time and locations is vital noting that 
variation may occur depending on contact rate of the source cases in communi-
ties with differing population density and culture. As many agree, better under-
standing of the spread and transmission dynamics of infectious disease like 
COVID-19 is key in determination of effective response measures. 

To have continent-wide overview, countries from the five regions of the con-
tinent: South Africa from Southern Africa region; Nigeria, Côte d’Ivoire, and 
Guinea from Western Africa; Democratic Republic of Congo (DRC) and Gabon 
from Central Africa; Ethiopia, Kenya, Sudan and Djibouti from Eastern Africa; 
Algeria and Egypt from Northern Africa are included in this study. Inclusion of 
Djibouti has a specific reason. From visual assessment of epidemic curve, this 
country looks to be facing a second wave of the pandemic. The spread of COVID- 
19 in Djibouti appeared to be contained around the end of April (for relatively 
longer time) and again rose up in mid May. Behavior of estimates within and 
across such cycles can be of interest and may serve as a benchmark in interpret-
ing patterns of similar estimates in other countries. 

2. Data 

Daily time series of total new cases from WHO’s daily situation reports [3] are 
used in this study. The author chose this source for data quality and reliability. 
The data were extracted manually from separate daily reports. The daily counts 
are as reported by the respective national authorities to the WHO by 10 AM, 
Geneva time, each day. Length of the time series differs for different countries, 
see Table 1. This is so because first case(s) of COVID-19 were reported on dif-
ferent times/dates in different countries. 

3. Reproduction Number 

Reproduction number is one of the measures of transmissibility of infectious  
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Table 1. Length of time series used for each country—time between date on which the 
first case is recorded (by the WHO) and June 15, 2020. 

Country Time period covered 

South Africa 2020-03-06 to 2020-06-15 

DRC 2020-03-11 to 2020-06-15 

Gabon 2020-03-14 to 2020-06-15 

Nigeria 2020-02-28 to 2020-06-15 

Côte d’Ivoire 2020-03-12 to 2020-06-15 

Guinea 2020-03-14 to 2020-06-15 

Ethiopia 2020-03-14 to 2020-06-15 

Kenya 2020-03-14 to 2020-06-15 

Sudan 2020-03-14 to 2020-06-15 

Djibouti 2020-03-19 to 2020-06-15 

Algeria 2020-02-26 to 2020-06-15 

Egypt 2020-02-15 to 2020-06-15 

 
disease. It is often used to reflect how infectious a disease is. In general, it refers 
to the average number of secondary cases caused by an infected individual. In 
practice, different qualifiers are used when reporting reproduction number: ini-
tial, basic, instantaneous... etc [4] and several estimation techniques are pro-
posed in literature (e.g., [5] [6] [7] [8]). 

There are intervention measures (such as social distancing, isolation, personal 
hygiene) put in place in different countries. Moreover, some proportion of the 
population can be immune to COVID-19 (for example due to prior infection). 
Therefore, time-dependent reproduction number is more appropriate to visual-
ize dynamics of the pandemic with time. In this paper, I analyze time-dependent 
(instantaneous) reproduction number (Rt) using method discussed in [8]. This 
method assumes that, once infected, individuals have an infectivity profile given 
by a probability distribution ws, which is dependent on time, s, since infection of 
the case. It is believed that the distribution ws typically depends on individual bi-
ological factors such as pathogen shedding or symptom severity. Studies have 
shown that ws for SARS-CoV-2, the virus that causes COVID-19, peaks just be-
fore or as patients developed symptoms [9] [10]. 

Let It be total number of incident cases arising at time t and let t  be total 
infectiousness of infected individuals at time t, 

1 −=
= ∑ t

t t s ss I w  (the sum of in-
fection incidence up to time step t − 1, weighted by the infectivity function ws). 
Given these, [8] proposed that Rt can be estimated by the ratio of It to t . 

R packages, “EpiEstim” and “incidence” are employed to compute estimates 
of Rt in this study. These calculations are based on daily incidence time series 
and two parameters (namely, mean and standard deviation) of serial interval 
distribution. Different estimates of mean and standard deviation of serial inter-
val for COVID-19 are reported by different authors (e.g., [9] [11] [12] [13] [14] 
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[15]). The estimates provided by [11] (mean = 7.0 days and standard deviation = 
4.5 days) use in this study. 

Epidemic curves and the estimated time-varying reproduction numbers, for 
the countries considered in this study, are given in Figure 1 and Figure 2 re-
spectively. Studying these two results jointly may also help to evaluate capability 
of Rt to capture the observed dynamics. From Figure 2, we can see that repro-
duction number of the pandemic has been lowered quickly and kept somehow 
stable in countries such as South Africa and DRC. However the estimates remain 
notably above 1 in these countries as well, showing that still more cases are ex-
pected with one agent infecting on average more than 1 individuals. 

On the other hand, the estimates of Rt values fluctuate with time in the rest of 
countries with temporary ups and downs. Countries like Nigeria, Guinea, Sudan 
and Egypt had a relatively lower early transmissibility rate which quickly rose up 
before dropping back after a couple of weeks. In contrast, countries such as 
Ethiopia, Djibouti and Algeria had higher initial transmissibility rate which 
quickly, but temporarily, dropped within a week or two. These patterns may in-
dicate how relatively reluctant or aggressive response measures were taken by 
the countries at initial stage of the pandemic. Regardless of stability or fluctua-
tion with time, the estimated values Rt remain above or very close to 1 in almost 
all countries. This may indicate that there is a need for continued and/or im-
proved preventive intervention in these countries. This recommendation makes 
sense because the temporal dynamics of estimated values of Rt can have implica-
tions on effectiveness of response measures in place [16] [17]. Magnitude of 
these estimates also play an important role in the selection and aggressiveness of 
countermeasures (e.g. social distancing, travel restrictions, handling infected 
agents and so on) required to contain the spread COVID-19 [18]. Note that the 
estimated values of Rt are momentarily lower than 1 in countries such as Gabon, 
Guinea and Djibouti at the end of the study period, June 15. However, quality of 
data from these countries, particularly Gabon, seems to be questionable and this 
may affect reliability of the estimates. As can be seen from epidemic curve in 
Figure 1, relatively very high number of new cases are followed by 0 new cases, 
specifically in Gabon. Estimates based on data with such inconsistency may not 
reflect the actual contagion of the virus. Therefore, the author suggests that re-
sults for countries with inconsistent incidence pattern should be interpreted with 
light limitations. 

The epidemic curve and reproduction number for Djibouti show that the sit-
uation seemed to be contained in April 20’s. During this time reproduction 
number has been less than 1 for several days in a row. However, it started rising 
up again since mid May and reached a peak of 4.14 on May 21. This indicates 
that the spread of the virus in Djibouti looks to be in its second cycle. 

Projected number of new cases for the next 30 days, June 16-July 15, are given 
in Figure 3. These projections are made using the median level of estimated Rt 
values, shown in Table 2, for each country and assuming that Rt value may not 
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deviate significantly over the next 30 days. An R package called “projections” is 
used to compute these projections. Plausibility of the projections is briefly as-
sessed dividing the data into training and test data. The author would also like  

 

 
Figure 1. Epidemic curves of COVID-19 for the countries included in this study. Note: EC stands for Epidemic Curve. 
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Figure 2. Estimates of time-dependent reproduction number of COVID-19 over weekly sliding window ending on June 15, 2020. 
Gray shades are the 95% confidence limits. Note that these credible intervals get wider when case numbers get low. 
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Figure 3. Projected incidences, 95% confidence intervals, for the next 30 days, June 16-July 15. Note that PI stands for Predicted 
Incidences. 
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Table 2. Median level of estimated time-dependent reproduction numbers. 

Country Median reproduction number 

South Africa 1.46 

DRC 1.37 

Gabon 1.51 

Nigeria 1.41 

Côte d’Ivoire 1.33 

Guinea 1.25 

Ethiopia 1.47 

Kenya 1.33 

Sudan 1.74 

Djibouti 1.61 

Algeria 1.13 

Egypt 1.41 

 
to note that these projections should be interpreted with limitations. Because 
they are very sensitive to transmissibility of the virus, measured here by repro-
duction number over the projection period. If the reproduction number gets 
lower (than its current median level), the projected numbers of daily incidences 
will get lower and vice versa. 

4. Autoregressive Conditional Poisson Model 

Reproduction number discussed in section 3 measures mainly the short range 
dependence. To asses statistical significance of this short range dependence and 
also to study longer range dependence, a model that accounts for these and han-
dles the type of data we have is discussed in this section. 

Number of daily (new) infections is a count time series. Models employed to 
study dynamics of pandemics such as COVID-19 should take two important 
features of the variable (number of infections) into account: a) the variable is a 
discrete count variable → the usual Gaussian assumption doesn’t hold, b) there is 
dependence among observations → uncorrelatedness of the observations, re-
quired by generalized linear models, will not be in place. A class of models known 
as autoregressive conditional poisson (ACP) models, discussed in recent litera-
tures (e.g., [19] [20] [21] [22]), have attractive specifications that makes them 
capable to account for these issues and model count time series. 

A log-linear version of this family of models has been proposed by [22] in or-
der to accommodate modeling negative associations. This form of ACP has been 
used in some recent articles (e.g., [23] [24]) to study COVID-19 contagion. How-
ever, for count data such as new cases of COVID-19 pandemic, negative correla-
tion could not make sense. Because expected number of cases at time t has posi-
tive correlation with number of cases and mean of cases at time t − 1. That means 
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there is no need to worry about negative correlation in this situation. On the 
other hand, the log-linear version may have interpretational and inferential in-
conveniences for count data involving 0’s, which is common in daily new cases 
of COVID-19. Therefore, this study uses the original ACP model proposed by 
[19] and discussed in [21], given in Equation (1) below, which is an integer-valued 
analogue of the classical GARCH model. 

Let Yt be a time dependent count time series (daily new cases of COVID-19 in 
this case) and let 1−Ft  denotes the information available on the series up to time 
t − 1. The autoregressive conditional Poisson model employed in this study is 
then given by 

( ) ( )1 1| ~ Poisson , for |λ λ− −=F Ft t t t t tY E Y  

1 1,  1λ γ αλ β− −= + + ≥t t tY t                     (1) 

where γ is the intercept term, β and α measure dependence of the expected 
number of new infections on day t, λt, on the past counts and past expected 
(mean) number of new infections respectively. Specifically, the β component 
represents the short range serial dependence of λt on the previous time observa-
tion and the α component represents the autoregresive feedback of mean of all 
past values of the daily new cases util day t − 1 (can be referred to as long range 
dependence). All parameters γ, α and β are assumed to be positive and satisfy 
0 1α β< + <  [22]. The analysis of this model is based on likelihood inference 
[21]. 

The notion of long range and short range dependence in this model is not the 
same as in classical time series models, which discuss dependence of time series 
observations on their own past values and other predictors. In the ACP model 
here, we deal with dependence of current conditional mean on its previous value 
and previous observation. In this case, if there is trend in observed time series of 
new cases, current mean can be affected more by the short range changes. If 
there is no trend in observed new cases, current mean is less affected by short 
range changes. This concept seems to have been misrepresented in some recent 
papers (e.g., [23]). 

A brief assessment of daily new cases has shown that there is no serious over-
disperssion problem in these count data. Therefore, a conditional Poisson dis-
tribution is used in this analysis as assumed in (1). 

With the aim of testing significance of short range and long range depen-
dences; and studying the variation of these dependences with time, the ACP 
model in (1) is fitted using different segments of data. First I fit the model using 
all data for each country. Estimates of the parameters and their 95% confidence 
intervals are given in Table 3. As can be seen here, the short range dependence is 
significant for all countries. This also strengthens reliability of the estimated re-
production numbers discussed in section 3. Because reproduction numbers meas-
ure more of short range dependences. 

Autoregressive feedback (long range serial dependence) at the end of this 
study period, June 15, is not significant for some of the countries (South Africa  
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Table 3. Estimates of model parameters. Values in bracket are lower and upper limits of 
95% confidence interval. The estimates in bold are significant, at 95% level of significance. 

Country 
Estimate 

γ̂  α̂  β̂  

South Africa 82.84 (79.17, 86.53) ~0 (−0.01, 0.01) 0.93 (0.92, 0.95) 

DRC ~0 (−0.01, 0.01) 0.81 (0.72, 0.89) 0.14 (0.06, 0.23) 

Gabon ~0 (−0.01, 0.01) 0.84 (0.82, 0.87) 0.17 (0.14, 0.17) 

Nigeria ~0 (−0.003, 0.003) 0.81 (0.79, 0.84) 0.19 (0.17, 0.20) 

Côte d’Ivoire ~0 (−0.02, 0.02) 0.76 (0.72, 0.81) 0.24 (0.20, 0.27) 

Guinea ~0 (−0.004, 0.004) 0.79 (0.76, 0.83) 0.21 (0.18, 0.24) 

Ethiopia ~0 (−0.04, 0.04) 0.53 (0.44, 0.62) 0.46 (0.38, 0.54) 

Kenya 0.58 (0.20, 0.96) 0.42 (0.35, 0.49) 0.54 (0.48, 0.61) 

Sudan 0.03 (−0.01, 0.07) 0.75 (0.73, 0.79) 0.24 (0.21, 0.27) 

Djibouti 0.58 (0.29, 0.86) 0.59 (0.56, 0.62) 0.37 (0.34, 0.40) 

Algeria 37.64 (33.65, 41.63) 0.12 (0.06, 0.19) 0.54 (0.50, 0.58) 

Egypt 18.32 (16.75, 19.89) 0.02 (−0.004, 0.05) 0.93 (0.91, 0.96) 

 
and Egypt) indicating that there is no notable dependence on the mean number 
of cases of the preceding day. That in other words mean the expected number of 
cases on day t is more explained by the number of new cases observed on day t − 
1 for those countries. That also likely explains the presence of continued upward 
trend in daily cases in these countries. 

Interpretation of these estimates is direct forward. For instance in South Afri-
ca, where the short range dependence is consistently dominant: if the expected 
number of cases for today is 0 and 200 new cases observed on this day, then this 
leads to expected number of about 269 (95% CI: 263 - 277) tomorrow. In coun-
tries where long range dependence has consistently been dominant, this expecta-
tion would be lower. For instance in Guinea: if the expected number of cases for 
today is 0 and 200 new cases observed, this leads to about 42 (95% CI: 36 - 48) 
expected cases tomorrow. On the other hand if the expected number of cases is 
200 and 0 new cases are reported today, this will lead to expected number of 83 
(CI: 79 - 87) in South Africa and 158 (CI: 152 - 166) in Guinea the next day. This 
being the theoretical interpretation, in practice, however, assuming 0 conditional 
expectation in this case would be less realistic at this stage. Because such as-
sumption could be valid only if probability of positive tests is zero. Therefore, 
more effort should be made towards minimizing observed number of daily new 
cases which in effect minimizes the expected (mean) numbers. 

To study how the short range and long range dependences change with time, 
different models using increasing amounts of data are fitted for each country. 
The first fit is using daily new cases observed over the first 30 - 36 days, and then 
for each of the next fit including 5 days data at a time. For instance, the fist fit 
using observed new cases in the first 35 days, the second fit using number of new 
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cases in first 40 days, the third fit using the first 45 days and so on. Plot of these 
estimates against sample size/time are given in Figure 4. Dominance of the two  

 

 
Figure 4. Estimates of the ACP model coefficients using sample sizes that increase with time. The red line represents estimates of 
coefficient that measures short range dependence, β , and the blue line represents estimates of coefficient that measures long 
range dependence, α . 
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dependences (measured by α  and β ) change when there is local (temporary) 
pause in trends during this segmented estimation time (after the first 30 - 36 
days of the pandemic in each country). For instance, the continued dominance 
of long range dependence in DRC, Gabon, Côte d’Ivoire, Nigeria and Guinea 
(mostly West African countries) implies that there has not been a considerably 
continued trend after the first 30 - 36 days of first case in these countries. On the 
other hand, continued dominance of short range dependence, for instance in 
South Africa and Egypt, shows that there has been a persistent upward trend 
over the aforementioned period. 
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