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Abstract 
The Great Pyramid has the character of concavity that each of its four faces 
is slightly indented along its central line. Applying the geometry on an in-
clined plane, we show that this concavity could be derived from its inner 
structure of inward sloping courses gently inclined towards the center of 
each course, at about 11 degrees to the horizontal, i.e., the slope 1/5 by the 
ratio of “rise over run”. We explain why the inclined layers together with 
the reinforced base were necessary for the long-term stability of the Pyra-
mid against the severe natural forces like the high gravitational compres-
sion, earthquakes and rainstorms, pointing out the feasible fact that the Py-
ramid has experienced severe rainstorms more than 500 times during the 
4500 years. The crucial point about stability is that the effects of such natu-
ral forces are quite different between the core of inclined courses and that 
of truly level courses in the sense that the former can be tightened to be-
come stronger over time, but the latter would be disintegrated to be weaker 
over time. Scaled-down models of the Pyramid are introduced to understand 
the large-scale dynamics of the Pyramid. In particular, the small model re-
duced by 10−3 helps us to imagine the transformation of vertical into lateral 
forces, pointed out by Mendelssohn. On the other hand, the Step Pyramid 
of Djoser can be identified almost as the half-sized model of the Great Py-
ramid when the Great Pyramid was assumed to be composed only of truly 
level courses. And this identification tells the fate of the Great Pyramid only 
of truly level courses that it would have almost collapsed until now like the 
Step Pyramid before the recent restoration. 
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1. Introduction 

The Great Pyramid at Giza is known to have an amazing character of concavity 
that each of its four faces is slightly indented along its central line, from base to 
peak. In other words, the Great Pyramid is a concave octagonal pyramid, rather 
than the standard square pyramid. This concavity is so subtle to be seen from 
any ground position, but can be observed from the air. The British Air Force pi-
lot, P. Groves, captured it as in Figure 1 quite accidently on equinox, 1926, when 
he was flying over the Pyramid1 (Groves & McCrindle, 1926). Thanks to the 
modern technologies, we can nowadays get a picture like Figure 2 by the Earth 
observation satellite Quick Bird2. Quite recently, a remarkable study using the 
modern technology of radar measurements has appeared in (Biondi & Malanga, 
2022), where the eight-sided nature of all the three pyramids of Khufu, Khafre 
and Menkaure were rigorously demonstrated. This is a great achievement as it is 
the first time ever to capture the concavity of the Khafre Pyramid, which was too 
subtle to be seen compared with that of Khufu’s and Menkaure’s. Historically,  

 

 
Figure 1. Photo of the Giza pyramids captured by Brigadier General P. R. C. Groves, 
British Royal Air Force, at sunset during the Autumnal Equinox. The Great Pyramid, al-
most in the middle of this picture, shows its bright western face together with the south-
ern face divided into two right triangles. This picture was published in the National Geo-
graphic, September 1926. 

 

 

1Natonal Geographic 1926-09: Misquotation prevails in literatures about the year this marvelous 
photo was taken. 
2Similar pictures can be seen in  
http://philippelopes.free.fr/PyramideDeKheopsHuitFacesRevelationDesPyramides.htm.  
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Figure 2. Pansharpened image of the Great Pyramid, by Quick Bird on Feb.2, 2002.  
https://www.advite.com/satellitephotos.htm.  

 
the concavity of the Great Pyramid was observed much earlier by Flinders Petrie 
(Petrie, 1883) who reported that: “I continually observed that the courses of the 
core had dips of as much as 1/2 degree to 1 degree so that it is not at all certain 
that the courses of the casing were truly level∙∙∙ the faces of the core masonry be-
ing very distinctly hollowed. This hollowing is a striking feature; and beside the 
general curve of the face, each side has a sort of groove especially down the mid-
dle of the face, showing that there must have been a sudden increase of the cas-
ing thickness down the midline. The whole of the hollowing was estimated at 37 
(inches) on the North face∙∙∙” (“37 inches” is about 0.94 meters, less than one 
meter.) Here, recall the fact that the original shape of the Great Pyramid was the 
complete square pyramid covered with the casing stones; the survey (Dash & 
Paulson, 2015) proved the base (with the casing stones) of the Great Pyramid 
was a perfect square. It was when the casing stones were lost that the concavity 
revealed. Therefore, the concavity had been covered by the adjustment of casing 
stones with “a sudden increase of the casing thickness down the midline” as re-
ported above. Another kind of observation was done on equinox, 1934, by a 
French mathematician André Pochan, who photographed the southern side of 
the Great Pyramid using the infrared camera, as in Figure 3, to observe that this 
face was divided into two right triangles with different temperatures. His illu-
stration Figure 4 in (Pochan, 1971) describes the maximal indent as 0.92 meters. 

We show in this article, through the geometric analysis of an inclined plane, 
that the slight concavity of the Great Pyramid could be derived from the gentle  
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Figure 3. Infrared photograph of the southern face of the Great Pyramid taken by Po-
chan, at 6 p.m. on equinox, 1934 (Pochan, 1971). 

 

 
Figure 4. Illustrations of the Great Pyramid in (Pochan, 1971) as a concave octagonal py-
ramid with the maximal indent 0.92 meters. 
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slope of inclined courses, which we estimate at about 11 degrees to the horizon-
tal, i.e., the slope 1/5 by the ratio of “rise over run”. Due to the perfect masonry 
we cannot see the core of the Great Pyramid. Contrasting examples whose cores 
can be seen are the Meidum Pyramid and the three Queens Pyramids of Khufu. 
The Meidum Pyramid discloses its poor internal masonry through its large hole 
in the north side, and the inside of the Queens Pyramids is described in Chapter 
9 of (Isler, 2001) that “The stones inside the tiers, which form the bulk of pyra-
mid masonry, are small and poorly fitted compared to those on the face, some 
near the center of the nucleus being placed almost haphazardly”. These examples 
teach us well that we cannot judge the inner structure of any pyramid only by its 
external appearance even for the small-sized pyramids like the Queens Pyramids, 
about 30 m high. Therefore, the best possible viewpoint we stand on should be the 
scientific one based upon geometry, physics and geology. 

In Section 2, we will present how to lay blocks on an inclined plane to form 
inclined courses, and show how the geometry of an inclined plane generates the 
concavity of the pyramid. The strong structure of the base is definitely needed 
for the stability, and the Great Pyramid was built on a natural carved outcrop. 
We show in Section 3 how this outcrop was incorporated to reinforce the struc-
ture of the base, and how the concavity tightens the Pyramid consisting of in-
clined courses. Section 4 remarks a bit unexpected fact that the Great Pyramid 
has long been exposed to rainstorms “quite frequently” if measured by the time-
scale of the Pyramid. This fact is very important since most blocks of the Pyra-
mid are limestones, quite vulnerable to the erosion by rainwater. The necessity 
of the inclined courses for the stability of the Pyramid will be explained in Sec-
tion 5, based on the idea of (Mendelssohn, 1976) that in a pyramid containing 
stones of irregular shape and consisting only of truly level courses, the vertically 
downwards acting force generated by the gravity will develop lateral compo-
nents, favouring a break-up and flattening of the structure. We show that the 
core of inclined courses could be tightened by earthquakes and erosion by rain-
water, but the core of truly level courses would be loosened by them. In Section 6 
we introduce scaled-down models to understand the large-scale (both in space 
and time) dynamics of the Pyramid from the viewpoint of the rheology. A small 
model of size 20 cm, reduced by the scale 10−3, helps us to understand the trans-
formation of vertical into lateral forces. Models not so small are also useful, and 
indeed, the Step Pyramid of Djoser on the Saqqara plateau can be identified al-
most as a half-sized model of the Great Pyramid if the Great Pyramid was as-
sumed to be made entirely of truly level courses. Therefore, the seriously deteri-
orated Step Pyramid just before the recent restoration tells the fate of the Great 
Pyramid if it were consisted entirely of truly level courses. 

2. How to Lay Blocks on an Inclined Plane 

Figure 5 illustrates the outline of the Great Pyramid as a square pyramid with the 
top 0A  and the base 1 3 5 7A A A A  with its center O. Suppose the square 1 3 5 7B B B B   
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Figure 5. Pyramid 0 1 3 5 7A A A A A  illustrates the outline of the Great Pyramid as a square 
pyramid with the top 0A  and the base 1 3 5 7A A A A  with its center O. The square 1 3 5 7B B B B  
with the center M denotes its horizontal cross-section. The point C is chosen between O 
and M, to consider the frustum with the sunken rooftop consisting of four inclined tri-
angular planes 1 3 3 5 5 7 7 1, , ,CB B CB B CB B CB B∆ ∆ ∆ ∆ . 

 
with the center M is its horizontal cross-section, and choose a point C between 
O and M. The midpoints of the segments  

1 3 3 5 5 7 7 1 1 3 3 5 5 7 7 1, , , , , , ,A A A A A A A A B B B B B B B B  are denoted  

2 4 6 8 2 4 6 8, , , , , , ,A A A A B B B B , respectively. 
Let us consider the frustum with the sunken top surface composed of four in-

clined triangular planes 1 3CB B∆ , 3 5CB B∆ , 5 7CB B∆ , 7 1CB B∆ , and suppose 
now that we have completed the piling of stones below this sunken surface, and 
what we do next is to add a new course of blocks on this surface. Most blocks 
used in the Pyramid are assumed to be cubic, and the height of blocks used for 
this new course should be uniform. Due to the symmetry, it would suffice to show 
how we can lay blocks on the inclined triangular plane 1 3CB B∆ . Note that the 
horizontal 1 3MB B∆  in Figure 5 is the right triangle, but the triangle 1 3CB B∆  
is not, since the point C is below M: 

1 3 1 3 ,CB CB MB MB= > =  

1 3 1 3 ,2B CB B MB∠ = π< ∠  

2 1 2 3 2 1 2 3 .4B B C B B C B B M B B M∠ = ∠ > ∠ = ∠ π=  

The most essential idea which motivated this paper is that: 
The geometry on the inclined triangle 1 3CB B∆  differs slightly from that of 

the horizontal triangle 1 3MB B∆ . 
Choose the point 2B  on the line 2B C  such that 2 3 2 1 4B B C B B C∠ = π∠ =  . 

Then, the edge 3 2 1B B B  becomes indented as in Figure 6. Put  

2 3 2 2 1 2B B B B B B β∠ = ∠ =   and 2 3 2 1B CB B CB α∠ = ∠ = , where 0 4α< < π . 
We lay blocks in such a way that the sunken edge 3 2 1B B B  becomes the outermost  
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Figure 6. Geometry on the plane 1 3CB B∆  where the point 2B  on the line 2B C  is cho-

sen to be 2 1 2 3 4B B C B B C∠ = π∠ =  , and put 2 1 2 3 4B CB B CB α∠ ∠ = < π= ,  

2 1 2 2 3 2B B B B B B β∠ = ∠ =  . The point D on the line 2B C  is chosen to satisfy  

2 2 1 2 3B D B B B B= =  so that 1 3DB B∆  is a right triangle congruent with the horizontal 

1 3MB B∆  in Figure 5. The points 1C  and 3C  on the line 1B C  and 3B C , respectively, 

are chosen to be 1 2 1 2B B C∠ = π , 3 2 3 2B B C∠ = π , so that 1 2 1B B C∆   and 3 2 3B B C∆   
(green-colored) are congruent isosceles right triangles. Observe that 4α β+ = π . 

 
one, so we may call the angle β  “the angle of indentation” and the distance 

2 2B B  “the maximal indent”. (Note well that in most of our illustrations the in-
dentations of faces are quite exaggerated, as the actual size of the angle of inden-
tation is less than one degree.) In order to see the difference between the inclined 

1 3CB B∆  and the horizontal 1 3MB B∆ , consider the plane 1 3CB B∆  as in Figure 
6 and take the point D on the line 2B C  such that 1 3 2B DB = π∠ . Then 1 3DB B∆  
is congruent with 1 3MB B∆ . Since 2 3 2 3 4B B D B B C∠ = ∠ = π , the definition of 
the angle β  implies that 3DB C β∠ = . Then we get 4α β+ = π  since the ex-
ternal angle 3 2B DB∠  at the vertex D of 3DB C∆  is 4π . Consequently,  

2 3 4B B D β α∠ = −π = . By symmetry, we have 1DB C β∠ =  and 2 1B B D α∠ = . 
Next, choose a point 3C  on the line 3B C  such that 3 2 3 2B B C∠ = π , and si-
milarly, a point 1C  on the line 1B C  such that 1 2 1 2B B C∠ = π . Then, the green- 
colored triangles 1 2 1B B C∆   and 3 2 3B B C∆   are congruent isosceles right trian-
gles. So, intuitively speaking, we can imagine that a butterfly with the body 2B D  
and wings 1 2B B D∆ , 3 2B B D∆  slightly moved its wings to 1 2 1B B C∆   and  

3 2 3B B C∆  . Note that to choose the sunken edge 3 2 1B B B  as the outermost one is 
quite a reasonable selection because the angle 2 3 2 14 B B C B B C= ∠ =π ∠   can be 
precisely measured using the bisection of the right angle, while it would be very 
difficult to measure the precise angle 2 3 2 1B B C B B C∠ = ∠ , slightly bigger than 

4π . Note also that on the inclined plane it would be very difficult to measure 
precisely any long distance between two points using streched cord, since ma-
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son’s line becomes catenary due to its weight; see (Isler, 1983). In short, we 
should measure “angle” rather than “length” on the inclined plane. How to lay 
cubic blocks on this inclined plane 1 2 3CB B B  is not so difficult. In Figure 7, 
first, place stones on the (gray-colored) area 1 2 3CC B C  along the central line  

2CB . Then, we need to lay stones on the triangles 1 2 1B B C∆   and 3 2 3B B C∆  . 
Here, note that, for instance suppose 3 2 100B B =  meters and 2 2 1B B =  meter, 
then 2

3 2 100 1 100.0049B B = + = �  meters, so that 3 2B B  is longer than 

3 2B B  just about a half centimeter. Hence, practically, we can assume all of four 
isosceles right triangles 1 2 1 3 2 3 1 2 3 2, , ,B B C B B C B B D B B D∆ ∆ ∆ ∆   are congruent. 
And recall that 1 2 3 2,B B D B B D∆ ∆  are congruent with the horizontal triangles  

1 2 3 2,B B M B B M∆ ∆  in Figure 5. Therefore, what we need to do is to lay blocks 
on 1 2 1 3 2 3,B B C B B C∆ ∆   in the same way as on the horizontal triangles  

1 2 3 2,B B M B B M∆ ∆ , respectively. Note also that the gray-colored part 1 2 3CC B C  
in Figure 7 is actually a very narrow area since the distance between 1C  and 

3C  is 2 22B B , which is just 2 meters in case 2 2 1B B =  meter. When this kind 
of laying was done on each of four inclined triangles of the sunken rooftop of 
Figure 5, the whole arrangement would become like Figure 8. Notice that, since 
this is a top view and the point C is below the horizontal square 1 3 5 7B B B B , some 
apparent angles differ from their actual ones, e.g., the actual angle 2 3B B C∠   is 

4π , though it appears to be smaller than 4π  in Figure 8. (Precisely speaking, 
we should place blocks on an area a bit smaller than 1 2 3 4 5 6 7 8B B B B B B B B    , which 
can be done easily, for instance, if we do not place blocks on the blue part of 
Figure 8. Note also that it might happen that some central part, as shown in 
white, is already occupied by other structure.) We made a wooden model Figure 
9 of the sunken surface of Figure 8. 

Now we want to calculate the maximal indent 2 2B B . So, let us introduce the 
3-dimensional coordinate system as in Figure 10 setting the origin at the center  

 

 
Figure 7. Example of a layment of blocks on the inclined plane 1 2 3CB B B  in consecutive 

rows, filling first the (gray-colored) erea 1 2 3CC B C  along the central line 2CB . 
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Figure 8. Top View of stone arrangement on the sunken rooftop of Figure 5, where the 
stones are layed on each of the four inclined triangular planes as in Figure 7. 

 

 
Figure 9. Wooden Model of the sunken surface 1 2 3 4 5 6 7 8B B B B B B B B     of Figure 8 con-
sisting of eight congruent isosceles right triangles, whose length of the legs of a right angle 
is 15 cm. 

 
M of the square 1 3 5 7B B B B . Let 2a  be the side length of the square 1 3 5 7B B B B  
so that 1 2 3 2 2B B B B MB a= = = . Let h  be the depth of the sunken surface, i.e., 
MC h= , and let θ  be the slope of the triangular plane 1 3CB B , i.e.,  

2tan CM B M h aθ = = . Then we see that the relation between α  and θ  is  
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Figure 10. Introduction of a 3-dimensional coordinate system setting the origin at the 
center M of the square 1 3 5 7B B B B  with the side length 2a  (see Figure 5). The depth of 
the point C is h , and the slope of the triangular plane 1 3CB B  is θ , so that tan h aθ = . 

 

( )22 2 2
1 2 2tan 1 1 1 1 tan .B B CB a a h h aα θ= = + = + = +

 
In order to calculate 2 2B B  we will evaluate 2 2 3 2 2 2 tanB B B B B B a β= =  . The 
fact 4α β+ = π  implies 

1 tantan .
1 tan

αβ
α

−
=

+  
Putting tan sθ =  for simplicity, we get 

( )
2

2 2
22

1 1 2tan 1 1 , tan 1 1 1 .
1 1

ss s
ss

α β + −
= + = = + − +

+ +  
Now let us utilize the expansion 

2 31 1 2 8 16X X X X+ = + − + −�  
which is valid for X with 0 1X≤ ≤ . We here assume a quite reasonable assump-
tion 0 4θ< ≤ π , implying 0 tan 1sθ< = ≤ , so that we can apply the above ex-
pansion for 2X s= , i.e., 

2 2 4 61 1 2 8 16 .s s s s+ = + − + −�  
Thus we finally obtain the evaluation 

( )2 2 4
2

2tan 1 1 1 4 8s s s
s

β = + − + = − +�
 

hence 

( )2 4
2 2 tan 4 8 .B B a a s sβ= = − +�

 
When tans θ=  is small, the term 4 8s  is quite small compared with 2 4s , 
so, we can roughly estimate that 

2 2
2 2

1tan tan , tan tan .
4 4

aB B aβ θ β θ≈ = ≈

 
The side length of the base of the Great Pyramid is about 230 115 2= ×  meters, 
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so let us simply assume 100a =  meters to get the concrete values of the angle 
β  and the indent 2 2B B  for various candidates of tanθ . Then we get Table 
1. As mentioned in Section 1, Petrie reported the angle of indentation was be-
tween a half to one degree and the maximal indent was about 0.94 meters, and 
Pochan got the closer value of indent 0.92 meters as shown in Figure 4. These 
measurements settle us to conclude that the case which well fits to the Great Py-
ramid is when tan 1 5θ =  in Table 1, that is: 

The concavity of the Great Pyramid is derived from its core layers inclined 
towards the center at about 11 degrees to the horizontal. Note that the angle of 
the slope of the inclined layers should be as simple as possible since such an an-
gle was needed to be measured precisely and repeatedly many times during the 
construction, and it is known that the ancient Egyptian measured the slope by 
the ratio of “rise over run”, and their calculation of ratio is based upon the “unit 
fractions” like 1 2 1 3 1, , 4,1 5,� . So, it would be quite natural to assume that 
the practical value of the slope tanθ  was one of such unit fractions. We have 
drawn two pictures Figure 11 and Figure 12, almost to scale in case of 
tan 1 5θ = . Figure 11 corresponds to Figure 8. Figure 12 shows the vertical 
cross section along the north-south direction 2 6A A , of the piling of inclined 
layers (blue-colored) on the well-founded, lowest several courses (light-gray- 
colored), where the slope of inclined layers ( )1a 5rctan 11≈ �  can be compared 
with that of the Descending Passage ( )1a 2rctan 26≈ � . The point Q is chosen to 
be the point in the Queen’s Chamber, at the height 23 m from the base of the 
Pyramid; then, since ( )23 115 23 1230 2 5= =  (assuming 2 6 230 mA A = ), the 
angle 2 6QA O QA O∠ = ∠  coincides with ( )arctan 1 5 . (Since the floor of the 
Queen’s Chamber is about 21.5 m heigh from the base of the Pyramid, and the 
Chamber itself is about 6 m high, the angle 2 6QA O QA O∠ = ∠  depends on the 
choice of the point Q. Creighton & Osborn (2008) chose the “center” of the 
Chamber and calculated it as 11.73˚. Our choice of the height 23 21.5 1.5= +  m 
is almost that of the head of a man when he stands on the floor of the Chamber.) 
Note that if we illustrate the vertical cross section 0 1 5A A A  along the  

 
Table 1. Values of the angle of indentation β  and the maximal indent 2 2B B  for vari-
ous candidates of the slope tanθ  of the inclined courses. 

tanθ  θ  (degree) tan β  β  (degree) Max. indent 2 2B B  (meter) 

1/2 26.56∙∙∙ 0.0546∙∙∙ 3.13∙∙∙ 5.46∙∙∙ 

1/3 18.43∙∙∙ 0.0263∙∙∙ 1.50∙∙∙ 2.63∙∙∙ 

1/4 14.03∙∙∙ 0.0151∙∙∙ 0.87∙∙∙ 1.51∙∙∙ 

1/5 11.30∙∙∙ 0.0098∙∙∙ 0.56∙∙∙ 0.98∙∙∙ 

1/6 9.46∙∙∙ 0.0068∙∙∙ 0.39∙∙∙ 0.68∙∙∙ 

1/7 8.13∙∙∙ 0.0050∙∙∙ 0.28∙∙∙ 0.50∙∙∙ 

1/8 7.12∙∙∙ 0.0039∙∙∙ 0.22∙∙∙ 0.39∙∙∙ 
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Figure 11. Illustration of Figure 8, almost to scale, in case of tan 1 5θ =  in Table 1, 
providing its alternative view as the union of four square-like inclined surfaces, corres-
ponding to the hinged surfaces in Figure 9 and each hinged surface becomes a square 
when it is flattened. 

 

 
Figure 12. Illustration of the vertical cross section 0 2 6A A A  of the Great Pyramid in Fig-
ure 5, where Q and K denote the positions of the Queen’s and the King’s Chamber, re-
spectively, supposing 2 6A A  is the north-south direction. Shown in blue color is the piling 
of inclined layers with the slope 1/5 (measured by the ratio of “rise over run”) ≈ 11˚. The 
gentleness of this angle can be compared with the slope 1/2 ≈ 26˚ of the Descending Pas-
sage. The dark gray part is the natural bedrock and its upper part above the ground level 

2 6A OA  is an outcrop or inselberg. The light gray part shows the lowest several courses 
tightly founded by well-squared blocks. This illustration is almost to scale, though we disre-
garded the indentation of faces and the detailed structure around the central axis 0A O . 
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Figure 13. Inner structure of the Great Pyramid described in (Andrade, 1992), well illu-
strating the gentle slope of the courses. 

 
diagonal 1 5A A  of the base, the slope of inclined layers will appear much gentler, 
which is ( )1 5arctan 81 2× ≈ � , the slope of 1CB  or 5CB  in Figure 5 or Fig-
ure 10. We are a bit surprised to find Figure 13 in (Andrade, 1992), quite similar 
to our Figure 12, well embodying the “gentle” slope of the inclined layers. The 
idea of “the base divided into four triangles slightly inclined towards the center” is 
also suggested in (Yasseen, 2018). While Figure 8 can be viewed as the union of 
four inclined triangular planes, Figure 11 sees Figure 8 alternatively as the union of 
four square-like inclined surfaces 1 8 1 2C B B B∗ ∗ , 3 2 3 4C B B B∗ ∗ , 5 4 5 6C B B B∗ ∗ , 7 6 7 8C B B B∗ ∗ . 
This suggests another way of piling stones by dividing the base into four “squares” 
like Figure 11. Note for example that, though the surface 1 2 1 8C B B B∗ ∗  is not flat, it 
is a union of two flat right triangles 1 2 1 1 8 1,C B B C B B∗ ∗∆ ∆  so that its area is the same 
as that of the square of the side length 1 8 8 1 1 2 2 1C B B B B B B C∗ ∗ ∗ ∗= = = , and it would 
be easier to count the number of stones needed to fill a square rather than a tri-
angle. Additionally, it would be a wise way to convey stones from the four cor-
ners to the center since the slope of 1 1 3 3 5 5 7 7, , ,B C B C B C B C  is only 8 degrees, 
as mentioned before. 

3. Tightening the Pyramid by Reinforced Base and  
Concavity 

Needless to say, the inclined courses mentioned in Section 2 should be placed on 
a firm foundation. Here we show how the base of the Pyramid was reinforced by  
the incorporation of the outcrop, and that the concavity strengthens the struc-
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ture of the whole pyramid including the base. The Great Pyramid was built on a 
natural carved outcrop whose volume is estimated to be about 20 percent of the 
monument (Raynaud et al., 2008). Let us present our idea that how they incor-
porated this outcrop into the monument for its stability. Quite recently, a great 
discovery was done by (Zalewski, 2017) that each triangular face of the Great 
Pyramid includes at its bottom a triangular light-colored area consisting of the 
special type of strong limestone, of the type “grainstone”, different from the 
other parts. This part, which Zalewski called the “Alpha triangle”, has the height 
16.65 meters and the base about 150 meters, and is composed of the blocks of 
the uniform size and shape fitted together precisely, and the spaces between 
them are filled with homogeneous mortar3. From the position of the four Alpha 
triangles it would be natural to assume that what they made inside was a solid 
substructure like the gray one in Figure 14 in order to incorporate the outcrop. 
This gray structure is a union of two solid triangular prisms, one with the bases 
of the Alpha triangles 1 2 3T T T∆  and 9 10 11T T T∆ , and another with the bases of the 
Alpha triangles 5 6 7T T T∆  and 13 14 15T T T∆ . The intersection of these two prisms 
forms a pyramid with the top T and the square base 4 8 12 16T T T T . Though there 
exist various estimations about the dimensions of the outcrop, we believe that 
this gray substructure is big enough to include almost all of the outcrop. And we 
may assume that this substructure was constructed very carefully in the same 
way as the Alpha triangles, i.e., it is made of uniform blocks fitted very precisely 
and well connected by mortar not only each other but also to the outcrop. Con-
sequently, this cross-shaped substructure reinforces the base of the Great Pyra-
mid in the sense that it protects the base against the tensions in lateral directions.  

 

 
Figure 14. Reinforcement of the base of the Pyramid by the (gray-colored) substructure 
which incorporates the carved outcrop (see Figure 12 or Figure 13) and bonds it together 
with the four Alpha triangles 1 2 3 9 10 11 5 6 7 13 14 15, , ,TT T T T T T T T T T T∆ ∆ ∆ ∆ . 

 

 

3The “Alpha triangle” on the western face of the Great Pyramid can be seen very clearly in the pic-
ture No.10 in http://chamorrobible.org/gpw/gpw-20040823-English.htm.  
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Figure 15. How gravity acts on stones. 0 1 5A A A  is the vertical cross section along the di-
agonal 1 5A A  of the base in case all courses are inclined, and the black parts at 1 5,A A  
show the corner sockets. The gravity pushes blocks on the inclined course towards the 
center of the course (in the direction of black arrows), and also presses them in the direc-
tion perpendicular to the course (red arrows). These red-arrowed forces are a bit inclined 
outward from the vertical (to the same degree as the slope of the inclined course) so that 
they would cause some extension of the base (the light-gray part). To prevent such exten-
sion, the corner sockets would be needed. 

 
Recall the fact that a stone is very weak against the tensile stress, though quite 
strong against compression. Precisely speaking, this substructure surely protects 
the base well from the tensions in the directions 2 6A A  and 4 8A A , but it would 
not be sufficient for the strong tensions in the diagonal directions 1 5A A  and 

3 7A A . As illustrated in Figure 15, the gravity acting on each block can be de-
composed into the force along the inclined course and the one perpendicular to 
the course, and the latter is a bit inclined outward from the vertical (to the same 
degree as the slope of the inclined course) to cause some extension of the base. 
Therefore, we believe, in order to prevent the extension of the diagonals, the 
corner sockets were additionally set at the four corner points 1 5 3 7, , ,A A A A . 

Relating with such reinforcement of the base, we want to explain the advan-
tage of the concavity of the four faces, together with the inclined layers, that it 
helps to tighten the whole Pyramid. Figure 16 illustrates the force diagram on 
the base 1 2 3 4 5 6 7 8A A A A A A A A    , where each iA  is indented from iA  for  

2, 4,6,8i = . (Practically, these indents are quite small, so Figure 16 is not to 
scale.) The reaction forces exerted from the corners against the diagonal tensions 
are exhibited as the four black-colored vectors of the same length, starting from 

1 3 5 7, , ,A A A A  and directing to the center O of the base. Denote in particular the 
reaction forces at the corners 1 7,A A  as ,a b , respectively, and decompose them 
as 

1 2 1 2,= + = +a a a b b b  
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Figure 16. Force diagram on the (light-gray) base with the corners 1 3 5 7, , ,A A A A  and the 

indented spots 2 4 6 8, , ,A A A A    . The dark-gray corner sockets prevent the extension of the 
diagonals 3 7A A  and 1 5A A  to produce the four black-colored reaction forces, which 
then generate the four red-colored forces at the indented spots towards the center O. Not 
to scale. 

 
where both 1a  and 1b  direct to the indented 8A , and 2 2,a b  direct to the 
indented 2A  and 6A , respectively. Then we get the (red-colored) vector sum 

1 1+a b  directing to the center O. Hence the reaction forces at the corners 

1 7,A A  generate the new (red-colored) force at 8A  towards the center O. By 
symmetry, we can observe the similar effects of the reaction forces at the other 
corners, hence concluding that: 

The four black-colored reaction forces at the corners 1 3 5 7, , ,A A A A  towards 
the center O produce the four red-colored forces at the indented spots  

2 4 6 8, , ,A A A A     towards the center O. 
A similar mechanism works also on every inclined course as shown in the 

force diagram Figure 17, which is quite similar to Figure 16 except that the 
dark-gray parts show some stones at the corners and the black-colored forces are 
due to their weight and the inclination of the course. Also, the effects of the 
black-colored forces are similar: 

The four black-colored forces at the corners 1 3 5 7, , ,B B B B  towards the center 
C produce the four red-colored forces at the indented spots 2 4 6 8, , ,B B B B     to-
wards the center C. 

Thus, the form of concavity contributes to tighten and stabilize the whole Py-
ramid consisting of inclined courses! 
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Figure 17. Force diagram on the inclined course with the corners 1 3 5 7, , ,B B B B  and the 

indented spots 2 4 6 8, , ,B B B B    . The dark-gray parts show some stones at the corners, 
which produce the four black-colored forces due to the gravitation and the inclination of 
the course. These black forces generate the red ones at the indented spots, in the same 
way as Figure 16. Note that the light-gray surface in this figure is sunken, but the one in 
Figure 16 is horizontal. 

4. Heavy Rainstorms in Egypt and Measures against Them 

We here want to remark a bit unexpected fact that the Great Pyramid has long 
been exposed to rainstorms, which were “infrequent” by the timescale of our 
daily life but “quite frequent” by the timescale of the Pyramid. Note though that 
the Pyramid was not affected by the annual Nile flooding since it lies on the Giza 
plateau about 60 meters above sea level. A dominant weather pattern in East 
Africa is called the Red Sea Trough, which is “hot and dry”. But quite abruptly, 
only a few times a year (mainly in October or November) this pattern changes 
into the “Active” Red Sea Trough that is accompanied by heavy rainstorms, flash 
floods, and severe societal impacts in the Middle East. De Vries et al. (2013) and 
Alharbi (2018) explain the atmospheric dynamics leading to extreme precipita-
tion, and twelve many cases caused by the “Active” Red Sea Trough are listed in 
(De Vries et al., 2013), which affected the Levant during the 25 years, Oct.1979 ~ 
Oct.2004, and four cases among which brought terrible damage in Egypt. For 
example, the case of the November 1994, one of the worst disasters with 600 
casualities in Upper Egypt, affected Egypt from Luxor all the way to Cairo, and 
its torrential rains brought terrible damage in the Valley of the Kings (Weeks, 
1995)4. The Tempest Stela of Ahmose describes a great storm which struck Egypt 

 

 

4Los Angeles Times (Nov.5, 1994) “New Flooding in Egypt Threatens Historic Tombs”  
(https://www.latimes.com/archives/la-xpm-1994-11-05-mn-58761-story.html).  
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about 1550 BC and destroyed tombs, temples and pyramids in the Theban re-
gion. This severe weather is suspected to be due to the climate change triggered 
by a massive volcano explosion at Thera, the island of Santorini in the southern 
Aegean Sea (Ritner & Moeller, 2014). Heavy rainstorms around the Great Pyra-
mid during the Old Kingdom were evidenced by the excavations of the town 
Heit el-Ghurab, or the Lost City of the Pyramid, as stated in (Ogilvie-Herald, 
2020) that: “Excavations have shown the town was repeatedly destroyed by flash 
flooding and rebuilt during the reigns of the pharaohs Khafre and Menkaure, 
both kings of the 4th Dynasty. During Khafre’s reign Heit-el-Ghurab was struck 
by three floods in twenty-six years, the first ‘destroyed the town, while the others 
caused widespread damage.’ However, during the later reign of Menkaure evi-
dence from the excavations have shown that the flooding was far worse.” From 
this record, it would be quite natural to assume that the Pyramid was actually hit 
by a few heavy rainstorms even during its construction over 20 years. So we be-
lieve, expecting such severe rainstorms and knowing that the limestone is vul-
nerable to the erosion by rainwater, the Great Pyramid incorporated some 
measures against the rainstorms. First, it was quite needed that the base of the 
Pyramid be protected from the erosion, and this would be one of the reasons 
that they made the specific fine structure like Figure 14, in which stones were 
fitted together precisely and the spaces between them were filled with homoge-
neous mortar. Second, the whole Pyramid was covered with a smooth roof of 
casing stones. These outer casing stones were fitted together with extremely high 
precision, and we believe this precision was not only for the beauty of the ap-
pearance but also for the practical reason to protect the Pyramid from the ero-
sion by rainwater. But unfortunately, most of the outer casing stones of the 
Great Pyramid fell down or loosened due to the massive earthquake in 1303 AD 
(of magnitude 6.5 on the Richter scale, with the epicenter Fayum). So, after this 
earthquake the remained inner structure has been exposed directly to rainstorms 
until now. Even before this destructive earthquake, we suspect, the Pyramid 
would have been hit by severe earthquakes and violent rainstorms so that some 
of its outer casing stones could be damaged or loosened to let the rainwater seep 
through them to bring high humidity inside the Pyramid. According to (Butzer 
et al., 2013), the Old Kingdom (the 4th Dynasty) paleoclimatic anomaly, ac-
companied with heavy rainstorms, was repeated on a subdued scale during the 
Early Middle Ages. And, in the study of the climate during the Middle Kingdom, 
(Bell, 1975) asserts that “Review of textual and architectural evidence bearing on 
rainfall suggests that the Middle Kingdom had conditions similar to those of the 
A.D. 1800s, with heavy rainfalls somewhat less rare than in the present century.” 
Thus, it seems that this pattern of anomaly has continued ever since (perhaps, a 
long before) the Old Kingdom, and we may conclude that the Great Pyramid has 
been long exposed to rainstorms quite frequently by the timescale of the Pyra-
mid: Indeed, “a few times in 20 years” would accumulate during the 4500 years 
into more than 500 times! (An example of photo of a recent rainstorm which 
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passed near the Bent Pyramid can be seen in the report by the photographer T. 
Badal: “A Refreshing Look at Egypt’s Ancient Pyramids”5) Nevertheless, the 
Great Pyramid has survived through this long-term exposure to rainstorms even 
after the loss of the casing stones, and this surprising fact strongly infers the ex-
istence of some system of drainage inside the Pyramid. What system? We pro-
posed in (Kato, 2020) that almost all stones of nucleus were chamfered and the 
chamfered edges of stones were utilized to make vertical holes and wells (“well” 
means here an empty column surrounded by walls of stones, like a chimney), in 
particular, the “Central Well” around the axis of the Great Pyramid from the 
center of the base to the apex. If all edges of cubic stones were chamfered, their 
chamfered parts can make not only vertical holes but also horizontal vents, and 
such vents and holes would form a three-dimensional grid throughout the whole 
nucleus, with the main vent, the Central Well. Therefore, this grid could serve 
well as a drainage and ventilation system of water and air. Figure 18 and Figure 
19 show the general flow of rainwater inside the Pyramid in case all courses are 
horizontal or inclined, respectively. Noteworthy is that a slight inclination of 
courses changes the pattern of flow drastically, from Figure 18 to Figure 19. The 
lateral flow in Figure 18 is based upon the nature of water as a liquid that any 
amount of water placed on a horizontal plane will soon be spread laterally, but 
such flow would be quite slow so that the rainwater would not be drained easily 
in case of Figure 18. 

 

 
Figure 18. Vertical cross section 0 1 5A A A , where 1 5A A  is the diagonal of the base, 
showing the flow of rainwater (by blue arrows) in case all courses are truly level. The 
double arrows along the axis 0A T  show the flow through the Central Well. About this 
“Central Well” see (Kato, 2020). We note that the existence of the Central Well does not 
contradict Figure 12, an illustration viewed from the east to the west, since the Queen’s 
Chamber is away from the central axis about seven meters eastwards. 

 

 

5https://www.nytimes.com/2022/07/04/travel/egypt-pyramids.html.  
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Figure 19. Vertical cross section 1 0 5A A A  showing the flow of rainwater in case all 
courses are inclined. The double arrows along the axis 0A T  show the flow through the 
Central Well. 

5. Inward Sloping Structure to Eliminate the Action of  
Lateral Forces 

We have already shown that the concavity could be derived from the system of 
inward sloping courses. So, what we need to show next is the necessity of such 
system for the stability of the Great Pyramid. The stability we want to argue is 
the “long-term” stability against the high gravitational compression as well as 
against the natural disasters like severe earthquakes and heavy rainstorms (as 
mentioned in Section 4) experienced by the Great Pyramid during 4500 years. 
See (Morsy & Halim, 2015; Badawy, 1999; Hemeda et al., 2020) for historical 
earthquakes in Egypt. Though the actual notable one was the aforementioned 
case of 1303 AD which shook off almost all of the casing stones, “4500 years” is 
long enough to experience such “once-in-a-millennium” severe earthquakes at 
least several times. If we assume that the Pyramid was made only of horizontal 
courses, it is quite hard to imagine that such a strong ground shaking shook off 
only the casing stones without disturbing its inner structure. We will explain 
why? Figure 20 and Figure 21 illustrate how the Pyramid would behave under 
the ground shaking caused by an earthquake. The former is the case when we 
assume the Pyramid consists only of level courses, while the latter is when the 
Pyramid consists only of inclined courses. It would be obvious that the casing 
stones were shaken off because they were pushed outwards by the backing stones 
just behind them, inferring that the inner stones were also moved by the earth-
quake. Note that damage to buildings due to earthquake is related more closely 
to ground motion, rather than the energy of earthquake (the Richter scale), and 
an appropriate measure commonly used in earthquake engineering is “Peak 
Ground Acceleration (PGA)” which is equal to the maximum ground acceleration  
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Figure 20. Ground Shaking (a) by an earthquake (strong as the case of the 1303 AD), and 
its aftermath (b), in case all courses were supposed to be horizontal. The ground shaking 
generates the lateral shaking of the horizontal courses, and the (yellow-colored) casing 
stones would be pushed outwards by the backing stones just behind them as shown by the 
red arrows. Note that the backing stones just behind the casing stones can be moved ra-
ther easily (compared with those in the center) since they are not so strongly compressed 
from the above. 

 
that occurred during earthquake shaking at a location. Of course, each earth-
quake is an assembly of various kinds of seismic waves, and the main thrusts in-
cluding PGA are always accompanied by many tremors. In either case of hori-
zontal or inclined courses, such main thrusts would move the casing stones 
outwards (or upwards in case of inclined courses). But, the aftermath would be 
different. In case of horizontal courses some inner stones would remain to be 
separated as in Figure 20, but in case of inclined courses, the tremors after PGA 
would do some job to settle the inner stones down to their original positions as 
in Figure 21, since the courses are inclined. Hence the present non-disturbed, 
symmetric posture of the Great Pyramid would almost deny the structure only 
of truly level courses, taking account of all the hitherto earthquakes including 
the one of 1303 AD. 
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Figure 21. Ground Shaking (a) by an earthquake (strong as the case of the 1303 AD), and 
its aftermath (b), in case all courses are inclined. The ground shaking generates the shak-
ing of the inclined courses, and the (yellow-colored) casing stones would be pushed out-
wards (or tossed in the air) by the backing stones just behind them as shown by the red 
arrows. Though the backing stones may be moved somewhat outwards or upwards by the 
“PGA (Peak Ground Acceleration)” of the earthquake, they would be settled down to 
their original positions by the tremors after the PGA, since the courses are inclined. 

 
Recall the simple physical fact that the Great Pyramid stands upright only by 

the force of gravity. The physicist Mendelssohn pointed out in (Mendelssohn, 
1976) that “in a pyramid containing stones of irregular shape, the vertically 
downwards acting force generated by the gravity will develop lateral components 
as in (b) of Figure 22, favouring a break-up and flattening of the structure”, 
where he assumes the pyramid consisted only of truly level courses. Note that 
this picture (b) of Figure 22 is similar to Figure 18 because the flow of rainwater 
is governed also by the gravity. Mendelssohn (1973) or Mendelssohn (1976) ex-
plains that, when the blocks of irregular shape touch only in a few places, the 
pressure can rise locally to several hundred atmospheres, crumbling sets in at the 
affected regions of the stones and a shift in position of the individual blocks 
might take place. Then this shift causes the transformation of vertical into lateral  
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Figure 22. Illustrations in (Mendelssohn, 1973) with the caption: “The distribution of 
weight forces in (a) a pyramid built of well-squared blocks and (b) a pyramid with poor 
internal masonry.” 

 
forces. In general, as noted in Section 1, internal masonry of a pyramid is quite 
poor compared with its outside smooth masonry, and in case of the Great Pyra-
mid we can further take account of the energy management in raising the vast 
quantity of the stones, so that we may naturally assume that blocks inside the 
Pyramid are relatively small and roughly shaped. Then recall our daily expe-
rience that a four legged stool on a floor will often wobble but a three legged one 
will not. Two roughly shaped stones would contact in a similar way that two 
faces do not adhere completely, rather touch only at three spots; it is even possi-
ble that two stones touch only at one tiny spot when they are placed horizontal-
ly. Then the aggregate of stones of irregular shape would be exerted by various 
kinds of stress like compressive, tensile and shear stresses. A stone is usually very 
strong against compression, but very weak against tension as the tensile strength 
is known to be only about one-tenth of the compressive strength. The maximum 
pressure at the base of the Great Pyramid is about 

2 22.5 t m 140 350 t m 3.5 MPa× = =  
assuming that a cubic limestone of volume 1 m3 weighs about 2.5 tonnes and the 
height of the Pyramid is about 140 m. A limestone usually can endure the pres-
sure about 2100 MPa 10000 t m= , but this high value is meaningful only if the 
stone is well squared, and the story would be different if the stone is not well 
squared and has to support a heavy weight only using some three spots of the 
stone, as illustrated in Figure 23. There would be various mechanisms of how 
some vertical force, caused by the heavy load or the earthquake, would trans-
form into lateral forces. An instance is shown in Figure 24 when the stones are 
laid horizontally. Any original rock would contain some invisible tiny cracks so 
that it might happen that those cracks would be enlarged little by little by the 
stress even below the yield strength of the rock, and a long-term accumulation of 
such strains might deform the rock visibly. This kind of consideration is known to  
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Figure 23. Assuming the compressive strength of a limestone is 2100 MPa 1 t cm= , any well squared 
limestone with the upper face of 1 m2 can support 10,000 tonnes, but a stone with an irregular upper 
face can support only σ  tonnes if it touches the upper stone only with the area σ  cm2. The illu-
stration (2) shows the case of a stone S such that the touching area is  

( )2 23 10 2 235.6 235 cmσ = = ≈π �  consisting of three (red) discs, each of diameter 10 cm. The cross 

section (1) of the Pyramid indicates the part yellow-colored (just below the King’s chamber) consist-
ing of stones each of which has to support more than ( )2.5 t 100 m 250 t 235 t× = > . So, if the stone S 

were placed horizontally inside the yellow part, its upper face would have been crushed when the 
construction of the Pyramid was completed. 

 
be the “rheological” viewpoint, where the term “rheology” is based upon the idea 
of Heraclitus panta rhei “everything flows”. For example, suppose in (b) of Fig-
ure 22 blocks had “flowed” in the arrowed direction at the average rate of one 
millimeter a year; then such “flow” would amount to 4 or 5 meters during 4500 
years, an observable distortion much bigger than the concavity of one meter we 
argued in Section 1. But, no such distortion can be seen in the present symmetric 
Great Pyramid, leading to the denial of the structure of the Pyramid consisting 
only of truly level courses. 

What we want to remark further is the effect of erosion by the heavy rains-
torms as explained in Section 4. The important aspect we want to point out is 
that the effect of erosion would be quite different between the horizontal course 
and the inclined one in case both admit somewhat irregular gaps between 
blocks. The erosion on the horizontal courses would separate stones laterally as 
illustrated in Figure 25, while the erosion on the inclined courses would tighten 
the arrangement of blocks, incorporating the gravitational force, as shown in 
Figure 26. Observe then that each block separated laterally from other blocks as  
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Figure 24. Instance of the mechanism of “the transformation of vertical into lateral 
forces” by a sag in a stone, due to the fact that a stone is weak against tension though 
strong against compression. This mechanism works when the stones of irregular shape 
are laid horizontally. The actual crack as in the middle stone of (b) might be very small in 
the order of millimeters. 

 

 
Figure 25. Effect of Erosion of blocks on the Horizontal courses by Rainfall: The rainwa-
ter flows down through the gaps between the blocks, not well-squared, as indicated by the 
blue arrows in (a), eroding the vertical faces of blocks to separate them laterally like (b), a 
bit exaggerated. 
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Figure 26. Effect of Erosion of blocks on the Inclined courses by Rainfall: The rainwater 
flows down the gaps between the blocks, not well-squared, as indicated by the blue arrows 
in (a). The erosion would incorporate the gravitational force to move blocks inwards (as 
the red arrows of (a)) so that the arrangement of blocks would be tightened further like 
(b). 

 
in (b) of Figure 25 would be compressed only in the vertical direction, but each 
inclined block as in (b) of Figure 26 would be compressed in all of the three di-
rections since it is completely surrounded and confined by other stones. It is well 
known that a stone is much stronger against the confined compression than 
against the uniaxial unconfined compression. Hence, the erosion makes the 
stones on the horizontal course vulnerable to the gravitational compression, but 
in contrast, the erosion strengthens the stones on the inclined course against 
compression. Effect of ground shaking due to earthquake is similar to that of 
erosion as already observed in Figure 20 and Figure 21. Thus, both erosion and 
earthquake are in favor of inclined layers, but against horizontal ones. The only 
stable case for a horizontal course would be that it consists of uniform stones 
fitted very precisely or well connected by mortar each other, since such unified 
course would behave like a bedrock. Note that granite is much stronger than li-
mestone against earthquake and erosion. The first course of the Great Pyramid is 
such a stable horizontal course where many large granite blocks are used. But, it 
would be almost impossible to make the whole Pyramid only of such stable ho-
rizontal courses, as such precise placement would consume too vast energy to 
complete the construction of the Pyramid in two decades or so, taking account 
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of its immense quantity of stones, over two millions. 
Note that the above argument is about the inner part of the Pyramid, and we 

can see some evidence of the erosion like Figure 25 in some outer stones laid 
horizontally. For example, see Figure 27 which is the drone view of the top of 
the Great Pyramid by the famous photographer A. Ladanivskyy. Here we can see 
wide vertical gaps between blocks as in Figure 25, which would be mainly due to 
the erosion, not due to the eathquake since the top of the Pyramid is rather sta-
ble against ground shaking. We believe the original arrangement of blocks on 
the top was much tighter. Though not in the Pyramid, another evidence is Fig-
ure 28 of the Moria Roman aqueduct6,7. This aqueduct is made of limestone 
called travertine, and the erosion by rainwater as well as the weathering by wind 
widened the gaps between stones so that the key stone of this arch is now almost 
dropping. We note, though, that it is not easy to compare the aqueduct with the 
Great Pyramid. Indeed, the Pyramid is 2.5 times older than the aqueduct since 
the aqueduct dates back only to the end of the 2nd century AD, but Moria is 
much wetter than Giza. How erosion or weathering or high compression has  

 

 
Figure 27. Drone View of the Top of the Great Pyramid by the photographer A. Lada-
nivskyy. (https://www.thisiscolossal.com/2021/07/drone-view-of-giza/)  

 

 

6https://www.archaeology.wiki/blog/2021/03/19/the-roman-aqueduct-at-moria/ (19 Mar 2021) 
“The Roman Aqueduct at Moria”. 
7https://www.archaeology.wiki/blog/2021/03/04/danger-of-the-moria-roman-aqueduct-collapsing/  
(04 Mar 2021) “Danger of the Moria Roman aqueduct collapsing”. 
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Figure 28. The Roman Aqueduct at Moria  
(https://www.archaeology.wiki/blog/2021/03/19/the-roman-aqueduct-at-moria/).  

 
changed outer stones of the Great Pyramid can be seen in (Hemeda & Sonbol, 
2020). 

6. Scaled-Down Models 

Mendelssohn (1971) demonstrated an experiment Figure 29 about the action of 
lateral forces in a small model of a pyramid, made of a highly viscous, homoge-
neous material (the exact size and the name of material of this model are un-
clear). One may wonder why did he choose a “small” and “plastic” model? In 
this section we explain the appropriateness of his choice by introducing the idea 
of the “scaled-down dynamical” model. Compared with the large scale in space 
and time of the Great Pyramid, our size is small and our lifespan is short so that 
it is not easy for us to understand properly how the Pyramid behaves in the long 
run. In order to overcome such difficulties, geologists devised the method of 
creating “scaled-down” models (Hubbert, 1937; Deus et al., 2010; Schellart & 
Strack, 2016). So, let us consider some scaled-down models applying the theory 
of scale model construction as described in pp.143-150 of (Pollard and Fletcher, 
2005), or (Hubbert, 1937). See also (Merle, 2015) about the basic principles of 
the scaling procedure. Note that we scale down everything, space and time, not 
only the Pyramid but also its environment including the bedrock, earthquakes 
and rainstorms. The Great Pyramid is the prototype, and let us reduce this pro-
totype by the scale of 10−3, to get a small model M (10−3) of size about 20 cm. 
Precisely stating, the model ratio rL  for the length is 

310r m pL L L −= =  
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Figure 29. Picture in (Mendelssohn, 1971) with the caption “Three successive stages in the plastic flow of a pyramid under its own 
weight. Material and structure of the model were homogeneous, showing merely the action of lateral forces.” The same picture 
appears in his book (Mendelssohn, 1976) with the caption “Plastic flow under gravity. The small pyramid model, made of a highly 
viscous material, collapses under its own weight”. 
 

where pL  stands for the length of any part of the prototype, and mL  is the 
corresponding length of the model (the subscripts m and p refer to the model 
and prototype, respectively). Since the dimension of the volume is Volume = 
(Length)3, the model ratio rV  for the volume should be 

3
3 9

3 10 .m m
r r

p p

V L
V L

V L
−= = = =

 

For simplicity let us choose the material of the model in such a way that the 
model ratio rρ  for the mass density is one, that is, the density of any part in the 
model is equal to the density of the corresponding part in the prototype:  

m pρ ρ= . Hence the ratio rM  for the mass is the same as that of the volume: 

910 .m m m
r r

p p p

M V
M V

M V
ρ
ρ

−= = = =
 

Next, we need to determine the ratio rT  for the time 

where 4500 years.m
r p

p

T
T T

T
= =

 
But, this ratio can not be chosen independently since the time relates to the 

acceleration, and in order to make the model dynamically similar (i.e., holding 
the similarity of driving forces) to the prototype, we need to require that the gra-
vitational acceleration around the model in the laboratory is the same as that 
around the Pyramid on the Giza plateau. Therefore, the ratio ra  for the accele-
ration should be one: 

2
2 2

2 1, i.e., .m m m
r r r r r

p p p

a L T
a L T L T

a L T

−
−

−= = = = =
 

Hence 

( )1 2 3 210 0.0316 1 30r rT L −= = = ≈�  

and 

4500 years 0.0316 142.3 140 years.m p rT T T= = × = ≈� �  
This means we need to observe the small model M (10−3) for 140mT =  years 
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in a laboratory, about which we discuss later. Using the dimensional formulae 
(Force) = (Mass) × (Acceleration), (Stress) = (Force)/(Area) = (Force)/(Length)2, 
we can get the ratios ,r rF S  for the force and stress, respectively, as follows: 

3 2 3 2, .r r r r r r r r r r rF M a M L S F L L L L− −= ⋅ = = = ⋅ = ⋅ =  

Summarizing, we have the model ratios 
1 2 3 32 3 910 10 10r r r r r r r rT L L S V M F L− − −= = > = = > = = = =  

along with our convention 1r raρ = = . Let us assume for simplicity that the 
prototype is the square pyramid with base length 200 meters and height 140 me-
ters, consisting of cubic blocks, each with the side length 1 meter and the weight 
2.5 tonnes. Let us call the compressive strength simply as “strength”, and assume 
also that the strength of blocks is uniform and is equal to that of the bedrock, so 
that we can call this same value pS  as “the strength of the Pyramid”. So, all 
blocks are uniform in size, weight and strength. Thence, the model M (10−3) has 
the base length 20 cm and height 14 cm, and consists of very small cubic blocks, 
each of which has the side length 31 m 10 1 mmmL −= × = , the mass  

92.5 tonnes 10 2.5 milligramsmM −= × = , and the strength 310m pS S −= × . Let us 
note here about the strength of blocks of the Great Pyramid. According to Ar-
nold (1991), “porous” limestone can endure the pressure 20 - 90 MPa and “dense” 
limestone can endure 80 - 180 MPa, so, a typical limestone would be able to en-
dure the pressure about 100 MPa, as we assumed in Section 5. On the other 
hand, some backing limestone samples were recently collected from the Great 
Pyramid (Hemeda & Sonbol, 2020) to examine their strength. The result was 
about 15 MPa, very low value, probably due to the weathering over four millen-
nia. So, precisely speaking, the strength pS  is a decreasing function of the time. 
In case 100 MPapS = , we have 0.1 MPa 1 atmmS = = , which means each block 
of size 1 mm in the model can support the weight of only 10 grams, and in case 

15 MPapS = , only 1.5 grams. So, we may be able to make such blocks using 
some soft granular material. Then recall the rheological fact in our daily life that 
granular materials, like sands, grains of wheat, rice or corn, can flow like a liquid 
under the gravitational force. Hence, our model M (10−3) is quite similar to the 
Mendelssohn’s model Figure 29, not only geometrically but also dynamically. 
The flow of grains is generated by the gravitational force conducting stress by 
“force chain” formed by grains resting on one another. Inside the Pyramid this 
“force chain”, formed by stones (of irregular shape) resting on one another, ge-
nerates a flow of stones which would be quite slow, maybe a millimeter a year. 
Direction of this flow would be essentially the same as that of rainwater illu-
strated in Figure 18 and Figure 19, since both force chain and rainwater are 
governed by the gravity. Note that the flow of force along the blue curved arrows 
can be sustained by the reinforced corner structure like the corner sockets (see 
Figure 15), so that the stones would be moved by the force chain, only along the 
blue “straight” arrows in either figure. Note also that such movement of stones 
along the straight arrows in Figure 19 is essentially a compression and would 
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eventually cease since all of them direct to the terminal near the center of the 
Pyramid. Thus, we may conclude, via the model M (10−3), that stones would 
move laterally to flatten the Pyramid if we assume it were made only of horizon-
tal courses, while stones would be concentrated around the center of the Pyra-
mid to tighten its whole structure if we assume it were made only of inclined 
courses. Both Figure 12 and Figure 30 are almost to scale so that, assuming 

2 6 20 cmA A = , they can be viewed as illustrations of the cross section of the 
model M (10−3) in case of inclined courses and in case of truly level courses, re-
spectively. These figures show well that the blocks are very small compared with 
the whole Pyramid so that they can be viewed naturaly as “fine grains” in the 
model M (10−3). 

As mentioned before, after we made an appropriate pyramid for the model M 
(10−3), there remains a difficult task to observe it for 140mT =  long years in a 
laboratory. But this would be almost impossible to accomplish since “140 years” 
is much longer than our lifespan. So, we should be satisfied with a thought expe-
riment, or observe the model during the first few years to imagine the rest of the 
experiment. In spite of this defect, still we can say that the term of 140 years is 
much easier to imagine than the long term of 4500 years. For example, it is not 
easy for us to imagine the rheological accumulation over four millennia of the 
very slow flow of stones by “force chain” inside the Pyramid, but we can expect 
by intuition that such a flow in the small model M (10−3) of fine grains of low 
strength might happen during the observation of 140 long! years. Deriving such 
proper intuition is the crucial role of the scaled-down model. Note further that 
in this thought experiment of “140 years”, the model should experience the  

 

 
Figure 30. Vertical cross section 0 2 6A A A  of the Great Pyramid in case the Pyramid con-
sisted only of truly level courses. This illustration is almost to scale, hence can be the cross 

section of the model M (10−3) if we suppose 2 6 20 cmA A = . 
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downsized versions of all the ground shakings (caused by the earthquakes) and 
rainstorms that the Great Pyramid has experienced, in a historically similar tim-
ing. As mentioned before, damage to buildings due to earthquake can be meas-
ured by the maximum ground acceleration called “Peak Ground Acceleration 
(PGA)”, rather than the energy of earthquake (the Richter scale). Then we can 
take the advantage of our convention that the ratio of the acceleration is one, 
that is, PGA in the model should be the same as PGA in the prototype. An addi-
tional remark in transferring an earthquake into the model is that we have to 
scale down everything around the Pyramid. So, not only the blocks of the Pyra-
mid, but also its bedrock should be replaced by the one with the low strength 
reduced by the scale 310rS −= . Thence we can let the model, together with its 
bedrock, experience the same (w.r.t. PGA) ground shakings that the Great Py-
ramid have experienced, in a historically similar timing. 

As for rainstorms, by the ratio 0.0316 1 30rT = ≈�  for the time, “a few 
times in 20 years during the 4500 years” in the prototype would be converted 
into “several times in every year during the 140 years” in the model. Since (Ve-
locity) = (Acceleration) × (Time), the ratio rv  for the velocity is the same as 
that of the time: 1 30r r r rv a T T= = ≈ . Hence, a storm at the speed of 30 me-
ters/sec in the prototype should be converted into light winds of 1 meter/sec in 
the model, so that each severe rainstorm in the prototype would turn into a gen-
tle spray of water in the model. So, for instance, if the rainstorm lasted two days, 
then water should be sprayed onto the model for about one and a half hours: 
48 hours 0.0316 1.5 hours× ≈� . Here again, we point out that “several times in 
every year during 140 years”, or equivalently, “once in a few months during 140 
years” is much easier to understand than “a few times in 20 years during 4500 
years”. We note here that it is not an easy task to maintain strict dynamical si-
milarity between the proptotype and the model when we need to evaluate mul-
tiple kinds of force including non-mechanical one. For example, “the erosion of 
limestone by rainwater” is not only the mechanical detachment of tiny particles 
from the surface, but it also includes a chemical reaction, i.e., a dissolution along 
micron-scale grain boundaries of limestone. So, we must be very careful about 
the choice of material for the model if we want strict similarity of erosion be-
tween the proptotype and the model. We have disregarded such an intricate 
problem in the above argument. 

Models not so small are also useful in understanding how the long-term dy-
namical behavior of the Pyramid depends upon its inner structure. For example, 
let us consider M (10−2), M (10−1), M (1/2) and M (5/8). 

1) The model M (10−2): This model is of size about 2 meters and consists of 
blocks of size about 1 cm, which would be quite an appropriate size to to be 
handled with; for example, we can lay blocks of size 1 cm to make horizontal or 
inclined courses, which we can not do in the model M (10−3) since blocks of size 1 
mm are too small. The strength of blocks in this model should be 1 MPa 10 atm= , 
which is about the half of the strength of “sun dried brick”. (It is known that the 
strength of “sun dried brick” is about 2 MPa, while that of “first class brick” is 
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about 10 MPa.) 
2) The model M (10−1): This model is of base length 20 m and height 14 m, 

and consists of blocks of size about 10 cm, so its external appearance is almost 
the same as that of the satellite pyramid (G1-d) within the Great Pyramid com-
plex, whose original dimensions are of base length 21.75 m, and of height 13.8 
m. But, a notable difference is that the model M (10−1) is made of small blocks of 
size about 10 cm, while the blocks in (G1-d) would be large as one meter. Fur-
ther, the strength of each block in the model should be reduced to one-tenth of 
the strength of the corresponding block in the Great Pyramid, but the blocks in 
(G1-d) would have the same strength as those of the Great Pyramid. Some core 
of (G1-d), consisting of horizontal courses, can be seen in its remains (Hawass, 
1996). So, to make the model M (10−1) of horizontal courses we need to replace 
the stones of the satellite pyramid (G1-d) by “first class bricks” (with the strength 
10 MPa) of size about 10 cm. We here want to remark that the original satellite 
pyramid (G1-d) could be quite strong and stable since its size is small, which 
means for example that each cubic block of size one meter at the base of (G1-d) 
needs only to endure the low gravitational pressure at most 0.35 MPa since 
(G1-d) is only 14 m heigh, compared with the case 3.5 MPa of the Great Pyra-
mid of 140 m heigh (as mentioned in Section 5). The formulation of the scaling 
theory was first introduced by (Hubbert, 1937), where Hubbert notes conclu-
sively that “quite generally, for a body of material having a given specific strength, 
the over-all strength of the body taken as a whole decreases with increase of size. 
Thus small bodies of a given material are strong; large bodies of the same ma-
terial are weak, and larger the body the greater its weakness.” This applies well to 
our case: The small (G1-d) could be strong but the large Great Pyramid could be 
weak, as long as we assume in both the same structure of horizontal courses 
made of the same material, i.e., a cubic limestone of size one meter. So, we can 
believe that in spite of the structure of horizontal courses, the original satellite 
pyramid (G1-d) could have remained intact until now if its blocks were not 
looted. 

3) The model M (1/2): A bit surprisingly, we could find the candidate of this 
model. We next show that the Step Pyramid of Djoser (the Third Dynasty) on 
the Saqqara plateau can be identified essentially as the model M(1/2) in case the 
Great Pyramid was assumed to be made entirely of truly level courses. The Step 
Pyramid was built as the first monumental structure made of stone, about 4600 
years ago, i.e., about a century before the Great Pyramid. Originally the building 
was 62 meters high with a base of 109 × 125 meters, and its blocks are of limes-
tones of size 30 - 50 cm. Its core consists of six mastabas of horizontal courses, 
built on top of each other, and is surrounded by inward-leaning accretion layers 
(Isler, 2001). On the other hand, the pyramid of the model M(1/2) is 70 meters 
high with a base of 100 × 100 meters, and consists of blocks, each of which is a 
cube of size 50 cm, weight 2.5/8 tonnes ≈ 300 kg, and of strength 2pS . Since 
the ratio for the time is 1 2 1 2 0.707r rT L= = = � , as a model for the Great Py-
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ramid we need to observe it during 4500 0.707 3200× ≈�  years. Now compare 
the Step Pyramid with the model M (1/2). Their appearance is almost the same, 
including the size of blocks. Their inner structure is also similar as long as we 
assume the Great Pyramid consisited of truly level courses. A slight difference is 
that the strength of the model M (1/2) is about a half of the strength of the Step 
Pyramid. Thence, we may roughly conclude that (i) observing the model M (1/2) 
of “lower” strength during “shorter” period (3200 years), and (ii) observing the 
Step Pyramid of “higher” strength during “longer” period (4600 years), would 
reach almost the same result. And the result of (iii) is the present status of the 
Step Pyramid. As reported in (Kukela & Seglins, 2013) and (Ewais et al., 2016), 
the Step Pyramid has been deteriorated seriously by weathering, and heavily by 
the earthquakes. (It seems the outer faces of the Step Pyramid were deteriorated 
especially by the erosion of wind carrying sands, but what we concern is the de-
terioration of its core due to the structure of level courses.) In particular, the 
1992 Cairo earthquake caused severe damage to this pyramid on the Saqqara 
plateau so that, due to the risk of collapse, the pyramid had been closed to visi-
tors for nearly 14 years, and reopened in March, 2020. (This 1992 earthquake 
was “moderate”, of magnitude 5.8, but unfortunately, the focus was quite near, 
about 14 km from the Step Pyramid (Khalil et al., 2017).) Figure 31 shows the 
photo, taken in 2019, of the Step Pyramid under the restoration work. In short, 
the result of the observation (ii) is that the Step Pyramid has almost collapsed. 
Consequently the model M (1/2) would collapse similarly, after the observation 
(i). Therefore, we can conclude that the Great Pyramid would have almost col-
lapsed until now if its core were made only of truly level courses. 

4) The model M (5/8): The Meidum Pyramid (mentioned in Section 1), the 
second pyramid after the Step Pyramid, has its unique appearance due to its par-
tial collapse before its completion. It has a base with the side length 144 m and 
its present height is 65 m, but 91.65 m if finally fully cased, so its original shape  

 

 
Figure 31. The Djoser Step Pyramid at Saqqara under the restoration work, in April, 
2019. A photo in BBC News: https://www.bbc.com/news/uk-wales-47828999.  
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is proportional to the Great Pyramid. Seyfzadeh (2017) describes that the exte-
rior of the Meidum Pyramid was a scaled-down version of the Great Pyramid by 
a factor of 5/8. So, we may say that the model M (5/8) has the shape of the (in-
tended) Meidum Pyramid, but we can not identify it with the Meidum Pyramid 
because of the difference of their inner structures. The inner structure of the 
Meidum Pyramid is exceptionally well known: The Meidum Pyramid has a cen-
tral core of 60 cubits width, against which 9 accretion layers lean, and such entity 
was further surrounded with thick outer mantle (about 7 m) of packing stones 
laid horizontally. Roughly speaking, it is made of the nucleus of “accretion lay-
ers” surrounded by the mantle of “horizontal courses”. One of the reasons of its 
collapse was suspected to be due to the fact that the outer mantle was built on 
sand instead of solid rock, unlike the Great Pyramid (Mendelssohn, 1973). 
Though the Meidum Pyramid can not be the dynamical model M (5/8), we can 
learn from its partial collapse that the “inclined” core of accretion layers is 
stronger than the mantle of “horizontal courses” since the most of the core “re-
mains as a tower of three great steps” (Isler, 2001). 

Isn’t it amazing that some conceptional ties emerge among isolated pyramids 
through “models”, as we have seen in the above (2), (3) and (4)? 

In Cacciola et al. (2022) we can see a “gelatin” model of the Step Pyramid, 
down-sized by the scale of 1/500. This model was made for the experimental test 
of the Vibrating Barriers (device for the seismic protection of the Step Pyramid), 
and built with “gelatin”, precisely: “The model has been made of a mix of gela-
tine/glycerine/cold water/hot water with weight proportions 1/3/2/3 and cured 
for 3 days.” Since the Step Pyramid itself can be seen as a model of the Great Py-
ramid reduced by 1/2, this gelatin model actually reduces the Great Pyramid by 

31 2 1 500 10−× = , so that it can be regarded as the model M (10−3) of the Great 
Pyramid consisting of truly level courses. Hence, this exemplifies that it is possi-
ble to make our model M (10−3) using the gelatin, which would be quite similar 
to the Mendelssohn’s model Figure 29. See Merle (2015) about gelatin as a ma-
terial for experiment. 

7. Concluding Remarks 

We have shown that the concavity of the Great Pyramid could be derived from 
the geometry of its core of inclined courses gently sloping inwards, and such in-
clined structure was quite needed for the long-term stability of the Pyramid 
against high gravitational pressure, earthquakes and rainstorms. It was often as-
serted only from the external appearance of pyramids that “in the major shift 
from step to true pyramid, the earlier pyramids were built with slanting accre-
tion layers, but the later ones were built with horizontal courses.” To turn this 
assertion into a true statement in our sense, the term “horizontal” should be re-
placed by “almost horizontal, but slightly inclined”. We believe the “immortal” 
stability was the most important aspect of the Great Pyramid for the pharaoh 
Khufu and his people, and they were smart enough to introduce some structure 
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in order to stabilize this huge monument, respecting the traditional one of accre-
tion layers. What we have actually shown in this article is that the inner structure 
of the inclined courses can incorporate the natural forces to compact the core of 
the Pyramid towards the center, thus to strengthen it over time, so that we can 
believe that the Great Pyramid will keep standing upright almost forever though 
its outer faces will be weathered further. This is similar to the case of “the Ro-
man concrete” which tightens over time by thriving in open chemical exchange 
with seawater, interlocking crystals. If someone will ask us why the Great Pyra-
mid is so stable, we can answer simply, “because it gets stronger over time”. 

Remark 1. Possible modified inner structure of the Great Pyramid: 
There would be various modified cores of inclined courses. Figure 32 shows 

an example of modified inner structure of the Great Pyramid including a thin 
pyramid (with the cross-section 2 0 10S A S ) around the central axis, consisting of 
horizontal courses. Such horizontal courses would be very helpful in construct-
ing internal structure like the King’s and Queen’s Chamber, and for such con-
struction the top angle 2 0 10 2 23S A S θ∠ = ≈ �  where tan 1 5θ =  would be wide 
enough. We note that Figure 32 is a two-dimensional figure of cross-section so 
that this modified part looks relatively large, but its actual three-dimensional 
size, i.e., volume, is very small: Let 0V  be the volume of the thin inner pyramid 
with the cross-section 2 0 10S A S , and 1V  be the volume of the pyramid with the  

 

 
Figure 32. Cross-section of the Great Pyramid with the possible modified inner structure, 
including a central core of thin pyramid consisting of horizontal courses, with the vertical 
cross-section 2 0 10S A S  (its horizontal cross-section is like the white part of Figure 8). 

This thin inner pyramid has the top angle 2 0 10 2 23S A S θ∠ = ≈ �  and the face angle  

0 2 10 0 10 2 92 7A S S A S S θ∠ = = − ≈π � , where ( )1 5arctan 11.3θ = = �� . K and Q show the 

positions of the King’s and the Queen’s Chamber, respectively, as in Figure 12; see 
(Creighton & Osborn, 2008) about their positions. 
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cross-section 2 0 10T A T  (i.e., above the light-gray part). Put  

0 2 0 6OA A OA A φ∠ = ∠ = . Then, since the face angle of the Pyramid is “seked” 5 
palms 2 digits, we have tan 5.5 7φ = . Hence 

( )
( )

2 22 2
0 2 10

2 2
1 2 10

2 tan tan 0.064 .
tan 5.5 72 t

1 5
an

V S S
V T T

θ θ
φφ

  
= = = = =  

   
�

 
Thus, the volume of the inner thin pyramid is only about 6.5 percent of 1V , 

so, surely less than 6 percent of the total volume of the Great Pyramid. 
Remark 2. About the concavity in the Khafre and the Menkaure Pyramid: 
The three big pyramids of Khufu, Khafre and Menkaure were built in this or-

der during the same Fourth Dynasty period around 2500 BC, so it would be 
quite natural to expect that all of their fundamental structure would be the same, 
i.e., all of them have the core of inclined courses. As mentioned in Section 1, Bi-
ondi & Malanga (2022) revealed the concavity of all the three pyramids, and it 
seems their result shows that the degree of the concavity of the Menkaure is al-
most the same as that of the Khufu’s, but the concavity of the Khafre’s is a bit 
shallower than the two neighboring pyramids. So, we may infer from Table 1 
that the slope of courses of the Menkaure pyramid would be the same as that of 
the Great Pyramid, 1 5tan , 11θ θ= ≈ � , but that of the Khafre’s would be about 

1 8tan , 7θ θ= ≈ � ; then the maximal indent of the Khafre pyramid is less than 
40 cm, and this small amount would be the reason why the concavity of the 
Khafre pyramid was not captured until now even by any Earth observation satel-
lites, like the Quick Bird. Compared with the Great Pyramid, it is known that the 
internal structure of Khafre’s is very simple. So, if we draw an illustration like 
Figure 32, of the Khafre’s Pyramid, we do not need a wide top angle 23˚ for the 
inside pyramid; instead, 14˚ would be enough. Therefore, the simple structure 
around the central axis may be one of the reasons for the Khafre’s Pyramid to 
have the very gentle slope of courses, about 7˚. Further we want to note that the 
slopes 1/5 and 1/8 would be very favoured by ancient Egyptians since, according 
to (Seyfzadeh, 2018b: p. 320), “the numbers five and eight were likely of special 
significance to the ancient Egyptians of Khufu’s time originating from astro-
nomic periods, converted to theological teaching, and possibly architecturally 
expressed in pyramids and mastabas”. 

Remark 3. Other explanations in literatures: 
Various explanations, different from ours, have appeared about the concavity 

of the Great Pyramid. Let us mention six of those. 
1) Mendelssohn (1973) asserts, with Figure 33, that “In each horizontal row 

of blocks a gentle grading was carried out by which the blocks at the edges were 
very slightly higher than those in the middle of the face. In this way the corners 
of each layer of packing blocks was somewhat lifted, making the whole layer 
slightly concave towards the apex. This method provided an addtional inward 
thrust which further counteracted any tendency of lateral forces to develop”. 
This mechanism would be quite true as it is almost the same as Figure 17, but he 
believes this delicate construction was carried out throughout the whole structure,  
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Figure 33. Illustration in (Mendelssohn, 1973) with the caption: “In order to provide ad-
ditional stability, the masonry courses of the Khufu Pyramid were made slightly concave 
towards the apex”. 

 
as he continues that “This last mentioned safeguard was clearly a laborious and 
time-consuming device, requiring selection and grading of the blocks before 
they could be laid. It seems to have been regarded as an unnecessary precaution 
and was not employed at the next Giza pyramid, that of Khafre.” We cannot be-
lieve such “laborious and time-consuming” efforts were made from the view-
point of energy efficiency. It seems he also assumes that the most of blocks were 
“well-squared” to prevent the lateral forces, as illustrated in (a) of Figure 22, 
which we deny also from the viewpoint of energy efficiency. 

2) Isler (1983) explains that the concavity is due to the efforts by the builders 
to control the alignment of the sides by using long cords, which led to slight var-
iations in the levels of layers and a slight error in the alignment of the planes on 
each side of the faces. Our theory excludes this idea because we believe the 
builders of the Pyramid measured “angle” rather than “distance” knowing well 
that such long, hence heavy, cords cause errors in measurement. 

3) Monnier (2022) insists that “the indentation of the faces of the Great Pyra-
mid is very probably the consequence of relatively recent activities affecting the 
monument”, which means that the cumulative effect of the repeated falls of cas-
ing blocks due to the dismantling of the casing by the Arab quarrymen, from the 
end of the 12th century until the 16th century, had made each surface look con-
cave, together with the additional damage resulting from the tourists. We reject 
this idea because of the following reason. The dismantling of the casing was to 
reuse the large fine white limestones, intricately cut and beautifully polished, in 
order to build mosques and fortress in nearby Cairo. Then, the dismantling of 
the casing by quarrymen must be carried out very carefully, using some device 
like ropes, not to cause any damage to the polished surface of stones. Therefore, 
we do not think they fell down the casing stones, hitting and bumping many 
blocks on the way to the ground. The debris of casing stones around the base 
would be due to the earthquake, not due to the intentional dismantlement by the 
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quarrymen. Note also that quarrymen used backing stones as steps of a “ladder” 
to climb up or down; then it would be quite a foolish act to destroy the “ladder”. 
We do not exclude the case that the casing was dismantled from the top to the 
bottom rather than from the bottom to the top, since the former would be much 
safer than the latter. The 1303 AD earthquake fell down or loosened almost all 
casing blocks of the Great Pyramid so that it was possible for quarrymen to 
climb up to the apex, which means they could do the dismantlement from the 
apex to the bottom. It seems the Khafre’s Pyramid was not so disturbed by the 
same earthquake, but we suspect that some casing stones fell down or loosened 
so that the quarrymen could climb up near to the apex, from where they could 
start the the dismantlement towards the bottom. The dismantlement from the 
top to the bottom needs further care not to cause any damage to the remained 
casing blocks. 

4) Edwards (2016) proposed that workers used the angled faces of the outer 
casing blocks as surfaces on which to transport block-and-sledge assemblies, and 
the concavity was a side effect of the construction that the external lateral forces 
induced by hauling block-and-sledge assemblies up the angled faces of the Py-
ramid. We can not believe such side effect generated the concavity with clear di-
vision of each face into two right triangular planes both of which look quite 
“flat” in Figure 1 and Figure 2. We proposed in (Kato, 2020) another simple 
way to lift stones using a very simple lift (made of poles, posts and ropes) and a 
well (an empty column surrounded by walls of stones, like a chimney). 

5) Bauval (2016)8 proposes that the concavity encodes a “virtual space” at the top 
of the monument on which might have been placed a spherical object. We need 
more theory behind the coincidence of numbers to understand such a proposal. 

6) A spiritual reason was proposed in (Seyfzadeh, 2017, 2018a: p.165) that the 
concavity was one of features of the Great Pyramid intentionally designed by the 
architect “Hemiunu” to embedd theological meaning into the Pyramid, and that 
the maximal indent “0.92 meters” estimated by Pochan (Figure 4) can be inter-
preted as 8 (“Khemenu”) ×1/1000 (“Re-Kha”; Egyptian unit fractions were ex-
pressed with the mouth symbol Re over some denominator; kha also means 
“thousand”) ×220 cubits (the half-base). As mentioned in the above Remark 2, 
or in the model M (5/8), it is believed (Seyfzadeh, 2018b: p. 320) that the num-
bers 5 and 8 were deeply embedded in Egyptian religious thought. Though we 
do not know if this Seyfzadeh’s interpretation is more than the coincidence of 
numbers, we can believe the idea that the 8 sided core structure was accepted by 
the ancient Egyptian in favor of the number 8. 

In the above six ideas, only the Mendelssohn’s idea (1) treats the concavity as 
an intentional design for the structural stability of the Pyramid, and is closest to 
our’s. 

Remark 4. Can we test our theory? 
How our theory of “gently inclined courses in the Great Pyramid” can be 

 

 

8This paper misquotes the year the photo Figure 1 was taken, as noted in Footnote 1. 
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tested? This would be quite a difficult task. Or, we can rather say that, this diffi-
culty made us to write down this article in order to guess the possible inner 
structure of the Pyramid scientifically. The perfect masonry keeps us away from 
seeing the internal structure of the Great Pyramid. Even though there exits some 
visible inner structure like passages and chambers, various adjustments or mod-
ifications would be probably done in setting blocks in order to construct such 
fine inner structures, so that any “local” seams on the walls of passages or cham-
bers would not be easily identified with the “global” ones for the inclined courses. 
For example, in Figure 32, any horizontal seams on the walls of the King’s and 
the Queen’s Chamber cannot be the evidence that the Great Pyramid was built 
with horizontal courses. The only test we can imagine presently is to detect 
somehow the flow of rainwater through the Pyramid to confirm the flow like 
Figure 19. 
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