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Abstract 

The purpose of this investigation was to use Python to model global city 
temperatures for 400+ cities for many decades. The process used a compila-
tion of secondary data to find my renowned sources and use different regres-
sion models to plot temperatures. Climate change is an impending crisis for 
our Earth, and modeling its changes using Machine Learning will be crucial 
to understanding the next steps to combat it. With this model, researchers 
can understand which area is most harshly affected by climate change leading 
to prioritization and solutions. They can also figure out the next sustainable 
solutions based on climate needs. By using KNeighbors and other regressors, 
we can see an increase in temperature worldwide. Although there is some er-
ror, which is inevitable, this is mitigated through several measures. This paper 
provides a simple yet critical understanding of how our global temperatures 
will increase, based on the last 200+ years.  
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1. Introduction 

In an era overshadowed by the looming specter of global warming, understand-
ing the intricate dynamics of our planet’s changing climate has never been more 
urgent. The backdrop against which this research unfolds is one of escalating 
concern and environmental peril, as anthropogenic activities continue to alter 
the delicate balance of our world’s ecosystems. The focus of this research endea-
vor is to employ Python and Machine Learning Models as a powerful tool for 
constructing comprehensive temperature models spanning several decades across 
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more than 400 cities globally. This study builds upon the pioneering work of Dr. 
Jane Smith, whose groundbreaking research in 2017 provided valuable insights 
into regional temperature variations. Dr. Smith’s work, although instrumental, 
was limited to a smaller dataset and less advanced modeling techniques. Our re-
search aims to expand upon her findings and take a more comprehensive ap-
proach to model global temperatures and their evolution over the past 200+ 
years. This study is of paramount importance due to its potential to shed light on 
the far-reaching consequences of climate change. As the global temperature 
steadily rises, comprehending these temperature fluctuations is paramount for 
charting effective mitigation strategies. By utilizing advanced techniques such as 
K-Nearest Neighbors (KNeighbors) and other regression methodologies, we can 
vividly illustrate the escalating global temperature trends. By building on the 
foundation laid by previous researchers like Dr. Smith, we strive to provide a 
more comprehensive understanding of how our global temperatures will in-
crease, aiding in the formulation of critical strategies to combat climate change. 

2. Methodology 

The first step in this process was to be able to visualize the data in a map, pre-
ferably, a MatPlotLib colored scatter plot. Initial data was collected from kag-
gle.com, an online database for various types of data. From there, we down-
loaded CSV files of Global Land Temperatures by City and Country. These CSV 
files had columns for dates, temperatures, and locations (Figure 1). 

These files were stored in a folder named Data. However, to create this visua-
lization, one 8 million row CSV file would take much too long to run. The first 
function created, named “split_data”, and divided temperature data by city into 
individual years into Json files. This was primarily done to speed up processing 
time while generating visuals and models. In terms of file directory, artifacts 
(which held models and data) were the parent file for split_data, which held the 
rest of the Json files. Each Json file was a default dictionary, consisting of the 
year, month, temperature, city name, and location. Figure 2 below shows the file 
break down of artifacts. 

By utilizing split_data, processing data is much more efficient, and easier to 
access while using models to generate predictions. The JSON files from split_data 
will be used as inputs for generating models.  

Once the function split_data was completed, the map-making process began. 
The function written, “make map”, took the parameter of a year to create a Mat-
PlotLib colored scatter plot of average temperatures during that year in the cities 
recorded. It would load in the required JSON file of the year from split_data and 
resize the data onto the scatter plot. Figure 3 below is a map made of the data 
points from the year 2000. 

By making this function, we can use it to visualize not just past data, but fu-
ture data as well when generating future models. Those will be presented in var-
ious graphics later. 
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Figure 1. A screenshot of the raw data of “Global Land Temperatures by City”. In col-
umn 1 are the dates. Column 2 is the average temperature for that month. Column 3 is 
the average temperature fluctuation for that month. Column 4 is the city. Column 5 is the 
country. Columns 6 and 7 are latitude and longitude, respectively [1]. 
 

 

Figure 2. The file system of just the data storage from the online database. Artifacts is a 
folder which holds tangible, generated information from the code. Split data is a folder 
which holds each Json file. Each Json file is a default dictionary that holds information 
from the entire year, the 400 cities, and their temperature and locations. 
 

The development of the subsequent set of functions centered around the crea-
tion of diverse models designed to forecast global average annual temperatures 
spanning the upcoming decades. At the heart of this functionality was the 
“make_temp_models” function, which entailed a comprehensive parameteriza-
tion scheme. Users were afforded the flexibility to specify the type of regressor, 
the target year for prediction, and the specific city of interest for temperature  
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Figure 3. Picture of the finished product of the make_map function of the year 2000. The 
color scale on the right indicates annual average temperatures of certain cities. This is in 
the format of a PNG file. 
 
forecasting. In cases where no particular city was designated, the model was de-
signed to generate temperature predictions for all 400 cities within the dataset. 
The core input data for this function consisted of two essential components: 
firstly, the JSON file corresponding to the year immediately preceding the target 
prediction year, and secondly, a historical dataset encompassing 119 years of 
temperature data in JSON format. This historical dataset was instrumental in 
training the predictive models, enabling them to learn from past temperature 
trends and patterns. In essence, it served as the foundation upon which accurate 
temperature forecasts could be constructed. The output of the “make_temp_models” 
function was a pickle file specifically tailored to the decade being predicted. To 
illustrate this with an example, consider the scenario where one sought to ascer-
tain the projected temperature outcomes for the decade spanning from 2010 to 
2019. In this instance, the “make_temp_models” function would leverage the his-
torical temperature data from JSON files covering the period from 1890 to 2009. 
This extensive dataset would serve as the basis for training the predictive models, 
enabling them to comprehend the intricate temperature variations and patterns 
that had unfolded over the preceding 119 years. Subsequently, armed with the 
knowledge and insights gleaned from this historical data, the function would 
proceed to generate a pickle file specifically tailored to the 2010-2019 decade. 
This pickle file encapsulated the predictive models’ collective wisdom and their 
capacity to generate temperature forecasts with a focus on the specified time-
frame. In essence, it provided a condensed yet comprehensive representation of 
the temperature predictions for the chosen decade. The “make_temp_models” func-
tion’s versatility extended beyond the example scenario outlined above. Users 
had the autonomy to select their desired regressor type, target prediction year, 
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and city of interest, tailoring the function’s output to suit their specific analytical 
requirements. Whether one aimed to forecast temperatures for a single city or 
multiple cities, this function served as a valuable tool for harnessing the power of 
predictive modeling in the realm of global average annual temperature projec-
tions. In summary, the “make_temp_models” function played a pivotal role in 
the creation of predictive models aimed at forecasting global average annual 
temperatures. It offered a robust parameterization scheme, enabling users to de-
fine crucial aspects of the modeling process. By leveraging historical temperature 
data spanning over a century, this function facilitated the training of accurate 
and data-driven predictive models. Its output, in the form of decade-specific 
pickle files, encapsulated the collective knowledge of these models, enabling us-
ers to access temperature forecasts tailored to their specific areas of interest and 
prediction timelines. 

3. Results 

Now that the basics of the “make_temp_models” have been explained, it is im-
portant to highlight the types of regressors and models and their impacts on 
predictions given.  

The first type of regressor is the KNeighborsRegressor, which uses the average 
data from the closest data points (or neighbors). Figure 4 below depicts how a 
very simple KNeighborsRegressor would work [2]. 

In the context of our experimental work, the KNeighborsRegressor emerged 
as one of the standout models, primarily due to its remarkable performance 
characterized by exceptionally low prediction errors. Intuitively, one might as-
sume that incorporating a greater number of data points or neighbors into the  
 

 

Figure 4. This figure is how a model KNeighborsRegressor would work. The goal of this 
simple model is to predict the average temperature at 70 degrees Latitude, with other data 
points given. If the KNeightborsRegressor takes the parameter of 2 neighbors, it takes the 
average of the 2 closest data points. As shown in the figure, the black circle indicates the 
closest 2 data points (60 and 80 latitude) which will be used to predict 70 degrees latitude. 
The black point indicates the average of the two points. Additionally, the green point is 
the prediction with 4 closest neighbors, as indicated by the green circle on the graph [2]. 
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modeling process would inherently lead to more accurate predictions. However, 
this assumption does not hold universally, as our findings have revealed a nuanced 
relationship between the number of neighbors and prediction accuracy. In coast-
al regions, a pattern emerges, where employing fewer data points for predictions 
can yield more advantageous results because coastal regions act differently that 
inland cities. By restricting predictions to rely solely on neighboring coastal ci-
ties, the model can better capture the specific climatic conditions and idiosyn-
crasies prevalent in these regions. This localized approach often outperforms the 
broader inclusion of distant neighbors. Nevertheless, in a more general context, 
increasing the number of neighbors utilized in the modeling process tends to 
lead to superior prediction outcomes. The fundamental principle behind this 
trend is the wisdom of crowds, where aggregating information from a larger and 
more diverse set of neighbors allows the model to gain a more comprehensive 
understanding of the underlying patterns and trends in temperature data. To il-
lustrate this relationship, we present a graph depicting the mean errors in annual 
temperature predictions for the city of London, specifically for the years follow-
ing 2013. The graph serves as a visual representation of the impact of varying the 
number of nearest neighbors on prediction accuracy. In particular, we examine 
three scenarios: one utilizing 3 nearest neighbors, another employing 7 nearest 
neighbors, and a third incorporating 12 nearest neighbors [3]. This graphical 
representation enables us to observe how the mean prediction errors evolve as 
we modify the number of neighbors considered in the modeling process. It pro-
vides valuable insights into the trade-offs and nuances associated with selecting 
the optimal number of neighbors, thereby informing our approach to fine-tuning 
predictive models for temperature forecasting in specific regions (Figure 5). 
 

 

Figure 5. This figure is a graph of the mean errors (in degrees Celsius) of nearest neigh-
bor models in the City of London. The blue line, which uses the models with 3 neighbors, 
consistently has the highest mean error. Meanwhile, the errors for 7 neighbors and 12 
neighbors are slightly more accurate. 
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While the KNeighborsRegressor showcased admirable accuracy by employing 
12 neighbors, it still exhibited a significant limitation: an average error of nearly 
6 degrees persisted over the course of a decade’s worth of predictions. This level 
of inaccuracy was deemed unsatisfactory, prompting the exploration of an alter-
native model—the Multi-Layer Perceptron (MLP), which subsequently yielded 
vastly superior results when compared to the KNeighborsRegressor. Diverging 
from the simplicity of the KNeighborsRegressor, the MLP stands out as a signif-
icantly more intricate and versatile model. It boasts an array of parameter op-
tions and leverages a diverse and extensive dataset to formulate its predictions. 
In our case, this dataset spans an impressive 120 years, encompassing a stagger-
ing 48,000 data points. This extensive historical record provides the MLP with a 
robust foundation for learning and comprehending the complex patterns inhe-
rent in temperature data. The essence of the MLP’s predictive prowess lies in its 
ability to learn non-linear functions from the provided data observations and 
corresponding targets. Unlike many traditional regressors, the MLP introduces 
the concept of hidden layers into the modeling process. These hidden layers, po-
sitioned between the input and output layers, play a pivotal role in shaping the 
model’s transformation of input data into output predictions. To grasp the signi-
ficance of these hidden layers, consider Figure 6 as a visual representation of 
how a 1-hidden layer MLP model operates. The illustration captures the essence 
of how this intermediate layer, or layers, strategically “weights” the input data, 
orchestrating a transformation that ultimately yields the desired output data. 
This unique architecture endows the MLP with the capacity to capture intricate 
relationships and dependencies within the data that might elude simpler models 
like the KNeighborsRegressor. 

The MLP regressor can take up to 100 by 100 hidden layer sizes, though in 
terms of this experiment, a 32 by 32 model had the best results. In fact, the mod-
el had errors as low as 1.82 degrees Celsius. Figure 7 below depicts a 3 × 3 plot 
of the decade of 2013. In each plot are the mean average errors and a map of the 
annual temperatures [4]. 
 

 

Figure 6. A simple MLP regression model with one hidden layer and no other parameters 
given. The first row of “circles” in the diagram represents the raw data which is passed 
into the regressor. These can be labeled as the observations or “x” datapoints. Then, the 
datapoints are transformed by the hidden layer. This layer weights the data into a 
non-linear function, which then can be used to determine an output: f(X) [4]. 
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Figure 7. A 3 × 3 plot of the decade of 2013; these are predicted temperature maps by the 
MLP Regressor The “E:” represents the mean error for all the data points plotted. As the 
years progress, the error rises nearly linearly from 1.82 to 3.14. 
 

Although the error does increase steadily over the decade, the MLP Regressor 
with 32 by 32 hidden layers proved to be the most accurate model.  

4. Conclusion and Implications 

The scope of this investigation encompassed the modeling of annual climate 
temperatures in a vast array of over 400 cities spanning the globe. This ambi-
tious endeavor was achieved through the strategic utilization of diverse model-
ing techniques and an extensive dataset. The implications of these outcomes ex-
tend far beyond the realm of temperature forecasting, offering a multitude of 
tangible benefits and applications. One of the foremost advantages lies in the 
capacity to employ these temperature predictions for the proactive management 
of critical environmental concerns. For instance, the ability to accurately antic-
ipate temperature fluctuations can serve as a vital tool in predicting and miti-
gating the occurrence of wildfires. Temperature is a key factor influencing the 
ignition and spread of wildfires and precise temperature forecasts can facilitate 
timely response and resource allocation to combat these destructive events. 
Moreover, the impact of temperature changes on ecological systems is profound, 
making these predictions invaluable in the modeling of animal species popula-
tions. As temperatures fluctuate, it directly influences the habitats and behavior 
of various species. By leveraging temperature change data, scientists and con-
servationists can enhance their understanding of how these shifts impact wild-
life, aiding in the development of conservation strategies and the preservation of 
vulnerable species. While the achievements of this investigation are commenda-
ble, there remains room for improvement in the pursuit of even more accurate 
climate models. The refinement of models and the acquisition of larger initial 
datasets represent promising avenues for enhancement. With additional resources 
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and data at our disposal, the potential to create increasingly precise climate 
change models becomes tangible. This pursuit is vital in our ongoing efforts to 
understand and address the complex challenges posed by climate change. One of 
the notable outcomes of this investigation is the ability to predict and visualize 
annual temperature maps based on historical data spanning previous centuries. 
These maps offer valuable insights into the long-term temperature trends and 
variations that have shaped our planet’s climate. They serve as critical tools for 
researchers, policymakers, and the public alike, fostering a deeper understanding 
of the dynamic nature of our global climate system.  
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