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Abstract 
Every year, hurricanes pose a serious threat to coastal communities, and fo-
recasting their maximum intensities has been a crucial task for scientists. 
Computational methods have been used to forecast the intensities of hurri-
canes across varying time horizons. However, as climate change has increased 
the volatility of the intensities of recent hurricanes, newer and adaptable me-
thods must be devised. In this study, a framework is proposed to estimate the 
maximum intensity of tropical cyclones (TCs) in the Atlantic Ocean using a 
multi-input convolutional neural network (CNN). From the Atlantic hurri-
cane seasons of 2000 through 2021, over 100 TCs that reached hurricane-level 
wind speeds are used. Novel algorithms are used to collect and preprocess 
both satellite image data and non-image data for these TCs. Namely, Discrete 
Wavelet Transforms (DWTs) are used to decompose individual bands of sa-
tellite image data, eliminating noise and extracting hidden frequency details 
before training. Validation tests indicate that this framework can estimate the 
maximum wind speed of TCs with a root mean square error of 15 knots. This 
framework provides preliminary predictions that can supplement current 
computational methods that would otherwise not be able to account for cli-
mate change. Future work can be done by forecasting with time constraints, 
and to provide estimations for more metrics such as pressure and precipita-
tion.1 
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1A GitHub repository containing the code developed in this study can be found at  
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1. Introduction 

In the U.S., hurricanes in the last 30 years have caused over $1.1 trillion in dam-
ages and killed almost 7000 people, making them both the economically costliest 
and the deadliest type of disaster in the U.S. [1]. Furthermore, hurricanes have 
intensified significantly in recent years to cause enormous amounts of damage 
[2]. 2020 saw a record-breaking 30 named tropical storms in the Atlantic Ocean, 
exhausting the designated list of 21 storm names for only the second time on 
record [3]. That list was used up again in 2021, as another 21 named storms to-
taled $95 billion in damages [1] [4]. Hurricane Ida alone accounted for more 
than half of that cost, being responsible for at least $75 billion in damages [5].  

The Atlantic hurricane season makes it evident that climate change has caused 
hurricanes to worsen in severity. However, coastal cities in the U.S. are only one 
part of the world’s population and economic output. Hurricanes pose the same 
threat to coastal communities around the world [6], and therefore a method to 
reliably forecast the maximum intensities of impending hurricanes would be es-
sential to prepare accordingly. Most importantly, these forecasts should be made 
while these hurricanes are still in early formation to provide as much time to 
prepare as possible. 

Currently, there are a number of computational frameworks that estimate the 
peak intensities of TCs. One such method is Dvorak Analysis (DA), which uti-
lizes four distinct geophysical properties in its calculation of TC intensity: vor-
ticity, vertical wind shear, convection, and core temperature [7]. Each of these 
properties helps to relate pattern recognition in cloud formations to a maximum 
wind speed. When monitoring the physical properties of cloud formations, DA 
also tracks four primary types of patterns that are assigned to varying ranges of 
TC intensity: curved band patterns, shear patterns, central dense overcast, and 
eye tracking. For decades, DA has remained one of the most accurate and inter-
nally consistent methods of TC intensity estimation in the world. The most re-
cent study of its accuracy, performed by Brown and Franklin in 2004, tested 
DA’s performance on TCs in the Atlantic Ocean from 1997 to 2003. They found 
that the Dvorak-estimated maximum wind had an error of 5 knots (kts) or less 
in 50% of TCs. 75% of errors were within 12 kts, and 90% of errors were within 
18 kts [8]. For this study, DA serves as a useful computational benchmark, al-
though attention must also be drawn to more recent studies of estimating TC 
intensity.  

An improvement of DA known as early-stage Dvorak analysis (EDA) was 
created by the Japan Meteorological Agency to estimate TC intensity based on 
satellite infrared imagery. EDA has since been used by the National Hurricane 
Center (NHC) and Central Pacific Hurricane Center (CPHC) to predict TC 
generation 48 hours in advance with accuracies of 15% - 57%, respectively [9]. A 
study combining EDA with multi-model ensemble forecasts found that the ac-
curacies of forecasting TC generation could be improved to 35% - 79% [10]. 

With EDA as a benchmark, Matsuoka et al. [11] developed a deep-learning 
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approach to identify TCs and their precursor cloud formations based on out-
going longwave radiation (OLR) data using convolutional neural networks. In 
the western North Pacific, their framework identified TCs from July to Novem-
ber with a probability of detection of 79.9% - 89.1% and a false alarm ratio 
(FAR) of 32.8% - 53.4%. The framework may be applied to other ocean basins 
and can maintain a POD above 70% and a FAR below 50%. The accepted FAR 
for TC identification was relatively high, suggesting that because of climate 
change, providing reliable forecasts of the intensity of TCs has become markedly 
more challenging as well. Most notably, the high FAR indicates that their 
framework had a high tendency to falsely categorize cloud formations as TCs. 
This study proposes a framework designed to estimate the peak wind speed of 
TCs with a comparatively lower level of bias. 

DeMaria et al. [12] proposed a Monte Carlo probability (MCP) method for es-
timating wind speed probabilities of TCs. MCP first generates path and intensity 
realizations for each TC, taking into account randomly sampled historical errors 
from the last 5 years. For each set of realizations, MCP then calculates wind 
structure realizations to reveal key information about the radii of wind thre-
sholds in each TC. 1000 realizations are made which extend out to 120 hours in 
advance, and MCP uses them to calculate radii probabilities for 34-kt, 50-kt, and 
64-kt winds. When applied to TCs in the Atlantic Ocean from 2003 to 2007, 
MCP produced 48-hour forecasts with a root mean square error of about 20 
knots. For this study, MCP serves as a second computational benchmark, al-
though MCP is a probabilistic approach that estimates wind speeds within 
ranges, and it can be expected that attempting to forecast exact wind speeds will 
incur larger errors. 

Herrera et al. [13] used several types of non-linear regression models to fore-
cast the movement and intensities of TCs. While this study did not utilize deep 
learning methods such as convolutional neural networks (CNNs), it applied 
wavelet analysis to find and forecast oscillating patterns of Atlantic hurricanes 
from categories 2 to 5. This demonstrates that wavelet analysis methods are via-
ble methods of spatial data preprocessing when applied to TCs. In this study, 
CNN is enhanced through the use of discrete M-band wavelet transforms 
(DWTs) a method of wavelet analysis that this study will use to decompose spa-
tial data into extracted detail channels. 

Su et al. [14] used satellite imagery from NASA’s Tropical Rainfall Measuring 
Mission (TRMM) to classify rapidly intensifying TCs by category. They found 
that the surface precipitation rate (mm/hr) within 100 km of a storm center had 
a strong correlation with the category of a TC. These findings are a crucial step 
in TC intensity forecasting, since spatial precipitation data is a feature that can 
be readily extracted and utilized in future intensity forecasting models. Similar 
to Herrera et al, however, this study did not experiment with CNNs. In this 
study, using spatial data on precipitation rate within a TC allows the CNN 
framework to forecast TC intensities with greater accuracy. 
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Deep learning models have the ability to forecast the intensity of TCs. This 
study aimed to fill in the research gap left by Herrera et al. and Hu et al. by using 
a CNN-based model framework to forecast the peak intensity of a TC during 
early stages of formation. The algorithm created by Hu et al. was adapted by in-
cluding data collected on the rate of precipitation in each TC, whose high corre-
lation with TC intensity could be significant when applied to early-stage fore-
casting. This study also incorporated the methodology of Herrera et al. by using 
DWTs to preprocess our satellite imagery, which can reveal hidden details and 
features that would be beneficial for our CNN model framework. 

2. Data and Methods 

The objective of this paper was to introduce a novel deep learning-based ap-
proach for estimating maximum TC intensity. Computational approaches such 
as DA and MCP have been historically consistent, but as climate change makes 
TCs more volatile and unpredictable, these methods will be unable to adapt. 
Computational methods are rigid by nature, and modifying or adding new pa-
rameters to adapt to changes in TCs can be extremely costly and time-consuming. 
Deep learning serves as an extremely flexible and cost-effective approach that 
can quickly provide preliminary intensity estimates. Existing methodologies for 
estimating TC intensity rely on maximum wind speed as the primary indicator 
of its strength, which is commonly measured in nautical miles per hour, or knots 
(kts). Therefore, our approach also includes estimations in kts. 

2.1. Study Area 

This study focused on the Atlantic hurricane season, which is tracked in detail 
by national environmental agencies in the United States. Additionally, much of 
the information recorded by satellites and weather observation stations is made 
publicly available. The Atlantic Ocean basin is the second largest basin, covering 
an area of approximately 106,400,000 square kilometers, or 41,100,000 square 
miles [15]. From 2000 through 2021, the Atlantic Ocean basin saw the formation 
of nearly 400 TCs, including tropical depressions and subtropical storms [16] 
[17]. 

2.2. Data Collection 

The first step was to gather spatial data representing three crucial features of TC 
development: precipitation data, ocean temperature data, and satellite image da-
ta. Global 6-hourly precipitation data were collected from two NASA missions, 
the Tropical Rainfall Measuring Mission (TRMM) and the Global Precipitation 
Measurement Mission (GPM), which are collectively referred to as Integrated 
Multi-satellitE Retrievals for GPM (IMERG). Global daily ocean surface temper-
ature data was collected from the National Oceanic and Atmospheric Adminis-
tration’s (NOAA) Optimum Interpolation Sea Surface Temperature record 
(OISST). Daily global satellite imagery was taken from NASA’s Moderate Reso-
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lution Imaging Spectroradiometer (MODIS). Our data collection process also 
required the use of NOAA’s Northeast and North Central Pacific Hurricane Da-
tabase (HURDAT2). Table 1 provides a summary of the data that was collected 
in this step. 

For each TC that formed, HURDAT2 provided a profile that tracked the loca-
tion of its center as well as wind speeds at varying distances from its center. 
These profiles contained one such record every 6 hours: at 12:00 AM (0000), 
6:00 AM (0600), 12:00 PM (1200), and 6:00 PM (1800). A script was developed 
to automatically download these profiles as JSON files, which were then used to 
download spatial data. Because the objective of this study was to create an early 
forecasting system, only data of each TC’s path up until landfall was collected. 
The exception to this process was if a TC made landfall over any of the Carib-
bean islands, since TCs that pass over this region sometimes do not die out and 
instead continue to grow, often making contact over land multiple times. Figure 
1 shows the path of Hurricane Sandy in 2012, which made landfall three times 
and serves as an example of why this exception is necessary. Two bounding box-
es were created to cover as much of the Caribbean islands as possible: one be-
tween 16˚N 85˚W and 25˚N 65˚W, and one between 23˚N 79˚W and 26˚N 
 

 
Figure 1. Sandy_track. 

 
Table 1. The table should consist of the following data. 

 Data Source Features Used Temporal Resolution Spatial Resolution 

MODIS MOD09CMG Satellite Imagery 24 hours 0.05˚ 

IMERG TRMM/GPM Hourly precipitation 6 hours 0.1˚ 

NOAA OISST Skin surface temperature 24 hours 0.25˚ 

NOAA HURDAT2 TC path, wind speed 6 hours 0.1˚ 
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74˚W. If a TC made contact with land anywhere within this area, the script 
would ignore the landing and continue to download records until the TC made 
landfall over a point not in either of the bounding boxes. Figure 2 uses the 
HURDAT2 profile of Hurricane Ida in 2021 as an example of how this down-
loading process worked. 

A second script was then created to download data from MODIS, IMERG, 
and NOAA using the correct days and locations from the HURDAT2 TC pro-
files. For each day in a TC’s HURDAT2 profile, the earliest recorded coordinates 
were directly used to specify identical bounding boxes for IMERG and OISST, 
which created subimages that were downloaded as 200 × 200 spatial arrays. Note 
that, in order to obtain daily precipitation values for each TC, it was necessary to 
use each 6-hourly record from HURDAT2 to average the 6-hourly records from 
IMERG.  

For the daily satellite imagery from MODIS, getting precise and accurate im-
ages of each TC was crucial, since the presence of a clearly-defined formation of 
clouds into spirals was likely a strong indicator of TC strength. Therefore, we 
modified our approach for processing MODIS data into three steps to ensure 
that each TC’s eye was centered in its image and that the model could learn as 
many features from this imagery as possible. 

2.3. Data Preprocessing 
2.3.1. Hurricane Center Identification in MODIS Satellite Imagery 
The first step in MODIS preprocessing was to center the eye of every TC to 
maximize the efficiency of the deep learning model in its feature extraction. This 
step also ensured that each image was as consistent as possible in terms of ex-
tracted area surrounding each TC. MOD09CMG is one satellite that provides 
continuous imagery of the entire globe as it orbits, so it often covers the Atlantic 
Ocean at times that differed from the 6-hour intervals provided by HURDAT2. 
This difference in time would allow a TC to move so that the coordinates of its 
eye provided by HURDAT2 would no longer represent the location of its eye in 
the MODIS satellite imagery. 
 

 

Figure 2. Ida_hurdat. 
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To accurately identify the location of each TC’s eye, it was necessary to develop 
an algorithm to linearly interpolate the coordinates provided by HURDAT2 based 
on its temporal difference from those same coordinates provided by MOD09CMG, 
which was called Hurricane Center Identification (HCI). MOD09CMG provides 
a time array so that for every pixel of imagery taken in a given day, there is a 
corresponding time pixel. Given the profile of a TC from HURDAT2 and a cer-
tain day of MODIS imagery, HCI first finds the earliest record of that day (ex. 
12:00 AM) in the TC’s profile. It then uses the coordinates of its eye to get the 
timestamp that corresponds to that location in the given MODIS imagery. Next, 
HCI searches the TC’s HURDAT2 profile for two 6-hour intervals: one whose 
timestamp is closest to and before the time obtained from MODIS, and one 
whose timestamp is closest to and after that time. HCI then stores the times and 
coordinates of both HURDAT2 records. With the location and time of a TC 
from HURDAT2 and the time from MODIS, HCI is able to utilize linear inter-
polation to calculate the new coordinates of the TC’s eye in MODIS (Figure 3). 

A few factors negatively impacted the accuracy of HCI, the first being the va-
rying velocities at which a TC could travel. Because HCI linearly interpolated the 
new coordinates of each TC only by its temporal differences from HURDAT2 
records, it did not account for any fluctuations in the TC’s velocity, such as an 
acceleration or change in direction. Second, because of the path that MOD09CMG 
took as it orbited, it produced several evenly spaced and identical areas with no 
satellite data, known as swath gaps. If HCI found that a set of coordinates from 
HURDAT2 corresponded to a time of 0000 in the MODIS time matrix, this 
meant that it had encountered one such swath gap, and it instead had to take the 
average time at which the area surrounding the swath gap was taken. Despite 
these three factors having an adverse effect on the potential accuracy of HCI, 
manual assessment of sample images revealed that, in practice, these factors did 
not translate to any significant error. 
 

 

Figure 3. (a) SAM 9-25-2021; (b) SAM 10-01-2021. 

https://doi.org/10.4236/acs.2023.134033


J. H. Liu, X. D. Wang 
 

 

DOI: 10.4236/acs.2023.134033 594 Atmospheric and Climate Sciences 
 

2.3.2. Dynamic Swath Gap Filling in MODIS Satellite Imagery 
Due to the Earth’s rotation and the path that MOD09CMG takes as it orbits the 
Earth, there are regular swath gaps in each day’s MODIS satellite image. At the 
equator, these swath gaps are 388 kilometers in width, and their widths gradually 
reduce to zero at ±30˚ latitude. One such swath gap covers part of the Caribbean 
Sea and therefore appears in some MODIS satellite subimages. This swath gap 
poses as a substantial problem for a deep learning model, which would be trained 
to detect the presence of a swath gap as a significant feature instead of the ap-
pearance of each TC. Therefore, these swath gaps had to be filled in with pseu-
do-random values so that there would be both no substantial pattern in the 
swath gaps and no significant difference between the colors of the filled gap 
and the colors of the rest of the satellite image. This way, our deep learning 
model would be less likely to extract features from and train on the swath gap it-
self. 

To address this issue, modifications were made to a previously developed al-
gorithm called Neighbor RGB to fill in swath gaps using randomly selected pixel 
values within a certain radius from the gap [18]. The resulting algorithm, called 
Dynamic Swath Gap Filling (DSGF), was able to fill in swath gaps given a 
processed multi-channel satellite image by randomly picking neighboring pixel 
values in a dynamically-changing area surrounding the swath gap. First, DSGF 
started from the bottom left corner of each channel, checking the values of each 
row from left to right. If DSGF found that a certain value in a row equals 
−28,672, the defined value for any area representing a swath gap, it saved the in-
dex of that value in the row and began counting upwards by 1 to track the length 
of the swath in that row. DSGF then continued checking every single value until 
it reached either the end of the swath gap or the end of the row, at which point it 
calculated the area around the swath to randomly select values from during fill-
ing. DSGF did this by dividing the length of the swath gap by 2, obtaining the 
length of the area to the left of the swath gap. The remaining length represented 
the length of the area to the right of the swath gap. A check was then made so 
that if the selected length to either the left or right of the swath gap exceeded the 
length of its corresponding part of the row (i.e., the selected length would go 
past the borders of the row), DSGF took the maximum length possible from that 
side and add the remaining length onto the area covered by the other side. With 
the dynamic length of the left and right areas of filled values defined, DSGF then 
stored the values in those lengths from the 9 rows above the current row into an 
array and randomly selected values out of that array to fill the swath gap in that 
row (Figure 4). 

2.3.3. Discrete M-Band Wavelet Transform 
The third algorithm in our data preprocessing utilized Discrete M-Band Wavelet 
Transforms (DWTs) to decompose each spatial channel into M2 different fre-
quency channels, or components. DWTs are a crucial step in image preprocess-
ing because they can emphasize hidden details by separating low-frequency 
components from high-frequency counter parts of the image. These details allow  
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Figure 4. BARRY dynamic swath gap filling 7-12-2019. 
 
our deep learning model to learn relationships with fewer TCs. An orthogonal 
M-band DWT is determined by a filter bank consisting of M filters ( 2M ≥ ), in-
cluding a low-pass filter α and 1M −  high-pass filters ( )jβ  for 1, , 1j M= −� . 
An orthogonal M–band wavelet filter bank is said to have N vanishing moments 
if its filters satisfy the following conditions [19]: 

1 ii
n Mα
=

=∑                           (1) 

( )
1 0j

i
n k
i i β
=

=∑  for 0, , 1k N= −� , 1, , 1j M= −�           (2) 

( ) 1jα β= =  for 1, , 1j M= −�                   (3) 

( ) 0jαβ =  for 1, , 1j M= −�                    (4) 

( ) ( ) 0i jβ β =  for , 1, , 1i j M= −� , and i j≠              (5) 

Figure 5 illustrates the four frequently employed wavelet functions that were 
considered in this study: Biorthogonal-1.3, Daubechies-3, Symlets and Discrete 
Meyer, as well as their associated decomposed image components when applied 
on a satellite image of Hurricane Ida. 

For this study, the bi-orthogonal DWT was chosen because of its ability to 
detect and filter out white Gaussian noise, or high contrast of neighboring pixel 
intensity values [20]. This helped to filter out cloud formations that were small 
and unrelated to the TC itself. Bi-orthogonal wavelets create associated wavelet 
transforms that are invertible but not necessarily orthogonal. Furthermore, 
bi-orthogonal wavelet transforms are symmetrical, while orthogonal ones are 
not. This allows bi-orthogonal wavelets to have more freedom than orthogonal 
wavelets [21]. For each bi-orthogonal wavelet, its filter banks must each satisfy 
the bi-orthogonality condition: 

2 ,02n n m mn Z a a δ+∈
=∑                        (6) 
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Figure 5. (a) Biorthogonal 1.3 wavelet; (b) Daubechies 3 wavelet; (c) Symlets wavelet (1); (d) Discrete meyer wavelet. 
 

Each wavelet filter’s elements can then be determined by: 

( ) 11 n
n N nb a − −= −  ( )0, , 1n N= −�                  (7) 

( ) 11 n
n M nb a − −= −  ( )0, , 1n M= −�                  (8) 

We apply the biorthogonal DWT to our image dataset. Because it is a 2-band 
transform, it produced 4 components for every image channel: an approxima-
tion (a) component and horizontal (h), vertical (v), and diagonal (d) detail 
components (Figure 6 and Figure 7). 

2.4. Multi-Input Parallel Convolutional Neural Network 
2.4.1. Artificial Neural Network 
An Artificial Neural Network (ANN) consists of three types of layers: input lay-
ers, hidden layers, and output layers. Each layer is then composed of neurons. 
Every neuron in one of these layers takes input values x from the neurons in the 
preceding layer. The neuron then performs a weighted sum with trainable 
weights w and adds a trainable bias value bi. Finally, the neuron applies a speci-
fied activation function f to produce an output value zn, which it will feed as an  
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Figure 6. Sandy-10-28-2012_original. 
 

 

Figure 7. Sandy-10-28-2012_wavelet. 
 
input value into every neuron in the following layer. Because hidden and output 
layers can consist of neurons that take input values from every neuron in the 
preceding layer, they can also be defined as fully connected layers, or Dense lay-
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ers. Given an ANN with n neurons in each layer, any neuron in the fully con-
nected layers of the model will produce output values that can be determined by 
the following two equations: 

1i i j jj
ny b w x
=

= +∑                         (9) 

( )i iz f y=                          (10) 

2.4.2. Convolutional Neural Network 
A Convolutional Neural Network (CNN) is a type of ANN that is generally used 
when features need to be learned from input data [22]. In addition to the fully 
connected layers of an ANN, a CNN makes use of a convolutional layer and a 
pooling layer, which make up the feature learning portion of the neural network. 
The input variable x into this CNN consists of c 2D spatial channels. One such 
channel xb, consisting of P × P pixels, is filtered through a convolutional layer 
which uses N Q × Q convolution windows, or filters. Starting from the top-left 
corner, each filter takes an identically shaped array (i.e., Q × Q) of input values 
from the channel and multiplies it with the weighted values of the filter. This 
process is repeated for the entire spatial channel as the window is shifted. The 
elements in each input channel may be expressed as ( ), 0 ,0i jx i P j P≤ ≤ ≤ ≤ , 
and the weights in each filter can be expressed as  

( ), , 0 1,0 1,0s t nw s Q t Q n N≤ ≤ − ≤ ≤ − ≤ ≤ . The associated bias unit for each filter 
can be expressed as nb . Therefore, elements in a filtered channel (the output of 
a given convolutional layer) can be written as , ,i j ny  and calculated using the 
following equation: 

1 1
, , , , ,0 0

ˆQ Q
i j n s t n i s j l ns ty w bx− −

+ += =
= ⋅ +∑ ∑                 (11) 

The first step in developing the model framework was to create a convolu-
tional block to learn features from my image dataset, which was done with two 
convolutional layers, each followed by an average pooling and batch normaliza-
tion layer.  

12 filters were used in each convolutional layer and a large filter shape of (11, 
11) to allow our model to prioritize the detection of large TC features such as a 
clearly-defined center or tail. Because there are twelve channels and therefore 
twelve 11 × 11 convolutional windows stacked on top of each other, the convo-
lutional windows together form a 3-dimensional array.  

Note that the model utilized a zero-padding technique along with a convolu-
tional stride size of (1, 1) to ensure that the output size of the filtered spatial data 
was identical to that of the input data. The Rectified Linear Unit (ReLU) func-
tion was used as the activation function of each convolutional layer. ReLU filters 
out negative input values as shown in the equation below: 

( ) ( ), , , ,max ,0i j n i j nf y y=                     (12) 

2.4.3. Average Pooling 
After each convolutional layer, the spatial data was downsampled using average 
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pooling layers, which take the average (mean) value of a given spatial input over 
a specified window size (pool size) for each channel of the spatial input. The 
window then shifts by a specified number of cells (strides). Given a spatial input 
with shape (x, y), a certain pool size (j, k), and a certain number of strides s, the 
shape of the downsampled output data can be found with the expression below: 

1, 1x j y k
s s

 − −    + +        
                     (13) 

2.4.4. Batch Normalization 
Following each average pooling layer, the downsampled spatial data was norma-
lized by passing them through batch normalization layers, which transform the 
input data for each channel b to have a mean output value bm  close to 0 and an 
output standard deviation close to 1. During the model’s training process, each 
batch normalization layer calculates a moving mean ,p bm′  and moving variance 

,p bv′  based on the mean and variance of the current epoch p and the current 
channel b ( , ,,p b p bm v ). Given a momentum constant c within the interval ( )0,1 , 
the batch normalization layer updates the moving mean and variance as follows: 

( )1, , , 1p b p b p bm m c m c+′ ′= ⋅ + ⋅ −                   (14) 

( )1, , , 1p b p b p bv v c v c+′ ′= ⋅ + ⋅ −                    (15) 

Note that $m'$ and $v'$ are non-trainable and initialized to the mean and va-
riance of the first epoch, respectively. 

Each batch normalization layer also learns a scaling factor bγ  (initialized to 
1) and a bias parameter bβ  (initialized to 0) for each channel. During model 
testing, each layer uses these parameters to transform the validation data so that 
for each spatial input value , ,x y bi  being normalized, the model would return a 
normalized output , ,x y bj  using the following equation: 

, ,x y b b
b b

b

i m
v

γ β
′−

⋅ +
′ + 

                      (16) 

Note that   is a small configurable constant that applies to all channels during 
batch normalization. 

2.4.5. Parallel Feature Learning 
Once the convolutional block was created, the next step was to place three of 
these blocks in parallel so that the model framework would be able to perform 
feature learning on three sets of spatial input data for each TC. This allowed for 
the creation of a dataset with three stages such that each stage of input data 
could represent every TC at a specified stage of early development. This turned 
the model framework into a three-stage input-based CNN, enabling it to utilize 
more data and get a better generalization of each TC’s strength. 

2.4.6. Fully Connected Layers 
The final step in developing the model framework was to flatten the learned fea-
tures from the CNN layers and feed them into two fully connected layers and 
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one output layer, each with a DropOut regularization rate of 0.5 and a ReLU ac-
tivation function. With the completed model framework, the next step was to 
begin experimentation. 

2.4.7. System Flowchart 
Figure 8 is a flowchart of our system framework, including all data preprocess-
ing algorithms and CNN layers. Each step of the framework on the right is fully 
automated and color coded based on which one of four main processes it falls 
into, which are shown on the left. 

3. Experiments and Results 

Once the three-stage model framework was developed, experimentation was 
done by using four different sets of three days of each TC’s formation to simu-
late various stages of early forecasting for all TCs (ex. days one through three, 
two through four, …). Once each scenario was configured and the appropriate 
data was processed, we randomly split the datasets into training and testing 
samples. 80% of the data was used for training and the remaining 20% was used 
to evaluate model performance. The root mean square error (RMSE) and mean 
absolute error (MAE) were recorded for the training and validation results of 
each scenario. Figures 9-11 compare the predictions of our trained model to 
each TC’s actual maximum wind speed. 
 

 

Figure 8. Framework_flowchart.png. 
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Figure 9. Days 1, 2, 3. 
 

 

Figure 10. Days 2, 3, 4. 
 

 

Figure 11. Days 3, 4, 5. 
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3.1. Estimating Peak Wind Speed Using 3 Consecutive Days 

First, the three-stage model was trained on three consecutive days during each 
TC’s development stage to ensure that the images in this dataset would capture 
patterns of growth and intensifying wind speeds over a constant time interval. 
This would allow the model to pick up on those patterns during feature learning 
so that it would attribute larger patterns of growth to a high maximum wind 
speed.  

The training and validation results are shown in Figures 9-11. The x-axis of 
each graph represents the observed maximum wind speed in knots of each TC, 
while the y-axis of each graph represents the model’s predicted maximum wind 
speed. Training points are represented by blue squares, and validation points are 
represented by red dots. 

3.2. Estimating Peak Wind Speed Using 3 Consecutive Categories 

After training on sets of consecutive days, further experimentation was done us-
ing data from the first three categories of each TC. This dataset was filtered so 
that the model would be trained on the days when each TC had reached its 
maximum wind speed in the first three categories of TC classification: tropical 
depression, tropical storm, and Category 1 hurricane. This increased both the 
time period analyzed and the change in TC intensity and cloud patterns that the 
model could train on. Because this experimental scenario was based on catego-
ries instead of days in TC formation, it fell into a different category. Figure 12 
shows the training and validation results of the model when trained on three 
consecutive categories. 

4. Analysis and Discussion 

When trained on three consecutive days of each TC, the observed RMSE and 
MAE slightly improved as the set of consecutive days tested was shifted later in 
each TC’s formation. This is an expected outcome because the selection of days 3  
 

 

Figure 12. Three consecutive stages. 
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through 5 excludes TCs that last 4 days or less and don’t show significant signs 
of growth before dying out. As a result, the selection of days effectively filters out 
insignificant TCs that would have polluted the datasets of the first two selections 
of days. 

Our model performed the best when trained on images of the first three cate-
gories of each TC, producing a validation RMSE of 14.95 kts and a validation 
MAE of 12.08 kts. This is likely due to the fact that the first three categories of a 
TC show more significant signs of growth than the first three days, allowing the 
model to better distinguish between stronger and weaker TCs. Additionally, the 
selection of the strongest day in each of the first three categories means that the 
resulting dataset would have included satellite imagery of the overall strongest 
day of any TC that only reached wind speeds of a Category 1 hurricane. This 
reduced our model’s effectiveness as an early warning forecasting system, as it 
would no longer be using images of TCs during early stages of development to 
predict their maximum wind speeds at a later point in time. 

Our model framework is able to estimate a peak wind speed, but it does not 
predict a time frame in which that wind speed would be achieved or for how 
long that wind speed would be sustained. However, compared with other me-
thodologies such as MCP, which was found to have an RMSE of around 20 
knots, and DA, which produced an RMSE of approximately 10 knots, this means 
that our framework remains comparable in terms of error. Furthermore, there 
are a few aspects in the data sources and framework used that, when improved 
on, may produce significantly better results. 

5. Conclusions 

In this study, we developed a fully-automated model framework based on deep 
learning to both categorize and estimate the peak wind speed of TCs in the At-
lantic Ocean. Our framework downloaded spatial data of TCs from 2000 through 
2021 with multiple scripts that required no human intervention. Satellite im-
agery was taken from MOD09CMG, spatial precipitation data from IMERG, sea 
temperature from OISST, and TC path information and wind speeds from 
HURDAT2. From over 400 TCs that formed during this time period, our frame-
work selected about 100 TCs for each of the four experimental scenarios we 
tested. Then, our framework’s HCI algorithm calculated the coordinates of a given 
cyclone for very accurate centering of bounding boxes. To fill in swath gaps left 
by the MODIS satellite’s orbit patterns, our DSGF algorithm randomly replaced 
swath gap pixels with neighboring pixel values within a certain area. Our 
framework then applied M˚-Band DWTs to all of the collected spatial channels 
to reduce noise and extract feature-dense arrays.  

This framework estimates the maximum wind speeds of TCs in the Atlantic 
Ocean with an MAE error of 12.08 knots and has multiple advantages over cur-
rent computational models. First, it utilizes deep learning during model training, 
meaning that adapting this framework to climate change requires very little time 
and resources compared to methods such as DA and MCP. Second, it is ex-
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tremely flexible and easy to experiment on. The specific days and number of 
days used during training can easily be modified to quickly produce a large 
range of results.  

In its current state, this framework may serve as an early warning system to 
supplement DA and MCP. Because of the flexibility of deep learning, this model 
may also be trained to provide early warnings in ocean basins across the world, 
given that the available data on TCs in these regions remains the same. 

To improve the performance of this framework, the quality of spatial data can 
be improved. This study aimed to create a fully-automated framework, and as a 
result, there was no manual intervention to filter out any “noise” images of TCs 
that would have impaired this model’s ability to learn features. For example, 
MODIS imagery of a TC that is almost completely covered by a swath gap would 
be irreparable by DSGF, since it needed enough significant neighboring pixels to 
reasonably fill in the swath gap. As a result, this type of image would effectively 
be unusable after preprocessing, and our model would not be able to learn any 
significant features from it. With the elimination of swath gaps, the performance 
of our model would improve substantially. Additionally, a satellite image source 
that had more frequent and more precise global images would improve perfor-
mance and make it possible to utilize time series CNNs (i.e., TempCNN) to es-
timate how the maximum intensity of a TC might change over time. In the fu-
ture, we would also like to include more sources of spatial data in our dataset 
such as the vertical height of each TC’s cloud formations.  

Our model framework’s estimations can also be expanded to estimate more 
TC features, such as pressure, which has an inverse relationship with TC strength. 
Additionally, our framework will also be modified to include peak intensity clas-
sifications using the Saffir-Simpson scale in its forecasts. Estimating the peak 
categories of TCs will allow our framework to provide more accurate predictions 
at the cost of precision, and it will allow our framework to produce more types 
of results. With these improvements made, our framework has the potential to 
replace current computational methods. Furthermore, we could also create an 
algorithm using M-Band wavelet-based functional mixed model with time con-
straints and provide estimations for more metrics such as pressure and precipi-
tation. 
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