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Abstract

Every year, hurricanes pose a serious threat to coastal communities, and fo-
recasting their maximum intensities has been a crucial task for scientists.
Computational methods have been used to forecast the intensities of hurri-
canes across varying time horizons. However, as climate change has increased
the volatility of the intensities of recent hurricanes, newer and adaptable me-
thods must be devised. In this study, a framework is proposed to estimate the
maximum intensity of tropical cyclones (TCs) in the Atlantic Ocean using a
multi-input convolutional neural network (CNN). From the Atlantic hurri-
cane seasons of 2000 through 2021, over 100 TCs that reached hurricane-level
wind speeds are used. Novel algorithms are used to collect and preprocess
both satellite image data and non-image data for these TCs. Namely, Discrete
Wavelet Transforms (DWTs) are used to decompose individual bands of sa-
tellite image data, eliminating noise and extracting hidden frequency details
before training. Validation tests indicate that this framework can estimate the
maximum wind speed of TCs with a root mean square error of 15 knots. This
framework provides preliminary predictions that can supplement current
computational methods that would otherwise not be able to account for cli-
mate change. Future work can be done by forecasting with time constraints,
and to provide estimations for more metrics such as pressure and precipita-
tion.'

Keywords

Tropical Cyclone (TC), Hurricane Intensity, Convolutional Neural Network
(CNN), Discrete Wavelet Transform (DWT)

'A GitHub repository containing the code developed in this study can be found at

https://github.com/jliu2006/hurricane_intensity.
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1. Introduction

In the U.S., hurricanes in the last 30 years have caused over $1.1 trillion in dam-
ages and killed almost 7000 people, making them both the economically costliest
and the deadliest type of disaster in the U.S. [1]. Furthermore, hurricanes have
intensified significantly in recent years to cause enormous amounts of damage
[2]. 2020 saw a record-breaking 30 named tropical storms in the Atlantic Ocean,
exhausting the designated list of 21 storm names for only the second time on
record [3]. That list was used up again in 2021, as another 21 named storms to-
taled $95 billion in damages [1] [4]. Hurricane Ida alone accounted for more
than half of that cost, being responsible for at least $75 billion in damages [5].

The Atlantic hurricane season makes it evident that climate change has caused
hurricanes to worsen in severity. However, coastal cities in the U.S. are only one
part of the world’s population and economic output. Hurricanes pose the same
threat to coastal communities around the world [6], and therefore a method to
reliably forecast the maximum intensities of impending hurricanes would be es-
sential to prepare accordingly. Most importantly, these forecasts should be made
while these hurricanes are still in early formation to provide as much time to
prepare as possible.

Currently, there are a number of computational frameworks that estimate the
peak intensities of TCs. One such method is Dvorak Analysis (DA), which uti-
lizes four distinct geophysical properties in its calculation of TC intensity: vor-
ticity, vertical wind shear, convection, and core temperature [7]. Each of these
properties helps to relate pattern recognition in cloud formations to a maximum
wind speed. When monitoring the physical properties of cloud formations, DA
also tracks four primary types of patterns that are assigned to varying ranges of
TC intensity: curved band patterns, shear patterns, central dense overcast, and
eye tracking. For decades, DA has remained one of the most accurate and inter-
nally consistent methods of TC intensity estimation in the world. The most re-
cent study of its accuracy, performed by Brown and Franklin in 2004, tested
DA’s performance on TCs in the Atlantic Ocean from 1997 to 2003. They found
that the Dvorak-estimated maximum wind had an error of 5 knots (kts) or less
in 50% of TCs. 75% of errors were within 12 kts, and 90% of errors were within
18 kts [8]. For this study, DA serves as a useful computational benchmark, al-
though attention must also be drawn to more recent studies of estimating TC
intensity.

An improvement of DA known as early-stage Dvorak analysis (EDA) was
created by the Japan Meteorological Agency to estimate TC intensity based on
satellite infrared imagery. EDA has since been used by the National Hurricane
Center (NHC) and Central Pacific Hurricane Center (CPHC) to predict TC
generation 48 hours in advance with accuracies of 15% - 57%, respectively [9]. A
study combining EDA with multi-model ensemble forecasts found that the ac-
curacies of forecasting TC generation could be improved to 35% - 79% [10].

With EDA as a benchmark, Matsuoka et al. [11] developed a deep-learning
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approach to identify TCs and their precursor cloud formations based on out-
going longwave radiation (OLR) data using convolutional neural networks. In
the western North Pacific, their framework identified TCs from July to Novem-
ber with a probability of detection of 79.9% - 89.1% and a false alarm ratio
(FAR) of 32.8% - 53.4%. The framework may be applied to other ocean basins
and can maintain a POD above 70% and a FAR below 50%. The accepted FAR
for TC identification was relatively high, suggesting that because of climate
change, providing reliable forecasts of the intensity of TCs has become markedly
more challenging as well. Most notably, the high FAR indicates that their
framework had a high tendency to falsely categorize cloud formations as TCs.
This study proposes a framework designed to estimate the peak wind speed of
TCs with a comparatively lower level of bias.

DeMaria et al. [12] proposed a Monte Carlo probability (MCP) method for es-
timating wind speed probabilities of TCs. MCP first generates path and intensity
realizations for each TC, taking into account randomly sampled historical errors
from the last 5 years. For each set of realizations, MCP then calculates wind
structure realizations to reveal key information about the radii of wind thre-
sholds in each TC. 1000 realizations are made which extend out to 120 hours in
advance, and MCP uses them to calculate radii probabilities for 34-kt, 50-kt, and
64-kt winds. When applied to TCs in the Atlantic Ocean from 2003 to 2007,
MCP produced 48-hour forecasts with a root mean square error of about 20
knots. For this study, MCP serves as a second computational benchmark, al-
though MCP is a probabilistic approach that estimates wind speeds within
ranges, and it can be expected that attempting to forecast exact wind speeds will
incur larger errors.

Herrera et al [13] used several types of non-linear regression models to fore-
cast the movement and intensities of TCs. While this study did not utilize deep
learning methods such as convolutional neural networks (CNNs), it applied
wavelet analysis to find and forecast oscillating patterns of Atlantic hurricanes
from categories 2 to 5. This demonstrates that wavelet analysis methods are via-
ble methods of spatial data preprocessing when applied to TCs. In this study,
CNN is enhanced through the use of discrete M-band wavelet transforms
(DWTs) a method of wavelet analysis that this study will use to decompose spa-
tial data into extracted detail channels.

Su et al. [14] used satellite imagery from NASA’s Tropical Rainfall Measuring
Mission (TRMM) to classify rapidly intensifying TCs by category. They found
that the surface precipitation rate (mm/hr) within 100 km of a storm center had
a strong correlation with the category of a TC. These findings are a crucial step
in TC intensity forecasting, since spatial precipitation data is a feature that can
be readily extracted and utilized in future intensity forecasting models. Similar
to Herrera et al, however, this study did not experiment with CNNs. In this
study, using spatial data on precipitation rate within a TC allows the CNN

framework to forecast TC intensities with greater accuracy.
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Deep learning models have the ability to forecast the intensity of TCs. This
study aimed to fill in the research gap left by Herrera et a/ and Hu et al. by using
a CNN-based model framework to forecast the peak intensity of a TC during
early stages of formation. The algorithm created by Hu et al was adapted by in-
cluding data collected on the rate of precipitation in each TC, whose high corre-
lation with TC intensity could be significant when applied to early-stage fore-
casting. This study also incorporated the methodology of Herrera ef al. by using
DWTs to preprocess our satellite imagery, which can reveal hidden details and

features that would be beneficial for our CNN model framework.

2. Data and Methods

The objective of this paper was to introduce a novel deep learning-based ap-
proach for estimating maximum TC intensity. Computational approaches such
as DA and MCP have been historically consistent, but as climate change makes
TCs more volatile and unpredictable, these methods will be unable to adapt.
Computational methods are rigid by nature, and modifying or adding new pa-
rameters to adapt to changes in TCs can be extremely costly and time-consuming.
Deep learning serves as an extremely flexible and cost-effective approach that
can quickly provide preliminary intensity estimates. Existing methodologies for
estimating TC intensity rely on maximum wind speed as the primary indicator
of its strength, which is commonly measured in nautical miles per hour, or knots

(kts). Therefore, our approach also includes estimations in kts.

2.1. Study Area

This study focused on the Atlantic hurricane season, which is tracked in detail
by national environmental agencies in the United States. Additionally, much of
the information recorded by satellites and weather observation stations is made
publicly available. The Atlantic Ocean basin is the second largest basin, covering
an area of approximately 106,400,000 square kilometers, or 41,100,000 square
miles [15]. From 2000 through 2021, the Atlantic Ocean basin saw the formation
of nearly 400 TCs, including tropical depressions and subtropical storms [16]
[17].

2.2. Data Collection

The first step was to gather spatial data representing three crucial features of TC
development: precipitation data, ocean temperature data, and satellite image da-
ta. Global 6-hourly precipitation data were collected from two NASA missions,
the Tropical Rainfall Measuring Mission (TRMM) and the Global Precipitation
Measurement Mission (GPM), which are collectively referred to as Integrated
Multi-satellitE Retrievals for GPM (IMERG). Global daily ocean surface temper-
ature data was collected from the National Oceanic and Atmospheric Adminis-
tration’s (NOAA) Optimum Interpolation Sea Surface Temperature record
(OISST). Daily global satellite imagery was taken from NASA’s Moderate Reso-
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lution Imaging Spectroradiometer (MODIS). Our data collection process also
required the use of NOAA’s Northeast and North Central Pacific Hurricane Da-
tabase (HURDAT?2). Table 1 provides a summary of the data that was collected
in this step.

For each TC that formed, HURDAT? provided a profile that tracked the loca-
tion of its center as well as wind speeds at varying distances from its center.
These profiles contained one such record every 6 hours: at 12:00 AM (0000),
6:00 AM (0600), 12:00 PM (1200), and 6:00 PM (1800). A script was developed
to automatically download these profiles as JSON files, which were then used to
download spatial data. Because the objective of this study was to create an early
forecasting system, only data of each TC’s path up until landfall was collected.
The exception to this process was if a TC made landfall over any of the Carib-
bean islands, since TCs that pass over this region sometimes do not die out and
instead continue to grow, often making contact over land multiple times. Figure
1 shows the path of Hurricane Sandy in 2012, which made landfall three times
and serves as an example of why this exception is necessary. Two bounding box-
es were created to cover as much of the Caribbean islands as possible: one be-
tween 16°N 85°W and 25°N 65°W, and one between 23°N 79°W and 26°N

_Aandfall,’ | T
ZEY YIS ,29 O«'Cf, “Extratropical”

l, — 72100 UTC 29 Oct

Final advisory =~
1200 UTC 31 Oct .

S—— Hurricane Sandy
1800 UTC 29 Oct

Hurricane Sandy
1200 UTC 27 Oct

Tropical Storm Sandy
0000 UTC 27 Oct

N © .~ Landfall
- As UTC 25 Oct
+ “Low” first tracked

| 1800 UTC 21 Oct | LI

1900 UTC 24 Oct

’ Hurricane Sandy
,Ir’_-’. 1200 UTC 24 Oct
- I -;’é‘\ ~ ‘
Tropical Depression Tropical Storm Sandy )
1200 UTC 22 Oct /1800UTC 220ct -~ +

Sandy Track Map (Best Track)
1800 UTC 21 October — 1200 UTC 31 October 2012

Figure 1. Sandy_track.

Table 1. The table should consist of the following data.

Data Source

MODIS MOD09CMG
IMERG TRMM/GPM
NOAA OISST
NOAA HURDAT?2

Features Used Temporal Resolution Spatial Resolution

Satellite Imagery 24 hours 0.05°
Hourly precipitation 6 hours 0.1°
Skin surface temperature 24 hours 0.25°
TC path, wind speed 6 hours 0.1°
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Figure 2. Ida_hurdat.
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74°W. If a TC made contact with land anywhere within this area, the script
would ignore the landing and continue to download records until the TC made
landfall over a point not in either of the bounding boxes. Figure 2 uses the
HURDAT? profile of Hurricane Ida in 2021 as an example of how this down-
loading process worked.

A second script was then created to download data from MODIS, IMERG,
and NOAA using the correct days and locations from the HURDAT2 TC pro-
files. For each day in a TC’s HURDAT? profile, the earliest recorded coordinates
were directly used to specify identical bounding boxes for IMERG and OISST,
which created subimages that were downloaded as 200 x 200 spatial arrays. Note
that, in order to obtain daily precipitation values for each TC, it was necessary to
use each 6-hourly record from HURDAT?2 to average the 6-hourly records from
IMERG.

For the daily satellite imagery from MODIS, getting precise and accurate im-
ages of each TC was crucial, since the presence of a clearly-defined formation of
clouds into spirals was likely a strong indicator of TC strength. Therefore, we
modified our approach for processing MODIS data into three steps to ensure
that each TC’s eye was centered in its image and that the model could learn as

many features from this imagery as possible.

2.3. Data Preprocessing

2.3.1. Hurricane Center Identification in MODIS Satellite Imagery

The first step in MODIS preprocessing was to center the eye of every TC to
maximize the efficiency of the deep learning model in its feature extraction. This
step also ensured that each image was as consistent as possible in terms of ex-
tracted area surrounding each TC. MODO09CMG is one satellite that provides
continuous imagery of the entire globe as it orbits, so it often covers the Atlantic
Ocean at times that differed from the 6-hour intervals provided by HURDAT?2.
This difference in time would allow a TC to move so that the coordinates of its
eye provided by HURDAT2 would no longer represent the location of its eye in
the MODIS satellite imagery.

30, 1006, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 60
35, 1006, 60, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 50
40, 1004, 60, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 50
45, 1002, 70, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 40
55, 996, 80, 60, o, 60, 30, 0, 0, 0, 0, 0, 0, 0, 30
70, 987, 80, 60, 40, 60, 40, 30, o, 20, 20, 0, 0, 0, 20
70, 988, 80, 60, 40, 60, 40, 30, o, 20, 20, 0, 0, 0, 20
70, 989, 100, 60, 40, 70, 50, 30, o, 30, 20, 0, 0, 0, 20
70, 987, 100, 60, 40, 70, 50, 30, o, 30, 20, 0, 0, 0, 20
70, 986, 110, 80, 60, 100, 50, 40, 20, 30, 25, 20, 0, 0, 20

80, 976, 110, 100, 70, 100, 50, 40, 20, 40, 25, 20, 10, 20, 20
90, 967, 120, 100, 80, 110, 70, 60, 40, 60, 35, 30, 20, 30, 20
115, 950, 120, 100, 80, 110, 70, 60, 40, 60, 35, 30, 20, 30, 15
130, 929, 130, 110, 80, 110, 70, 60, 40, 60, 45, 35, 20, 30, 10
130, 931, 130, 110, 80, 110, 70, 60, 40, 60, 45, 35, 20, 30, 10
125, 932, 130, 120, 80, 8O0, 70, 60, 40, 40, 45, 35, 20, 25, 10
105, 944, 80, 120, 80, 70, 50, 60, 40, 40, 30, 30, 20, 20, 10

65, 978, 80, 130, 80, 40, 50, 50, 0, o, 30, 30, 0, 0, 30
40, 992, 50, 160, 60, 30, 0, 0, 0, 0, 0, 0, 0, 0, 40
35, 996, 0, 160, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0o, 80
30, 996, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 250
25, 996, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 210
25, 996, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 250
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To accurately identify the location of each TC’s eye, it was necessary to develop
an algorithm to linearly interpolate the coordinates provided by HURDAT2 based
on its temporal difference from those same coordinates provided by MOD0ICMG,
which was called Hurricane Center Identification (HCI). MODO09CMG provides
a time array so that for every pixel of imagery taken in a given day, there is a
corresponding time pixel. Given the profile of a TC from HURDAT?2 and a cer-
tain day of MODIS imagery, HCI first finds the earliest record of that day (ex.
12:00 AM) in the TC’s profile. It then uses the coordinates of its eye to get the
timestamp that corresponds to that location in the given MODIS imagery. Next,
HCI searches the TC’s HURDAT?2 profile for two 6-hour intervals: one whose
timestamp is closest to and before the time obtained from MODIS, and one
whose timestamp is closest to and after that time. HCI then stores the times and
coordinates of both HURDAT?2 records. With the location and time of a TC
from HURDAT?2 and the time from MODIS, HCI is able to utilize linear inter-
polation to calculate the new coordinates of the TC’s eye in MODIS (Figure 3).

A few factors negatively impacted the accuracy of HCI, the first being the va-
rying velocities at which a TC could travel. Because HCI linearly interpolated the
new coordinates of each TC only by its temporal differences from HURDAT2
records, it did not account for any fluctuations in the TC’s velocity, such as an
acceleration or change in direction. Second, because of the path that MOD09CMG
took as it orbited, it produced several evenly spaced and identical areas with no
satellite data, known as swath gaps. If HCI found that a set of coordinates from
HURDAT?2 corresponded to a time of 0000 in the MODIS time matrix, this
meant that it had encountered one such swath gap, and it instead had to take the
average time at which the area surrounding the swath gap was taken. Despite
these three factors having an adverse effect on the potential accuracy of HCI,
manual assessment of sample images revealed that, in practice, these factors did

not translate to any significant error.

150 200 250 300 350 0 50 100 150 200 250 300 350
(a) (b)

Figure 3. (a) SAM 9-25-2021; (b) SAM 10-01-2021.
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2.3.2. Dynamic Swath Gap Filling in MODIS Satellite Imagery

Due to the Earth’s rotation and the path that MOD09CMG takes as it orbits the
Earth, there are regular swath gaps in each day’s MODIS satellite image. At the
equator, these swath gaps are 388 kilometers in width, and their widths gradually
reduce to zero at £30° latitude. One such swath gap covers part of the Caribbean
Sea and therefore appears in some MODIS satellite subimages. This swath gap
poses as a substantial problem for a deep learning model, which would be trained
to detect the presence of a swath gap as a significant feature instead of the ap-
pearance of each TC. Therefore, these swath gaps had to be filled in with pseu-
do-random values so that there would be both no substantial pattern in the
swath gaps and no significant difference between the colors of the filled gap
and the colors of the rest of the satellite image. This way, our deep learning
model would be less likely to extract features from and train on the swath gap it-
self.

To address this issue, modifications were made to a previously developed al-
gorithm called Neighbor RGB to fill in swath gaps using randomly selected pixel
values within a certain radius from the gap [18]. The resulting algorithm, called
Dynamic Swath Gap Filling (DSGF), was able to fill in swath gaps given a
processed multi-channel satellite image by randomly picking neighboring pixel
values in a dynamically-changing area surrounding the swath gap. First, DSGF
started from the bottom left corner of each channel, checking the values of each
row from left to right. If DSGF found that a certain value in a row equals
—28,672, the defined value for any area representing a swath gap, it saved the in-
dex of that value in the row and began counting upwards by 1 to track the length
of the swath in that row. DSGF then continued checking every single value until
it reached either the end of the swath gap or the end of the row, at which point it
calculated the area around the swath to randomly select values from during fill-
ing. DSGF did this by dividing the length of the swath gap by 2, obtaining the
length of the area to the left of the swath gap. The remaining length represented
the length of the area to the right of the swath gap. A check was then made so
that if the selected length to either the left or right of the swath gap exceeded the
length of its corresponding part of the row (ie., the selected length would go
past the borders of the row), DSGF took the maximum length possible from that
side and add the remaining length onto the area covered by the other side. With
the dynamic length of the left and right areas of filled values defined, DSGF then
stored the values in those lengths from the 9 rows above the current row into an
array and randomly selected values out of that array to fill the swath gap in that

row (Figure 4).

2.3.3. Discrete M-Band Wavelet Transform

The third algorithm in our data preprocessing utilized Discrete A-Band Wavelet
Transforms (DWTs) to decompose each spatial channel into A# different fre-
quency channels, or components. DWTs are a crucial step in image preprocess-
ing because they can emphasize hidden details by separating low-frequency

components from high-frequency counter parts of the image. These details allow
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Figure 4. BARRY dynamic swath gap filling 7-12-2019.

our deep learning model to learn relationships with fewer TCs. An orthogonal
M-band DWT is determined by a filter bank consisting of M filters (M >2), in-
cluding a low-pass filter a and M —1 high-pass filters ﬂ(j) for j=1---\M-1.
An orthogonal M-band wavelet filter bank is said to have N vanishing moments

if its filters satisfy the following conditions [19]:

The=Im M

YripY =0 for k=0-,N-1, j=L-M-1 2)
a=p"=1 for j=1--M-1 3)
apfV=0 for j=1--M -1 (4)

BBV =0 for i,j=1--M-1, and i#j (5)

Figure 5 illustrates the four frequently employed wavelet functions that were
considered in this study: Biorthogonal-1.3, Daubechies-3, Symlets and Discrete
Meyer, as well as their associated decomposed image components when applied
on a satellite image of Hurricane Ida.

For this study, the bi-orthogonal DWT was chosen because of its ability to
detect and filter out white Gaussian noise, or high contrast of neighboring pixel
intensity values [20]. This helped to filter out cloud formations that were small
and unrelated to the TC itself. Bi-orthogonal wavelets create associated wavelet
transforms that are invertible but not necessarily orthogonal. Furthermore,
bi-orthogonal wavelet transforms are symmetrical, while orthogonal ones are
not. This allows bi-orthogonal wavelets to have more freedom than orthogonal
wavelets [21]. For each bi-orthogonal wavelet, its filter banks must each satisfy

the bi-orthogonality condition:

Znez 8,a,,om = 25m,0 (6)
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Figure 5. (a) Biorthogonal 1.3 wavelet; (b) Daubechies 3 wavelet; (c) Symlets wavelet (1); (d) Discrete meyer wavelet.

Each wavelet filter’s elements can then be determined by:

b, =(-1)"a,,, (n=0,--,N-1) (7)

n

b,=(-1)"ay, (n=0,-M-1) (8)

n

We apply the biorthogonal DWT to our image dataset. Because it is a 2-band
transform, it produced 4 components for every image channel: an approxima-
tion (a) component and horizontal (h), vertical (v), and diagonal (d) detail

components (Figure 6 and Figure 7).

2.4. Multi-Input Parallel Convolutional Neural Network

2.4.1. Artificial Neural Network

An Artificial Neural Network (ANN) consists of three types of layers: input lay-
ers, hidden layers, and output layers. Each layer is then composed of neurons.
Every neuron in one of these layers takes input values x from the neurons in the
preceding layer. The neuron then performs a weighted sum with trainable
weights wand adds a trainable bias value b, Finally, the neuron applies a speci-

fied activation function fto produce an output value z,, which it will feed as an
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Figure 6. Sandy-10-28-2012_original.
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Figure 7. Sandy-10-28-2012_wavelet.

input value into every neuron in the following layer. Because hidden and output
layers can consist of neurons that take input values from every neuron in the

preceding layer, they can also be defined as fully connected layers, or Dense lay-

DOI: 10.4236/acs.2023.134033

597 Atmospheric and Climate Sciences


https://doi.org/10.4236/acs.2023.134033

J. H. Liu, X. D. Wang

ers. Given an ANN with » neurons in each layer, any neuron in the fully con-
nected layers of the model will produce output values that can be determined by

the following two equations:

y, =h, +Zr;:lexj )]
z=1(y)) (10)

2.4.2. Convolutional Neural Network

A Convolutional Neural Network (CNN) is a type of ANN that is generally used
when features need to be learned from input data [22]. In addition to the fully
connected layers of an ANN, a CNN makes use of a convolutional layer and a
pooling layer, which make up the feature learning portion of the neural network.
The input variable x into this CNN consists of ¢ 2D spatial channels. One such
channel x,, consisting of P x P pixels, is filtered through a convolutional layer
which uses N Q x Q convolution windows, or filters. Starting from the top-left
corner, each filter takes an identically shaped array (ie, Q x Q) of input values
from the channel and multiplies it with the weighted values of the filter. This
process is repeated for the entire spatial channel as the window is shifted. The
elements in each input channel may be expressed as X;; (0 <i<P,0<j< P) ,
and the weights in each filter can be expressed as

Wit (O <s<Q-1,0<t<Q-L0<n<N ) . The associated bias unit for each filter
can be expressed as b, . Therefore, elements in a filtered channel (the output of
a given convolutional layer) can be written as y;;, and calculated using the

following equation:

Q-1 Q-1 ~
yi,j,n = Lus—0 Lut=0 W in Xi+s,j+| + bn (11)

The first step in developing the model framework was to create a convolu-
tional block to learn features from my image dataset, which was done with two
convolutional layers, each followed by an average pooling and batch normaliza-
tion layer.

12 filters were used in each convolutional layer and a large filter shape of (11,
11) to allow our model to prioritize the detection of large TC features such as a
clearly-defined center or tail. Because there are twelve channels and therefore
twelve 11 x 11 convolutional windows stacked on top of each other, the convo-
lutional windows together form a 3-dimensional array.

Note that the model utilized a zero-padding technique along with a convolu-
tional stride size of (1, 1) to ensure that the output size of the filtered spatial data
was identical to that of the input data. The Rectified Linear Unit (ReLU) func-
tion was used as the activation function of each convolutional layer. ReLU filters

out negative input values as shown in the equation below:

f(yi,j,n)zmax(yi,j,nlo) (12)

2.4.3. Average Pooling

After each convolutional layer, the spatial data was downsampled using average
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pooling layers, which take the average (mean) value of a given spatial input over
a specified window size (pool size) for each channel of the spatial input. The
window then shifts by a specified number of cells (strides). Given a spatial input
with shape (x, y), a certain pool size (j, ), and a certain number of strides s, the

shape of the downsampled output data can be found with the expression below:

e

2.4.4. Batch Normalization

Following each average pooling layer, the downsampled spatial data was norma-
lized by passing them through batch normalization layers, which transform the
input data for each channel b to have a mean output value m, close to 0 and an
output standard deviation close to 1. During the model’s training process, each
batch normalization layer calculates a moving mean m;, and moving variance
Vib
channel 5 (m

based on the mean and variance of the current epoch p and the current
pp+Vpp )- Given a momentum constant ¢ within the interval (0,1),
the batch normalization layer updates the moving mean and variance as follows:

!

M, =M -C+m (1-c) (14)

Viap =Vop CH+Vpp -(1-c) (15)

Note that $m$ and $v$ are non-trainable and initialized to the mean and va-
riance of the first epoch, respectively.

Each batch normalization layer also learns a scaling factor y, (initialized to
1) and a bias parameter f, (initialized to 0) for each channel. During model
testing, each layer uses these parameters to transform the validation data so that

for each spatial input value i being normalized, the model would return a

x,y,b
normalized output j,  using the following equation:

i, p—M;
A er B, (16)
Vp +e
Note that € is a small configurable constant that applies to all channels during

batch normalization.

2.4.5. Parallel Feature Learning

Once the convolutional block was created, the next step was to place three of
these blocks in parallel so that the model framework would be able to perform
feature learning on three sets of spatial input data for each TC. This allowed for
the creation of a dataset with three stages such that each stage of input data
could represent every TC at a specified stage of early development. This turned
the model framework into a three-stage input-based CNN, enabling it to utilize

more data and get a better generalization of each TC’s strength.

2.4.6. Fully Connected Layers
The final step in developing the model framework was to flatten the learned fea-

tures from the CNN layers and feed them into two fully connected layers and
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one output layer, each with a DropOut regularization rate of 0.5 and a ReLU ac-
tivation function. With the completed model framework, the next step was to

begin experimentation.

2.4.7. System Flowchart

Figure 8 is a flowchart of our system framework, including all data preprocess-
ing algorithms and CNN layers. Each step of the framework on the right is fully
automated and color coded based on which one of four main processes it falls

into, which are shown on the left.

3. Experiments and Results

Once the three-stage model framework was developed, experimentation was
done by using four different sets of three days of each TC’s formation to simu-
late various stages of early forecasting for all TCs (ex. days one through three,
two through four, ...). Once each scenario was configured and the appropriate
data was processed, we randomly split the datasets into training and testing
samples. 80% of the data was used for training and the remaining 20% was used
to evaluate model performance. The root mean square error (RMSE) and mean
absolute error (MAE) were recorded for the training and validation results of
each scenario. Figures 9-11 compare the predictions of our trained model to

each TC’s actual maximum wind speed.

[ Raw Data Source

] Cem] (] (o]

HURDAT?2
Coordinates HURDAT?2

Ll Bounding Box Wind Speeds
S — Subimages
Data Preprocessing DSFG
- . Wind Arrays
Biorthogonal
DWT
Input Tensors
( ™ I
CNN Stage 1 Stage 2 Stage .3
Feature Learning Convolutional Convolutional ConI\:olutlonal
ayers
L ) Layers La}llers Y/
- o
CNN )
Fully Connected Fully Connected
Neural Network Layers
|
Output
Figure 8. Framework_flowchart.png.
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3.1. Estimating Peak Wind Speed Using 3 Consecutive Days

First, the three-stage model was trained on three consecutive days during each
TC’s development stage to ensure that the images in this dataset would capture
patterns of growth and intensifying wind speeds over a constant time interval.
This would allow the model to pick up on those patterns during feature learning
so that it would attribute larger patterns of growth to a high maximum wind
speed.

The training and validation results are shown in Figures 9-11. The x-axis of
each graph represents the observed maximum wind speed in knots of each TC,
while the y-axis of each graph represents the model’s predicted maximum wind
speed. Training points are represented by blue squares, and validation points are
represented by red dots.

3.2. Estimating Peak Wind Speed Using 3 Consecutive Categories

After training on sets of consecutive days, further experimentation was done us-
ing data from the first three categories of each TC. This dataset was filtered so
that the model would be trained on the days when each TC had reached its
maximum wind speed in the first three categories of TC classification: tropical
depression, tropical storm, and Category 1 hurricane. This increased both the
time period analyzed and the change in TC intensity and cloud patterns that the
model could train on. Because this experimental scenario was based on catego-
ries instead of days in TC formation, it fell into a different category. Figure 12
shows the training and validation results of the model when trained on three

consecutive categories.

4. Analysis and Discussion

When trained on three consecutive days of each TC, the observed RMSE and
MAE slightly improved as the set of consecutive days tested was shifted later in
each TC’s formation. This is an expected outcome because the selection of days 3

first 3 stages, maxwind training and validation results

180 4 I o
160 4
140 -+
120 -
100 A
80 1
m trained
60 1 ® test
60 80 100 120 140 160
Figure 12. Three consecutive stages.
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through 5 excludes TCs that last 4 days or less and don’t show significant signs
of growth before dying out. As a result, the selection of days effectively filters out
insignificant TCs that would have polluted the datasets of the first two selections
of days.

Our model performed the best when trained on images of the first three cate-
gories of each TC, producing a validation RMSE of 14.95 kts and a validation
MAE of 12.08 kts. This is likely due to the fact that the first three categories of a
TC show more significant signs of growth than the first three days, allowing the
model to better distinguish between stronger and weaker TCs. Additionally, the
selection of the strongest day in each of the first three categories means that the
resulting dataset would have included satellite imagery of the overall strongest
day of any TC that only reached wind speeds of a Category 1 hurricane. This
reduced our model’s effectiveness as an early warning forecasting system, as it
would no longer be using images of TCs during early stages of development to
predict their maximum wind speeds at a later point in time.

Our model framework is able to estimate a peak wind speed, but it does not
predict a time frame in which that wind speed would be achieved or for how
long that wind speed would be sustained. However, compared with other me-
thodologies such as MCP, which was found to have an RMSE of around 20
knots, and DA, which produced an RMSE of approximately 10 knots, this means
that our framework remains comparable in terms of error. Furthermore, there
are a few aspects in the data sources and framework used that, when improved

on, may produce significantly better results.

5. Conclusions

In this study, we developed a fully-automated model framework based on deep
learning to both categorize and estimate the peak wind speed of TCs in the At-
lantic Ocean. Our framework downloaded spatial data of TCs from 2000 through
2021 with multiple scripts that required no human intervention. Satellite im-
agery was taken from MODO09CMG, spatial precipitation data from IMERG, sea
temperature from OISST, and TC path information and wind speeds from
HURDAT?2. From over 400 TCs that formed during this time period, our frame-
work selected about 100 TCs for each of the four experimental scenarios we
tested. Then, our framework’s HCI algorithm calculated the coordinates of a given
cyclone for very accurate centering of bounding boxes. To fill in swath gaps left
by the MODIS satellite’s orbit patterns, our DSGF algorithm randomly replaced
swath gap pixels with neighboring pixel values within a certain area. Our
framework then applied A" -Band DWTs to all of the collected spatial channels
to reduce noise and extract feature-dense arrays.

This framework estimates the maximum wind speeds of TCs in the Atlantic
Ocean with an MAE error of 12.08 knots and has multiple advantages over cur-
rent computational models. First, it utilizes deep learning during model training,
meaning that adapting this framework to climate change requires very little time
and resources compared to methods such as DA and MCP. Second, it is ex-
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tremely flexible and easy to experiment on. The specific days and number of
days used during training can easily be modified to quickly produce a large
range of results.

In its current state, this framework may serve as an early warning system to
supplement DA and MCP. Because of the flexibility of deep learning, this model
may also be trained to provide early warnings in ocean basins across the world,
given that the available data on TCs in these regions remains the same.

To improve the performance of this framework, the quality of spatial data can
be improved. This study aimed to create a fully-automated framework, and as a
result, there was no manual intervention to filter out any “noise” images of TCs
that would have impaired this model’s ability to learn features. For example,
MODIS imagery of a TC that is almost completely covered by a swath gap would
be irreparable by DSGEF, since it needed enough significant neighboring pixels to
reasonably fill in the swath gap. As a result, this type of image would effectively
be unusable after preprocessing, and our model would not be able to learn any
significant features from it. With the elimination of swath gaps, the performance
of our model would improve substantially. Additionally, a satellite image source
that had more frequent and more precise global images would improve perfor-
mance and make it possible to utilize time series CNNs (Z.e., TempCNN) to es-
timate how the maximum intensity of a TC might change over time. In the fu-
ture, we would also like to include more sources of spatial data in our dataset
such as the vertical height of each TC’s cloud formations.

Our model framework’s estimations can also be expanded to estimate more
TC features, such as pressure, which has an inverse relationship with TC strength.
Additionally, our framework will also be modified to include peak intensity clas-
sifications using the Saffir-Simpson scale in its forecasts. Estimating the peak
categories of TCs will allow our framework to provide more accurate predictions
at the cost of precision, and it will allow our framework to produce more types
of results. With these improvements made, our framework has the potential to
replace current computational methods. Furthermore, we could also create an
algorithm using M-Band wavelet-based functional mixed model with time con-
straints and provide estimations for more metrics such as pressure and precipi-

tation.

Acknowledgements

The authors thank the National Aeronautics and Space Administration (NASA)
and the National Oceanic and Atmospheric Administration (NOAA) for making
the satellite-based data freely available. The first author wishes to thank Talia
Dardis for her professional support and advice during the research process, and
acknowledges the resources and facilities provided by Western Connecticut State
University (WCSU).

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

DOI: 10.4236/acs.2023.134033

604 Atmospheric and Climate Sciences


https://doi.org/10.4236/acs.2023.134033

J. H. Liu, X. D. Wang

References

(1]

(2]

(3]

(5]

(6]

(7]

(9]

(10]

(11]

(12]

(13]

(14]

NOAA (2022) Hurricane Costs.
https://coast.noaa.gov/states/fast-facts/hurricane-costs.html

Klotzbach, P.J., Wood, K.M., Schreck III, C.]J., Bowen, S.G., Patricola, C.M. and Bell,
M.M. (2022) Trends in Global Tropical Cyclone Activity: 1990-2021. AGU Journal
of Geophysical Research, 49, €2021GL095774.
https://doi.org/10.1029/2021GL095774

NOAA (2021) Record-Breaking Atlantic Hurricane Season Draws to an End.
https://www.noaa.gov/news/record-breaking-atlantic-hurricane-season-draws-to-e
nd

Minott, O. (2021) Looking Back at the 2021 Atlantic Hurricane Season. Bipartisan
Policy Center.

https://bipartisanpolicy.org/blog/looking-back-at-the-2021-atlantic-hurricane-season

NOAA (2022) Hurricane Ida.
https://www.nhc.noaa.gov/data/tcr/AL092021_Ida.pdf

Toepke, S. (2021) Exploring Bot Pervasiveness in Global Cities Using Publicly
Available Volunteered Geographic Information. The 5th International Conference
on Geographical Information Systems Theory, Applications and Management,
23-25 April 2021, 143-153.

Velden, C., Harper, B., Wells, F., Beven II, J.L., Zehr, R., Olander, T., Mayfield, M.,
Guard, C., Lander, M., Edson, R., Avila, L., Burton, A., Turk, M., Kikuchi, A.,
Christian, A., Caroff, P. and McCrone, P. (2006) The Dvorak Tropical Cyclone In-
tensity Estimation Technique—A Satellite-Based Method That Has Endured for
over 30 Years. Bulletin of the American Meteorological Society, 87, 1195-1210.
https://doi.org/10.1175/BAMS-87-9-1195

Brown, D. and Franklin, J. (2004) Dvorak Tropical Cyclone Wind Speed Biases De-
termined from Reconnaissance-Based “Best Track” Data (1997-2003). 26th Confe-
rence on Hurricanes and Tropical Meteorology, Miami, 3-7 May 2004, 86-87.

Cossuth, J.H., Knabb, R.D., Brown, D.P. and Hart, R.E. (2013) Tropical Cyclone
Formation Guidance Using Pregenesis Dvorak Climatology. Part I: Operational Fo-
recasting and Predictive Potential. AMS Weather and Forecasting, 28, 100-118.
https://doi.org/10.1175/WAF-D-12-00073.1

Yamaguchi, M. and Koide, N. (2017) Tropical Cyclone Genesis Guidance Using the
Early Stage Dvorak Analysis and Global Ensembles. AMS Weather and Forecasting,
32,2133-2141. https://doi.org/10.1175/WAF-D-17-0056.1

Matsuoka, D., Nakano, M., Sugiyama, D. and Uchida, S. (2018) Deep Learning Ap-
proach for Detecting Tropical Cyclones and Their Precursors in the Simulation by a
Cloud-Resolving Global Nonhydrostatic Atmospheric Model. Progress in Earth and
Planetary Science, 5, Article No. 80.

DeMaria, M., Knaff, J.A., Knabb, R., Lauer, C., Sampson, C.R. and DeMaria, R.T.
(2009) A New Method for Estimating Tropical Cyclone Wind Speed Probabilities.
AMS Weather and Forecasting, 24, 1573-1591.

https://doi.org/10.1175/2009W AF2222286.1

Herrera, V.M.V, Martell-Dubois, R., Soon, W., Herrera, G.V., Cerdeira-Estrada, S.,
Zuniga, E. and Rosique-de la Cruz, L. (2022) Predicting Atlantic Hurricanes Using
Machine Learning. Atmosphere, 13, Article No. 707.
https://doi.org/10.3390/atmos13050707

Su, H., Wu, L, Jiang, J.H., Pai, R,, Liu, A., Zhai, A.J., Tavallali, P. and DeMaria, M.

DOI: 10.4236/acs.2023.134033

605 Atmospheric and Climate Sciences


https://doi.org/10.4236/acs.2023.134033
https://coast.noaa.gov/states/fast-facts/hurricane-costs.html
https://doi.org/10.1029/2021GL095774
https://www.noaa.gov/news/record-breaking-atlantic-hurricane-season-draws-to-end
https://www.noaa.gov/news/record-breaking-atlantic-hurricane-season-draws-to-end
https://bipartisanpolicy.org/blog/looking-back-at-the-2021-atlantic-hurricane-season
https://www.nhc.noaa.gov/data/tcr/AL092021_Ida.pdf
https://doi.org/10.1175/BAMS-87-9-1195
https://doi.org/10.1175/WAF-D-12-00073.1
https://doi.org/10.1175/WAF-D-17-0056.1
https://doi.org/10.1175/2009WAF2222286.1
https://doi.org/10.3390/atmos13050707

J. H. Liu, X. D. Wang

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(2020) Applying Satellite Observations of Tropical Cyclone Internal Structures to
Rapid Intensification Forecast with Machine Learning. Geophysical Research Let-
ters, 47, €2020GL089102. https://doi.org/10.1029/2020GL089102

Fava, M. (2022) Atlantic Ocean Basin: A Detailed Map. UNESCO, Paris.
https://oceanliteracy.unesco.org/atlantic-ocean/

NCEI (2021) Annual 2021 Tropical Cyclones Report.
https://www.ncei.noaa.gov/access/monitoring/monthly-report/tropical-cyclones/20
2113

NHC (2021) 2021 Atlantic Hurricane Season.
https://www.nhc.noaa.gov/data/tcr/index.php?season=2021&basin=atl

Chen, S., Cao, E., Koul, A., Ganju, S., Praveen, S. and Kasam, M.A. (2021) Reducing
Effects of Swath Gaps in Unsupervised Machine Learning. Committee on Space Re-
search Machine Learning for Space Sciences Workshop, Cross-Disciplinary Work-
shop on Cloud Computing.

Liu, Z., Liu, T., Sun, W., Zhao, Y. and Wang, X. (2022) MBand Wavelet-Based Im-

putation of scRNA-seq Matrix and Multi-View Clustering of Cells. The FASEB
Journal, 36. https://doi.org/10.1096/fasebj.2022.36.51.R5102

Sanjeev, P. and Jayanthi, S. (2008) Image Denoising Using Matched Biorthogonal
Wavelets. 6th Indian Conference on Computer Vision, Graphics and Image, Bhu-
baneswar, 16-19 December 2008, 25-32.

Stéphane, M. (1999) A Wavelet Tour of Signal Processing. Academic Press, Cam-
bridge. https://doi.org/10.1016/B978-012466606-1/50008-8
https://www.sciencedirect.com/book/9780123743701/a-wavelet-tour-of-signal-proc
essing

Martinez, J.C. (2020) M-Band Wavelet-Based Imputation of scRNA-seq Matrix and
Multi-View Clustering of Cells. AIgents. https://aigents.co/data-science-blog/

DOI: 10.4236/acs.2023.134033

606 Atmospheric and Climate Sciences


https://doi.org/10.4236/acs.2023.134033
https://doi.org/10.1029/2020GL089102
https://oceanliteracy.unesco.org/atlantic-ocean/
https://www.ncei.noaa.gov/access/monitoring/monthly-report/tropical-cyclones/202113
https://www.ncei.noaa.gov/access/monitoring/monthly-report/tropical-cyclones/202113
https://www.nhc.noaa.gov/data/tcr/index.php?season=2021&basin=atl
https://doi.org/10.1096/fasebj.2022.36.S1.R5102
https://doi.org/10.1016/B978-012466606-1/50008-8
https://www.sciencedirect.com/book/9780123743701/a-wavelet-tour-of-signal-processing
https://www.sciencedirect.com/book/9780123743701/a-wavelet-tour-of-signal-processing
https://aigents.co/data-science-blog/

	A Wavelet-Based Deep Learning Framework for Predicting Peak Intensity of Hurricanes in the Atlantic Ocean
	Abstract
	Keywords
	1. Introduction
	2. Data and Methods
	2.1. Study Area
	2.2. Data Collection
	2.3. Data Preprocessing
	2.3.1. Hurricane Center Identification in MODIS Satellite Imagery
	2.3.2. Dynamic Swath Gap Filling in MODIS Satellite Imagery
	2.3.3. Discrete M-Band Wavelet Transform

	2.4. Multi-Input Parallel Convolutional Neural Network
	2.4.1. Artificial Neural Network
	2.4.2. Convolutional Neural Network
	2.4.3. Average Pooling
	2.4.4. Batch Normalization
	2.4.5. Parallel Feature Learning
	2.4.6. Fully Connected Layers
	2.4.7. System Flowchart


	3. Experiments and Results
	3.1. Estimating Peak Wind Speed Using 3 Consecutive Days
	3.2. Estimating Peak Wind Speed Using 3 Consecutive Categories

	4. Analysis and Discussion
	5. Conclusions
	Acknowledgements
	Conflicts of Interest
	References

