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Abstract 
This research proposes to carry out a principal component analysis using the 
maximum covariance method, with the aim of finding the most robust spa-
tio-temporal relationships between several candidate predictors and the accu-
mulated monthly precipitation recorded in Cuba during the period 1980-2020. 
This process will make it possible to establish quantitative relationships that, 
together with theoretical considerations, make it possible to reduce the list of 
predictors to be used for the purpose of obtaining seasonal predictions. The 
values of the predictors are represented through monthly averages obtained 
from ERA5 reanalysis, while monthly accumulated precipitation data were 
obtained from a national-scope grid with 4 km of spatial resolution, used as 
predictand. The results obtained reflect the highest spatio-temporal correla-
tion values with the first variability mode in all cases, indicating that the usual 
regime conditions are predominant and have a greater coupling with the pre-
cipitation variability in the analyzed temporal scale. In addition, they suggest 
that the candidates that explain the transport of moisture at low levels, as well 
as the gradients between the middle and lower troposphere, show the most 
robust associations. In the same way, the surface temperature of tropical At-
lantic Sea, the flow related to Quasi-Biennial Oscillation and the thermody-
namic indices, K Index and Galvez-Davison Index, present good degrees of 
association, for which reason they can be considered the most recommenda-
ble for carrying out forecasting experiments.  
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1. Introduction 

The variability or change in precipitation patterns in any region has an impact 
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on the functioning of societies, as it directly affects extremely sensitive areas 
such as water supply or food and industrial security. The Latin American and 
Caribbean region is not an exception to this reality, which increases the demand 
of societies for seasonal and sub-seasonal predictions related with the behavior 
of precipitation regimes, to efficiently plan water resources and mitigate the nega-
tive effects that may result from extreme behavior of this variable. 

Different forecasting methodologies are used to obtain seasonal or sub-seasonal 
forecasts. The dynamical methods employ an atmospheric general circulation 
model (GCM), forced by sea surface temperature or coupled to an ocean model. 
Besides they have the advantage of not being constrained by purely linear con-
siderations, so they are able to represent rare or infrequent events in weather 
patterns, in addition to the high computational cost required for their implemen-
tation, there are difficulties such as the generation of dry biases characterized by 
deficiencies in the prediction of the propagation of Madden-Julia Oscillation 
(MJO). They also tend to generate cold biases in the equatorial Pacific region, 
which affects the forecast of amplitude and intensity of ENSO events and inade-
quately represent the troposphere-stratosphere interaction [1] [2] [3] [4].  

Another methodology employs statistical relationships between a predictor 
(variable used for forecasting) and the predictand (variable to be forecasted). The 
main advantage of these tools lies in the low computational resources that re-
quire; additionally, they can generate deterministic and probabilistic predictions. 
As for the disadvantages, there is the fact that they assume a stationary climate 
system, which often leads to difficulties in representing the dispersion of the 
predictands due to the linearization of the system, which implies deficiencies in 
representing the nonlinear interactions of the climate system [5].  

One of the challenges of statistical schemes is the selection of predictors for 
spatial forecast of precipitation because requires a combination of statistical, phys-
ical, and expert knowledge. The most effective approach will depend on the spe-
cific application and the available data. Different approaches were encountered 
in the bibliography revision related to this selection process. 

The statistical correlations between precipitation and various meteorological 
variables such as temperature, humidity, wind speed, and atmospheric pressure 
can be used to identify potential predictors for precipitation forecasting. Corre-
lations can be computed using historical data and can provide insights into the 
relationships between different variables. However, correlation is a metric that 
does not imply cause-effect relationships; therefore weak correlations are not nec-
essarily associated with the absence of spatio-temporal relationship between a 
potential predictor and the predictand. 

The physical models can be used to identify potential predictors for precipita-
tion forecasting, supported by theoretical considerations. These models simulate 
the physical processes that govern precipitation formation and can identify va-
riables that are likely to influence precipitation patterns.  

The expert’s knowledge is a common tool used to identify potential predictors 
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for precipitation forecasting. Experts in the field of meteorology can provide in-
sights into which variables are likely to be relevant for precipitation forecasting 
based on their experience and knowledge. 

Finally, data mining techniques such as principal component analysis (PCA) 
and cluster analysis can be used to identify patterns in large datasets. These tech-
niques can identify potential predictors based on how they are related to preci-
pitation patterns. This is related to machine learning algorithm development. 
These techniques can be used to identify potential predictors for precipitation 
forecasting. The algorithms can learn from historical data and identify patterns 
that are likely to be relevant for predicting precipitation behavior. Examples of 
methods are Random Forest and Support Vector Machine. 

These predictor selection methods have convergency points and therefore, of-
ten are employed to combine theoretical knowledge with statistical associations. 
[6] employs monthly means of sea surface temperature (SST) using monthly 
precipitation accumulations as predictand, where their selection is because this 
variable can be associated with the behavior of ENSO and, since ENSO is a 
large-scale phenomenon, SSTs can be correlated with atmospheric circulation 
anomaly patterns. However, the results obtained showed that ENSO only par-
tially governed the variability of the predictor in the study area. 

For example, [7] used simple correlations to select the predictors. These au-
thors use tropical North Atlantic SST anomalies, sea level pressure (SLP) and 
vertical shear in the equatorial Atlantic to predict precipitation in the Caribbean 
region. This selection is because ENSO-associated SST behavior modulates the 
strength of the Caribbean low-level jet (CLLJ) and favors convergence and tro-
pospheric humidity, associated with the precipitation regime. 

In relation to the CLLJ, several authors have identified it as a fundamental 
element in the seasonal variability of precipitation in the Caribbean region be-
cause it is a mechanism for moisture transport in this area [8] [9] [10] [11] and 
the role it plays in the mid-summer dry period when the expansion of subtropi-
cal ridge combines with the expansion of warm pools and the CLLJ enhances 
divergence towards the Caribbean and convergence towards Central America 
[12]. 

More recently [13] proposed the use of SST, SLP, 850 hPa surface zonal wind 
and vertically integrated mean moisture transport flux (Uq, Vq) applied to dif-
ferent Caribbean subregions. The authors point out that not all the proposed 
predictors adequately reflect the predictor-predictand relationship in the differ-
ent subregions, also identifying the mechanisms associated with the NAO and 
ENSO as the main modulators of the precipitation in selected area.  

The use of EOF (empirical orthogonal functions) and CCA (canonical corre-
lation) to a set of candidate predictors has dominated foreign works in the last 
five years. These techniques are based on the principle that the spatial structure 
of variability at given time scales can be interpreted as the interaction between 
different components that determine their variability modes [14] [15] [16]. 
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The zonal wind component at 850 and 200 hPa levels, specific humidity, tem-
perature at 850 hPa surface and the variables that compose the Multivariate 
ENSO Index (MEI) have been employed interchangeably. All represent the cli-
matic drivers already mentioned [17]. 

Studies related to seasonal forecasting in Cuba have been cursory. However, 
research associated with the identification of future scenarios warns that annual 
precipitation could be reduced by 20% - 50%, increasing the frequency and in-
tensity of drought periods [18], hence seasonal drought forecasting is both a ne-
cessary and achievable goal. 

However, most national studies are related to the diagnosis or characteriza-
tion of climatic conditions associated with different patterns [19] [20] [21] [22]. 
On the other hand, some researches found an increase in the annual frequency 
of synoptical situation type characterized by marked influence of subtropical an-
ticyclone with first quadrant flow [23] [24], which suggests, in fact, a greater in-
fluence of subtropical ridge, which may be related to the expansion of Hadley 
cell [25]. 

Despite these efforts, attempts to obtain seasonal precipitation forecasts using 
purely statistical [26] [27] and dynamic [28] schemes have not been fully devel-
oped. 

The present research proposes as a first step for generation of a statistical or 
dynamic-statistical seasonal prediction scheme, to identify the predictors that 
have the greatest degree of spatio-temporal association with the precipitation 
that would be considered as predictand. Taking into account the insufficiencies 
of purely theoretical considerations or the application of certain metrics such as 
linear correlation, which can limit the spectrum of possible predictors; it is pro-
posed to use the maximum covariance method (MCA). This methodology allows 
establishing numerical relationships that respond to the joint predictor-predictand 
dynamics, offering the additional advantage of identifying the predominant 
modes of variability. 

2. Materials and Methods 
2.1. Candidate Predictors 

The candidate predictors are determined a priori taking into account the physi-
cal mechanisms that govern the predictor in the tropical zone, specifically in the 
Caribbean region where Cuba is located. The variables that describe the main 
climatic drivers, such as ENSO, NAO, MJO, QBO (Quasi-Biennial Oscilla-
tion), are taken into account for empirical selection of potential predictors. In all 
cases, monthly mean values for the period 1980-2020 are used, employing as 
primary data source the ERA5 reanalysis (https://cds.climate.copernicus.eu/) 
with 0.25˚ of spatial resolution. These potential predictors can be subdivided in-
to three groups to facilitate their evaluation. The first group includes the SST of 
the Niño 3.4 region, the Gulf of Mexico, Caribbean and tropical Atlantic (Figure 
1). 
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(a)                                                   (b) 

   
(c)                                                   (d) 

Figure 1. Monthly mean SST selected areas. (a) ENSO 3.4, (b) Gulf of Mexico, (c) Caribbean Sea, (d) Tropical Atlantic. 
 

The second subgroup relates the candidate predictors obtained at different 
pressure levels. In this case, as well as the third and final subgroup, which relates 
surface-level candidate predictors and thermodynamic indices, was obtained 
from the Caribbean subregion (Figure 2(a)). It should be noted that the selec-
tion of this area is arbitrary and seeks to capture the greatest possible influence 
of different modes of variability that could modulate the behavior of precipita-
tion patterns in Cuba, without the need to resort to a too-large area that would 
imply a greater computational cost. 

As will be explained in Section 2.3 below, the maximum covariance method 
decomposes the predictor into its principal components; its EOFs are projected 
into the space of the predictand to know the thresholds of the spatial association. 

The list of all potential predictors that will be evaluated in this research is re-
flected in Table 1 below: 

The K Index (KI) and Gálvez-Davison Index (GDI) were included in the list of 
candidates. Its inclusion was motivated by the results obtained by [29], who 
evaluate the use of CAPE (Convective Available Potential Energy) transport 
term to identify spatial patterns of certain circulation regimes associated with 
the American Monsoon. However, it should be noted that this index has limita-
tions in the tropics since its values can be high because the tropopause is usually 
higher in this region, so high CAPE values do not always correlate with deep 
convective regimes, a fact that is more noticeable in the summer months.  

In addition, it should be noted that the traditional indices were designed for 
environments with strong temperature and humidity gradients, which is not al-
ways evident in the tropical zone where these gradients are usually much weaker 
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Table 1. List of potential predictors. 

Potential predictors Subgroup Unit of measure 

SST ENOS 3.4 

SST Areas 

˚K 

SST Gulf of Mexico ˚K 

SST Caribbean Sea ˚K 

SST Tropical Atlantic ˚K 

Temperature in 200 hPa 

Selected at different isobaric 
surfaces 

˚K 

Temperature at 850 hPa ˚K 

Divergence at 200 hPa 1/s 

Divergence at 850 hPa 1/s 

Geopotential at 200 hPa m2/s2 

Geopotential at 500 hPa m2/s2 

Zonal component at 30 hPa m/s 

Zonal component at 50 hPa m/s 

Zonal component at 200 hPa m/s 

Zonal component at 850 hPa m/s 

Pressure at mean sea level 

Selected at surface including 
thermodynamic indexes 

Pa 

Outgoing Longwave Radiation w/m2 

K-index ˚K 

Gálvez-Davison Index - 

 

  
(a)                                                   (b) 

Figure 2. Caribbean subregion where the monthly mean values of the rest of candidate predictors are obtained (a). Predictand 
grid area (b). 
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in relation to mid-latitudes. Of these, the KI (Equation (1)) shows the greatest 
skill, presumably because its calculation takes into account the moisture content 
at low levels, which is essential for precipitation processes in the tropics. The 
fundamental disadvantage of this index, in short-term forecasting experiences, is 
that it tends to exaggerate the areas where precipitation may occur, but it can be 
used as an indicator of the average behavior of moisture content at low levels. 

( ) ( ) ( )850 500 500 850 700 700K T T T Td T Td= − + − − −             (1) 

On the other hand, the GDI is a stability index generated to improve convec-
tive forecasting in the Caribbean [30]. It has been validated for tropical areas and 
in southeastern South America, finding that for Caribbean regions it can explain 
more than 50% of precipitation’s variance. Its formulation considers three phys-
ical processes that modulate tropical convection: the simultaneous availability of 
heat and moisture in the middle and lower troposphere; the stabilizing/destabi- 
lizing effects of middle and upper-levels caused by ridges and troughs; and dry 
air entrainment and stabilization related to inversions (Equation (2)). These 
considerations suggest that applications of this index need not necessarily be li-
mited to the mesoscale and higher average values may indicate the continued 
presence of disturbed conditions that generate higher precipitation accumula-
tions. 

GDI ECI MWI II= + +                       (2) 

where ECI is a stability index, MWI represents the heat content at middle levels 
and II is the inversion index. 

2.2. Precipitation Data 

To evaluate the relationship’s strength of each proposed predictors with a pre-
dictand, precipitation in Cuba generated from a national database is used, which 
will be referred to as Solvaz in the following, alluding to original authors [31]. 
This database is built from data collected by conventional meteorological sta-
tions and the rain gauge network of the National Institute of Hydraulic Re-
sources, which are subsequently interpolated to generate a 4 km (kilometers) 
spatial resolution grid. Monthly accumulated are recorded in this grid, which is 
updated month by month. As in the case of the predictors, the period 1980-2020 
is used. 

2.3. Maximum Covariance Analysis (MCA) 

As described above, the methods for selecting predictors can be purely qualita-
tive, where theoretical associations are made from the physical mechanisms go-
verning the predictor, simple associations such as linear correlations can be es-
tablished or more complex methodologies such as principal component analysis 
can be applied. 

It should be noted that in the case of qualitative assessments, the selection of 
predictors may have a high subjective component because, beyond the special-
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ist’s theoretical knowledge, its ability to recognize the connection of variables 
describing large-scale circulations with observable patterns in a given area must 
be taken into account, which is not always a simple task. On the other hand, li-
near correlations are measures that do not imply causality, so low correlations 
do not necessarily imply the absence of a functional relationship between the 
potential predictor and the predictand. 

From this reasoning, the use of the EOF can allow to establish a more robust 
spatial and temporal association between the predictors and the predictand to 
determine which the most robust predictors are. 

For this reason, it was decided to use the MCA in this research [32]. This me-
thod allows the identification of coupled fields of EOF and PCA (Principal 
Components), which count a covariance fraction of two variables analyzed si-
multaneously (candidate-predictor predictand). One of the advantages of the 
method is that the spatial dimensions of the matrices do not need to be equal, 
just the time step. 

Each mode of covariance is determined by a pair of spatial patterns (one for 
each field), a pair of principal components showing how their respective spatial 
pattern evolves over time, and a singular value indicating the quadratic cova-
riance accumulated by each variability mode. 

Assuming a dataset consisting of N observations and p predictor variables, 

1 2, , , nX X X� , and a target variable Y, the MCA method can be expressed ma-
thematically as follows: 

Calculate the covariance matrix between the predictor variables and the target 
variable: 

( )1 2cov , , , ,xy pC X X X Y =  �                   (3) 

Compute the eigenvalues and eigenvectors of the covariance matrix Cxy:  

( )1 2 1 2, , , , , , ,p p xyv v v eig Cλ λ λ    =   � �               (4) 

where 1 2, , , pλ λ λ�  are the eigenvalues and 1 2, , , pv v v�  are the eigenvectors. 
Sort the eigenvalues in descending order and select the k eigenvectors corres-

ponding to the k largest eigenvalues. These eigenvectors represent the k linear 
combinations of predictor variables that have the highest covariance with the 
target variable. 

Compute the k-dimensional linear combination of predictor variables as: 

[ ] TT
1 2 1 2, , , , , ,k pZ v v v X X X =  � �                (5) 

where is the matrix of eigenvectors corresponding to the k largest eigenvalues 
and is the transpose of the matrix of predictor variables. 

The k-dimensional linear combination Z is the set of predictors that has the 
highest covariance with the target variable Y. 

In addition to what is described above, the number of eigenvectors and the 
corresponding number of predictors to select may also be determined using 
cross-validation or other model selection techniques. 
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3. Results 
3.1. Precipitation in Cuba 

Precipitation in Cuba, as is characteristic of tropical zones, has a dry season 
(November-April) and a wet season (May-October). The latter usually exhibits 
two maximums, one in May, which is usually related to the presence of systems 
such as the May-June seasonal trough and, in the case of the maximum at the 
end of the wet season, it must be conditioned by the peak of cyclonic activity in 
the North Atlantic and the minimum of atmospheric pressure in the tropics that 
usually occurs in October (Figure 3). 

Some variations in the classic patterns associated with rainfall variability on 
the island suggest structural changes in these patterns. It is difficult to determine 
if they are a product of variability or, on the contrary, are linked to permanent 
changes. But there is no doubt that they have an impact on the seasonal behavior 
of precipitation. The most significant cases are related to a trend of increasing 
high geopotential values at mid-levels (Figure 4). These increases may be asso-
ciated with expansion processes and modifications in the morphology of sub-
tropical anticyclone, which have been documented by other national authors 
[23] [24] [33] [34]. 

These variations often lead to the creation of a high geopotential belt in the 
tropical zone, connecting the subtropical ridge with the Mexican ridge, which 
can affect the exchange with extratropical regions and the appearance of systems 
that commonly generated precipitation on the island, such as the May-June 
trough in the absence of meridional gradients to support it.  
 

 

Figure 3. Mean annual cycle of precipitation in Cuba. 
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(a)                                                   (b) 

  
(c)                                                   (d) 

Figure 4. Decadal mean values of geopotential at 500 hPa. (a) January-decade 1980-1989; (b) January-decade 2010-2019; (c) Ju-
ly-decade 1980-1989; (d) July-decade 2010-2019. 

 
Another source of precipitation variability is the TUTT (tropical upper tro-

pospheric trough) (Sadler, 1967; Evans & Laing, 2016). This system seems to 
have experienced some tendency to contract and to induce an increasingly zonal 
flow over the Antilles region (Figure 5). These variations will have an impact on 
the precipitation regime since the TUTT cells associated with these structures 
participate in the convective precipitation cycles in the tropics during the wet 
season, in addition, the TUTT as such, usually participate in convective organi-
zation processes that can derive in tropical cyclogenesis. 

As mentioned above, both the impact and the permanence of these variations 
are not entirely clear, particularly because their permanence over time is not 
long enough to be dominant over a 30-year climatic period. What is certain is 
that the measurements on the island suggest that, together with these variations 
in the large-scale flow, certain modifications appear in the usual precipitation 
patterns.  

These changes seem to be more evident in relation to a drastic reduction in 
average precipitation towards the eastern half of the island, a fact that becomes 
more relevant considering that annual accumulations in this region of the coun-
try are usually lower than in the western half (Figure 6). On the other hand, 
there is a certain tendency towards an increase in the amplitude of precipitation 
variability, as a consequence of the simultaneous increase in the number of re-
ports of heavy rainfall (according to national standards) and days without preci-
pitation. 
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(a)                                                    (b) 

Figure 5. Decadal mean values of geopotential heights at 200 hPa in July. (a) 1980-1989 period showing a classical pattern; (b) 
2010-2019 period, with a practically zonal configuration over Cuba. 
 

  
(a)                                                  (b) 

  
(c)                                                   (d) 

Figure 6. Spatial behavior of decadal mean accumulated for the study period. 

3.2. Evaluation of Candidate Predictors 
3.2.1. SST Subgroup 
The sea surface temperature is a modulating factor of tropical convection. In the 
specific case of the Caribbean region, the thermal gradients associated with the 
presence of hot pools, the circulation of the Loop Current, the Atlantic’s meri-
dional circulation, among other processes, influence the transport of energy ca-
pable of feeding tropical convection. Small-scale movements such as breezes, 
which in island regions (as Cuba), are an important mechanism of convective 
genesis, should not be forgotten.  

The variability in distant regions such as the equatorial Pacific, in clear allu-
sion to ENSO, usually disturbs the state of the atmosphere, generating more ba-
roclinic or barotropic tendencies depending on the ENSO signal. Particularly 
this event has been treated for decades as the main source of climatic variability 
of the island; however, it should be considered that a process of expansion of the 
Atlantic subtropical ridge could redistribute the areas of usual influence of the 
ENSO, reinforcing some and/or weakening others. A priori, it can be predicted 
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that this process could lead to conditions with more barotropic tendencies in the 
Caribbean region, making it less sensitive to certain ENSO fluctuations in the 
region. 

The analysis made with the SST of ENSO 3.4 region shows that the first mode 
of variability explains almost 80% of the total variance of the SST in that region 
(Figure 7). This suggests that there has been a predominant signal in the se-
lected study period. 
 

 
(a) 

 
(b) 

Figure 7. Variance (a) and covariance (b) explained by each variability modes of SST 
predictors. 
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Regarding the spatial association expressed through the explained covariance, 
ENSO shows the lowest values, being the first mode, as in all other cases, the one 
with the highest covariance value, since the rest quickly tends to zero. This result 
is consistent with the temporal relationships found between the precipitation 
described by Solvaz and ENSO 3.4, where the relationships are weak (Figure 8). 
These results suggest a decoupling between the SST anomalies of ENSO 3.4 re-
gion and precipitation in Cuba, which may suggest a decrease or lag regarding 
the influence of processes that condition heat and moisture transport and may 
react to the gradients between the Atlantic and the Pacific, such as the Caribbean 
low-level jet or the subtropical jet. 

In the case of the SSTs of the Gulf and Caribbean regions they show better as-
sociations but they are not the most robust. Spatially the first variability mode in 
both cases coincides with typical conditions where heat is transported by cur-
rents in usual regime situations and the convective activity moves in the trade 
wind flow. This mode shows the highest temporal correlations, with values of 
0.71 and 0.69 respectively, whereas the spatial associations behave at a low-moderate 
threshold. 

These results also show little variation over time of magnitudes associated 
with the Gulf of Mexico region. This may be an indication that this region does 
not capture the trend of the variations previously mentioned, which could con-
dition the precipitation patterns in Cuba. Its limited spatial coverage and the fact  
 

 
(a) 

 
(b) 

Figure 8. (a) Representative EOF of first variability mode of SST ENSO 3.4; (b) Temporal 
correlation between the principal component corresponding to the first mode and the 
original precipitation field. 
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that it is not a region producing centers of action may be some of the causes of 
this behavior. On the other hand, the Caribbean region shows a slight tendency 
to a negative bias in the series corresponding to the first mode of variability, 
which is indicating a shift in the mean conditions associated with the usual re-
gime and allows it to establish a more robust association in the spatio-temporal 
scale. 

The first variability mode of tropical Atlantic SST shows the highest degree of 
covariance in relation to the precipitation field (Figure 9), suggesting that this 
candidate has the highest degree of spatio-temporal association. This mode also 
represents usual regime conditions, where heat and moisture transport embed-
ded in the easterly flow conditions the lower troposphere and modulates vertical 
shear by actively participating in tropical convection processes. This impacts on 
the usual flow of easterly waves where SST values influence large-scale conver-
gence which, together with the aforementioned elements, conditions the activity 
of these systems, an important source of precipitation, especially in the wet sea-
son. 

However, the spatio-temporal correlations are in the moderate range. It can 
be seen that there are certain periods of lag in the fluctuations of the series, 
which are dominant in the first half of the study period. Towards the second 
half, which represents the last two decades approximately, the behavior of the 
series exhibits a greater coupling. Beyond the correlation value that summarizes 
the association between both series, the observation suggests that the structural  
 

 
(a) 

 
(b) 

Figure 9. Spatio-temporal relationship between the first variability mode of Atlantic SST 
and precipitation field. (a) Heterogeneous maps; (b) Principal component correlation. 
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changes in the subtropical ridge and consequently in the meridional gradients of 
SST seem to lead to a greater influence in the modulating processes of precipita-
tion in the island. 

3.2.2. Predictors on Different Isobaric Surfaces 
The temperature, divergence and geopotential fields are usually associated with 
the movement of troughs and ridges, tropospheric moisture content and conse-
quently with atmospheric stability and instability conditions. As in the case of 
SSTs, the first variability mode explains more than 50% of the variance except 
for the case of divergence at 200 hPa, hence the first mode largely represents the 
prevailing conditions in the series estimated by the reanalysis (Figure 10(a)). 
 

 
(a) 

 
(b) 

Figure 10. Variance (a) and covariance (b) explained by each variability modes of geopo-
tential, temperature and divergence. 
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However, the covariances (Figure 10(b)) shows that the first modes of the 
temperature at 850 hPa and geopotential fields are the most robust. In the case 
of temperature at 850 hPa, it is a variable that defines the moisture holding ca-
pacity of the lower troposphere which, as already mentioned, is a crucial me-
chanism in tropical convection. It is also associated with moisture transport at 
low levels, where mechanisms such as the American monsoon or the MJO are 
associated. 

In relation to geopotential, the behavior at both levels is very similar. The first 
mode captures the variability associated with the typical structure resulting from 
the influence of subtropical ridge. However, other structures such as the TUTT 
(at 200 hPa level) or the westward expansion of subtropical ridge at the 500 hPa 
surface are captured in other variability modes (Figure 11). 

With this behavior of EOFs it is not surprising that the temporal association is 
only moderate with the first mode and very weak with the rest, since the season-
al structures, although they may persist long enough to decrease or overlap with 
the usual regime conditions, are not sufficient to explain the variation of preci-
pitation taking into account the whole annual cycle. In other words, the indi-
vidual correlation of each of these signals with respect to the variability of the 
original precipitation field is reduced. 
 

 
(a) 

 
(b) 

Figure 11. EOF corresponding to 200 hPa geopotential field; (a) first variability mode; (b) 
second variability mode. 
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Regarding the temperature at 200 hPa level, the associations corresponding to 
the first variability mode are moderate, being the highest in relation to the rest of 
variability modes, whose EOF represent a pattern similar to that shown in the 
geopotential field, which may be related to the thermal expansion characteristic 
of Hadley cell. Just as in the case of the geopotential, the following EOFs identify 
the seasonal structures that tend to prevail in the selected study period, in any 
case, a single mode of variability does not seem to be sufficient to explain the 
variation of precipitation with this variable.  

The divergence fields, although theoretically a term describing atmospheric 
stability/instability conditions, presented the weakest associations on the spa-
tial scale, with predominantly moderate correlations. This contrasts with the 
temporal relationships which turned out to be the strongest with values above 
0.80 for both terms analyzed. It can be observed that the representation of the 
EOFs shows very little variation (Figure 12), which could influence the results 
achieved. 

As for the zonal component of the wind, very similar characteristics to those 
described above are observed (Figure 13). In all cases, the first variability mode 
represents more than 50% of the explained variance and shows relatively high 
spatial covariance values when compared to other candidate predictors.  

In the case of zonal components at 30 and 50 hPa levels, they clearly allude to 
the Quasi-Biennial Oscillation. Similar to what was observed with the ENSO 
(Section 3.2.1), the first modes of variability represent the phases of this oscilla-
tion where there is one predominant. The decomposition of zonal wind in these 
levels suggests that the west phase of the oscillation predominates, although this 
fact is less noticeable in the 50 hPa zonal pattern, where the first two modes ex-
plain similar values of variation (Figure 14). Nevertheless, the west phase is the 
most closely related to the precipitation processes described by Solvaz, not only 
spatially, but also temporally, although it exhibits moderate correlations. 

These results are consistent with characteristics of the QBO, where westerly 
winds tend to last longer than easterly winds. On the other hand, it has been de-
scribed that the westerly component influences cyclonic activity in the North 
Atlantic, since by decreasing the shear between the stratosphere and the upper 
troposphere, they generate more barotropic conditions that favor the increase of 
deep convection in the region, which also plays an active role in the American 
monsoon. 
 

 

Figure 12. Heterogeneous field of the divergence’s first variability mode at 200 hPa level. 
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(a) 

 
(b) 

Figure 13. Variance (a) and covariance (b) explained by each variability modes obtained 
from the analyzed zonal components. 
 

The zonal components at 200 and 850 hPa show spatial associations compara-
ble to the previous ones, in both cases with a distribution representative of usual 
regime conditions (Figure 15). In the case of the zonal component at 850 hPa, it 
shows the lowest value of spatial association, which may be conditioned by the 
fact that moisture transport at low levels is not sufficient to explain the variation 
of the spatial distribution of precipitation. This may be because the transport 
mechanisms at this level, as well as the Caribbean LLJ, are present regardless of 
whether or not precipitation occurs on the island, suggesting that their influence 
may be limited to certain critical thresholds. On the other hand, precipita-
tion-producing systems such as the easterly waves that usually travel in this flow 
need additional favorable conditions, mentioned previously (Section 3.1), to ac-
tivate convergence. 
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(a) 

 
(b) 

Figure 14. EOF corresponding to the first variability mode in the case of (a) zonal com-
ponent at 30 hPa; (b) zonal component at 50 hPa. 
 

 
(a) 

 
(b) 

Figure 15. Principal component analysis showing the temporal association of the first va-
riability mode of zonal wind component at 200 hPa (a) and 850 hPa (b). 
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In the opposite direction, the flow at high levels is linked to jets and the MJO, 
capable of generating divergent patterns that favor upward movements and, 
therefore, atmospheric instability, influencing to a greater extent the spatial dis-
tribution of precipitation. It should be noted that both components show a high 
degree of linear association on the time scale (Figure 15), which implies that 
their seasonal and intraseasonal variability presents a high degree of coupling 
with precipitation. 

3.2.3. Candidate Predictors Represented by Surface Variables and  
Thermodynamic Indexes 

Candidate surface predictors show comparable covariance values with those ex-
hibiting higher values. 

The OLR and the proposed thermodynamic indices are the highest. The OLR, 
being the outgoing radiation emitted by the clouds, is a variable that must react 
to the presence of different convection regimes, so its behavior must be very 
close to an annual precipitation cycle, with the consequent seasonal fluctuations. 
In fact, once again it is observed how the pattern constructed by the first varia-
bility mode responds to seasonal cycle, in which the fluctuations of the inter-
tropical convergence zone (ITCZ), monsoon activity and the MJO are involved 
(Figure 16). The degree of temporal association is high, suggesting a strong spa-
tio-temporal coupling of OLR with precipitation variability. 

In relation to the SLP, a moderate spatial association is observed, with the 
highest correlation in the first variability mode. This mode reflects the mean po-
sition of the subtropical ridge that responds to the trade wind flow characteristic 
of the tropical zone. However, easterly disturbances do not necessarily lead to 
the triggering of convective processes, which could explain the weakness of the 
associations in some regions of the country. In contrast, the linear correlation 
between the first variability mode and the precipitation time series is strong, al-
though it is the weakest of this subgroup (Figure 17). 

The thermodynamic indices showed good spatio-temporal association, clear-
ing the question of whether they were able to reflect the seasonal and intrasea-
sonal course of precipitation. In the case of KI, reflecting the low-level moisture 
holding capacity and the gradients between the middle and lower troposphere 
may reflect the annual cycle of precipitation on seasonal scales. On the other 
hand, the GDI not only reflects this moisture transport, but also the effects of the 
successive movement of troughs and ridges, which allows following disturbances 
embedded in the trade wind flow, even those that generate flat convection [30]; 
hence, if the first variability mode represents usual regime conditions, this index 
can successfully identify the conditions of stability/instability generated by this 
pattern. 

3.3. Discussion 

The results obtained using the maximum covariance method suggest that the 
candidate predictors related to low-level moisture transport and gradients  
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(a) 

 
(b) 

Figure 16. Variance (a) and covariance (b) explained by each variability modes obtained 
from the candidate predictors of surface subgroup. 
 
between the middle and lower troposphere generally are conductive to the 
strongest associations on spatio-temporal scales, which is consistent with the av-
erage characteristics of convective processes that tend to occur in the tropical 
zone. 

This is indicative that the variables related to humidity fluxes at low and me-
dium levels are more skilfull to represent rainfall than others predictors usually 
used such as SSTs in different subregions. 

These results coincide with [13] where it is stated that the evaluations carried 
out in fields related to humidity flows [29] [35] [36], has been obtained which 
are more adept at predicting various characteristics of precipitation than other 
options such as sea surface temperature. 
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(a) 

 
(b) 

Figure 17. Temporal correlation between the first variability mode and the original pre-
cipitation field. (a) OLR; (b) GDI. 
 

However, the results suggest that the tropical Atlantic is an important mod-
ulator of the spatio-temporal distribution of precipitation, at least on the island. 

An exception to this rule could be the tropical Atlantic, which is an important 
modulator of the spatio-temporal distribution of rainfall, at least on the island. 

Others predictors with high reliability such as the zonal component and tem-
perature at 850 hPa, as well as sea level pressure, coincide with the evaluations 
made by other authors in the Caribbean region [13] [37], where it is obtained 
that they are more skilfull explaining the variability of the predictand. 

Through the MCA it is obtained that the thermodynamic indices that represent 
the aforementioned characteristics can constitute good predictors. In this case, 
the possibility of using GDI for seasonal forecast purposes is introduced, since 
this predictor is in the group of most robust spatio-temporal associations. This 
can be an advantage since, in addition to representing the variability of tropical 
precipitation more skillfully than traditional indices, its non-dependence on 
convective parameterizations [30] can reduce possible biases originating from 
these dynamic approximations. 
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4. Conclusions 

The analysis made on the different candidate predictors shows that, as a general 
average, the first mode of variability is dominant and responds to usual regime 
conditions imposed by the circulation of subtropical anticyclone, which indi-
cates that this pattern dominates the spatio-temporal variability of precipitation 
in Cuba. Well-established seasonal structures such as the TUTT can be reflected 
in other modes but accompanied by random noise, which, combined with their 
limited permanence in time, leads to weak correlations. 

Oscillations such as ENSO and QBO usually present a dominant phase in the 
analyzed period. In the case of ENSO, its relationships are weak, so its use as a 
predictor on monthly-time scales does not seem appropriate. Given that the 
reaction in the Caribbean region to equatorial Pacific SST anomalies may have a 
certain lag, an evaluation of this oscillation on annual time scales and/or apply-
ing a certain lag could generate different results. Regarding the QBO, the results 
coincide with the theoretical considerations, where its positive phase (westerlies 
flow) influences the variability of precipitation, with strong spatio-temporal as-
sociations. 

The principal components analysis corresponding to tropical Atlantic SST, 
temperature at 850 hPa, zonal wind component at 30 and 200 hPa, the OLR and 
KI and GDI suggest that these candidate predictors most coherently explain the 
spatio-temporal variability of precipitation in Cuba and it could be used to build 
statistical or dynamic-statistical models to obtain seasonal rainfall forecasts. 

In the particular case of the K index and temperature at 850 hPa, both candi-
dates explain the moisture content in the lower troposphere and in fact one is 
contained in the formulation of the other. In order to avoid the risk of multicol-
linearity errors, it would be appropriate to use one or the other, but not both to-
gether. 
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