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Abstract 
Post-processing correction is an effective way to improve the model forecast-
ing result. Especially, the machine learning methods have played increasingly 
important roles in recent years. Taking the meteorological observational data 
in a period of two years as the reference, the maximum and minimum tem-
perature predictions of Shenyang station from the European Center for Me-
dium-Range Weather Forecasts (ECMWF) and national intelligent grid fore-
casts are objectively corrected by using wavelet analysis, sliding training and 
other technologies. The evaluation results show that the sliding training time 
window of the maximum temperature is smaller than that of the minimum 
temperature, and their difference is the largest in August, with a difference of 
2.6 days. The objective correction product of maximum temperature shows a 
good performance in spring, while that of minimum temperature performs 
well throughout the whole year, with an accuracy improvement of 97% to 
186%. The correction effect in the central plains is better than in the regions 
with complex terrain. As for the national intelligent grid forecasts, the objec-
tive correction products have shown positive skills in predicting the maxi-
mum temperatures in spring (the skill-score reaches 0.59) and in predicting 
the minimum temperature at most times of the year (the skill-score reaches 
0.68).  
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Minimum Temperature 

 

1. Introduction 

Shenyang is located in the southern part of Northeast China, at the center of the 
Northeast Asia and Bohai Rim Economic Circle. It is a comprehensive hub city 
connecting the Yangtze River Delta, Pearl River Delta, and Beijing et al. regions 
to the Northeast region. The Shenyang region is mainly composed of plains, 
with mountainous and hilly areas concentrated in the southeast, and multiple 
rivers passing through the territory. The special geographical environment leads 
to frequent meteorological disasters such as megatherm, cold wave, rainstorm, 
etc. Therefore, the research on maximum and minimum temperature forecasting 
is very important, which can provide scientific reference for disaster prevention 
and decision-making management of government departments. 

Over the past few decades, thanks to the development of numerical weather 
forecasting models, observation systems and assimilation technologies, the ac-
curacy of numerical weather forecasting has been greatly improved [1]. The res-
olution of numerical weather prediction also has been improved, and the assi-
milation scheme has been continuously optimized [2] [3] [4].  

High precise fine-scale temperature forecast serves as an important tool in 
quantifying human comfort, health threats with extreme temperature and ener-
gy consumption. There is a need to forecast temperature accurately in order to 
prevent unexpected hazards caused by temperature variation, such as mega-
therm, frost, cold wave and drought which may cause financial and human 
losses [5]. To reduce the uncertainty of numerical prediction, the idea of mul-
ti-mode ensemble forecasting was first proposed by Krishnamurti et al. [6] 
which is to conduct ensemble forecasting after obtaining the best combination of 
multiple different numerical model predictions according to certain statistical 
methods. 

Using statistical and physical methods to reduce the deviation of daily maxi-
mum and minimum temperature predictions is one of the important research 
directions in numerical prediction post processing [7]. The improved scheme’s 
predicted temperature, historical bias, initial field bias and Kalman filter inver-
sion bias as the predictor are all optimal. In addition, the scheme’s forecast qual-
ity for the maximum and minimum temperatures in 2017 is significantly better 
than that of both ECMWF and CMA (China meteorological administration) [8].  

Oshima [9] uses a combination of principal component analysis, classical 
correlation analysis and singular value decomposition to regress and forecast the 
monthly average temperature in January and July in Japan. The results show that 
the prediction effect of the model is not as good as that of the statistical down-
scale prediction, and this difference is mainly caused by the inaccurate terrain of 
the model. In the central plains of Kansas, there is a significant correlation be-
tween nighttime 2 m temperature and terrain height [10]. The surface tempera-
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ture at 2 m is interpolated from the lowest layer temperature in the model, which 
increases the prediction error [11]. 

Application of the artificial neural network (ANN) [12], long short-term 
memory [13] and convolution neural network (CNN) [14] in numerical predic-
tion correction have become new topic. ANN was used to forecast daily maxi-
mum temperature and minimum temperature in order to provide a best-fit pre-
diction with the observed data using ANN algorithms [15]. Using multiple me-
teorological elements from a single numerical prediction model to construct a 
weather forecast model [16], there was a correction method for multi-model en-
semble prediction of temperature in North China based on machine learning 
[17].  

Urban Micro-scale Temperature Forecast (UMTF) model was developed us-
ing machine learning techniques (k-means clustering and support vectors ma-
chine) with reference to global ensembles and geomorphometry datasets (sky 
view factor, daily sun trajectory and urban terrain model) [18]. The hybrid mod-
el named ALS with produced by machine learning is particularly effective in 
areas where the accuracy of station temperature forecast is low [19]. Using the 
K-Nearest Neighbor (KNN) regression algorithm for error correction, the im-
provement effect of weather process prediction such as cold air activity and 
summer maximum temperature is also relatively stable [20]. 

This article combines business reality, Based on the ECMWF model and na-
tional intelligent grid forecast from the China Meteorological Administration, 
based on wavelet analysis developing objective correction products for maxi-
mum and minimum temperature.  

There has significantly improved the forecast accuracy of Shenyang stations, 
basically possessing the ability to replace subjective forecasts with objective 
forecasts, providing key technical support for maximum and minimum temper-
ature forecasting technique. 

2. Model Forecasts and Observation Data 

As shown in Figure 1, the location of the stations is presented and their charac-
teristics are listed in Table 1. The study scope is the provincial capital city of the 
province of Liaoning, with a latitude and longitude of 41˚N - 43˚N and 122˚E - 
124˚E. The contemporaneous surface observation data of 5 observation sites  
 
Table 1. Characteristics of the selected synoptic stations. 

Stations Elevation (m) Longitude (N) Latitude (E) 

Shenyang (SY) 49 123.5100 41.7325 

Xinmin (XM) 30.9 122.8531 41.9592 

Liaozhong (LZ) 12.2 122.7017 41.5114 

Faku (FK) 97.8 123.3983 42.4944 

Kangping (KP) 87 123.3453 42.8128 
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Figure 1. Study ares: Shenyang areas (41˚- 43˚N, 122˚- 124˚E). 
 
comes from the data as a serve of China Meteorological Administration. It 
should be noted that the study areas include five national meteorological obser-
vation sites, namely Shenyang (SY), Liaozhong (LZ), Xinmin (XM), Faku (FK) 
and Kangping (KP). 

2.1. Data 

The ECMWF model forecasting data from 1 January 2019 to 31 December 2021 
were used for correction post-processing, with a time span of 1096 days. The 
temporal and spatial resolutions of the model are 3 h and 0.1˚ (about 10 km). 
The other forecast model is national intelligent grid forecast, which was pro-
vided by China Meteorological administration. The temporal and spatial resolu-
tions of the model are 1 h and 0.0.3˚ (about 3 km). The two models start twice a 
day at 00:00 (UTC) and 12:00 (UTC). A total of 37 forecast timeliness of 0 - 36 h 
was selected. For each forecast timelines, the model produces two forecast results 
every day, with a sample size of (1096 × 2). 

2.2. Methods 
2.2.1. Wavelet Analysis 
Wavelet analysis is an analytical method that studies the characteristics of signal 
changes through time and the frequency. According to machine learning algo-
rithms, using wavelet power spectrum to judge the significance of periodic signal 
fluctuations, the significance test of wavelet power spectrum is implemented us-
ing a 95% confidence level red noise test. Due to edge effects appearing in the 
wavelet power spectrum, wavelet influence cones (COI) are used to represent the 
wavelet spectral region and corresponding edge effects. 

2.2.2. Sliding Training Correction 
1) According to the service requirements of China Meteorological Adminis-

tration, the intelligent grid forecast product and the urban station forecast 
product need to adopt the neighborhood method to correspond, which means 
the grid point nearest to the site is selected as the prediction value of the site. If 
there are multiple grid points with equal distances, the northeast corner grid 
point is selected. Based on this, this paper calculates the 24 h forecast products 
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respectively, and calculates the difference between them and the observed data 
on the corresponding date. The time series of the difference between the maxi-
mum temperature and the minimum temperature at five stations is obtained. 

2) Using the time series of the difference between the maximum temperature 
and the minimum temperature of the latest forecast timeliness, the periodic 
characteristics of the maximum temperature and the minimum temperature of 
the different forecast timeliness of each urban station were analyzed. 

3) Carry out sliding training on the maximum and minimum temperature 
cycles of 5 urban stations. The maximum temperature of Shenyang (SY) Station 
(sliding period t) is taken as an example to illustrate. When calculating the 24 h 
sliding correction, slide the selected date forward t d. The average value of the 
difference between the previous t days’ forecast and observation is called the 
sliding correction deviation of the 24 h maximum temperature forecast. By add-
ing the correction deviation and the guiding forecast, the correct value of the 24 
h maximum temperature at Shenyang Station can be obtained. 

2.2.3. Scoring Indicators 
The forecast accuracy, mean absolute error and forecast skill were used to eva-
luate the forecast correction effects. 

1) Forecast Accuracy (F) 

2
2 100%nF

n
= ×                         (1) 

where n2 is the number of samples which is less than 2, n is the total number of 
samples, F2 represents the percentage of the predicted temperature with the ob-
served temperature error less than 2˚C. 

2) Mean absolute error (MAE) 

MAE
1

1 N

i i
i

T F O
N =

= −∑                      (2) 

The TMAE is the mean absolute error of temperature, which can better reflect 
the actual situation of the predicted value error. Fi is the forecast temperature at 
station i (time), Oi is the actual temperature at station i (time), and N is the 
number of participating stations. 

3) Forecast skill (FS)  

MAEC MAEN

MAEC

FS T T
T
−

=                      (3) 

TMAEC is the mean absolute error of the objective correction products. TMAEN is 
the mean absolute error of the national intelligent grid forecast. When TMAEC = 0, 
FS = 1.01. 

3. Results 
3.1. Temporal Distribution Characteristics of Maximum and  

Minimum Temperatures 

The research areas are located in the south of Northeast China, which mainly 
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composed of plains, with mountains and hills concentrated in the southeast. The 
Liaohe River, Hunhe River, Xiushui River are all pass through the territory. It 
belongs to a temperate monsoon climate. Precipitation is concentrated in sum-
mer, with a large temperature difference. Cold weather lasts for a long time, 
nearly six months, the temperature changes rapidly in spring and autumn. 

As can be seen in Figure 2, under the unique climate background, the 
monthly distribution of 2 m temperature also presents obvious characteristics. 
The temperature in July and August is the highest, and the temperature in Janu-
ary and February is the lowest. 

3.1.1. Maximum Temperature 
The maximum temperature in the study area presents negative values in January 
and February, with an annual average of 14.36˚C. The highest values of the 
maximum temperature from January to March appear in LZ, and from April to 
August, they appear in SY. Overall, the maximum temperature at SY is the highest  
 

 
(a) 

 
(b) 

Figure 2. Maximum (a) and minimum (b) temperature at each station in different 
months. (a) High; (b) Low. 
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among the five stations for 6 months. It may be that observation site is in a city, 
and due to a large number of artificial heating, high thermal storage such as 
buildings and roads, and reduced green space, the city has become “heat island 
effect”, resulting in significantly higher temperatures in the city than in the outer 
suburbs. 

3.1.2. Minimum Temperature 
The minimum temperature in the study area is subzero temperature for five 
months every year. The annual average minimum temperature is 3.82˚C. The 
highest value of the minimum temperature throughout the year (except for 
April) occurs in LZ, while the lowest value occurs more frequently in KP. 

3.2. Sliding Training Period 

The sliding correction cycles of the maximum and minimum temperatures at 
five observation sites were calculated for 24 hours. For a brief, take SY as an ex-
ample for Wavelet Analysis. As shown in Figure 3, the results show that the op-
timal training period for the station at the maximum temperature in April is 5 
days, and the minimum temperature in January is 3 days. 
 

 
(a) 

 
(b) 

Figure 3. The sliding training period of the maximum (a) and minimum (b) temperature. 
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The same method can provide the optimal training cycles of the highest 
(Table 2) and lowest (Table 3) monthly temperature for each station. 

As can be seen from Table 2, the sliding training period is between 2 and 7 
days, with an average value of 4 days. According to regional analysis, the correc-
tion cycle time in LZ region is the longest in a year, which is 5 days, while the 
other four cities are all around 3 days. Based on monthly analysis, the longest re-
vision cycle is 7 days in October, and the shortest revision cycle is 2 days in Au-
gust. 
 
Table 2. Monthly maximum temperature forecast sliding training at different sites. 

Sta SY XM LZ FK KP 

Jan. 2 3 3 2 3 

Feb. 2 2 7 3 7 

Mar. 3 2 3 5 2 

Apr. 5 5 5 5 5 

May 2 2 7 2 2 

Jun. 2 2 2 7 2 

Jul. 7 7 7 7 5 

Aug. 2 2 2 2 2 

Sept. 7 7 7 2 2 

Oct. 7 7 7 7 7 

Nov. 5 3 5 3 5 

Dec. 2 5 5 1 2 

 
Table 3. Monthly minimum temperature forecast sliding training period at different sta-
tions. 

Sta SY XM LZ FK KP 

Jan. 3 5 3 3 3 

Feb. 2 2 2 5 5 

Mar. 2 2 2 2 3 

Apr. 7 2 7 7 7 

May 7 2 7 7 2 

Jun. 7 5 3 5 5 

Jul. 7 5 7 7 5 

Aug. 2 5 2 7 7 

Sept. 5 7 3 7 7 

Oct. 3 2 3 3 3 

Nov. 5 3 7 5 2 

Dec. 7 7 7 7 7 
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As can be seen from Table 3, the sliding training periods for minimum tem-
perature are between 2 and 7 days, with an average value of 4.6 days. According 
to regional analysis, the longest correction cycle time in a year is 5.4 days in FK, 
while the other four cities are around 4 days; Based on monthly analysis, the 
longest revision cycle is 7 days in December, and the shortest revision cycle is 2.2 
days in March. 

3.3. Analysis on the Effect of Objective Forecast Products in  
Different Months 

According to Table 2 and Table 3, the sliding training periods of five sites in 
different months are selected to objectively revise the ECMWF forecasts and 
produce objective correction products for 2 m temperature. 

3.3.1. Maximum Temperature 
According to Formula (1) and Formula (2), as shown in Figure 4, the accuracy 
of the maximum temperature objective correction products was analyzed. The 
results show that: 

Regardless of the prediction accuracy or mean absolute error analysis, the 
annual (except November) maximum temperature objective correction products 
show better results than the ECMWF forecasts. 

The accuracy analysis of ECMWF temperature forecasts (TEC for short) and 
objective correction products (TRE for short) results show that: The average TEC 
value for the whole year was 41.25%, and the TRE increased to 59.91% after the 
revision. The accuracy rate after the revision was 45% higher than before. The 
growing accuracy growth value of objective forecast products from January to 
December (excluding October and November) is 25% to 233%. According to 
MAE, the decreasing value of objective correction products from January to De-
cember (excluding November) is 24% to 70%. The above results indicate that 
correction methods improve the quality of maximum temperature prediction in 
the study area. 

After the ECMWF forecast is revised by using the sliding training, the maxi-
mum temperature objective correction products have the best forecast ability in 
LZ, with the accuracy rate increased by 95% and the mean absolute error is de-
creased by 50%; objective correction products accuracy growth rate in KP is the 
lowest, only 35%, and the mean absolute error of the objective correction prod-
ucts in FK is decreased by 33%. It shows that the maximum temperature objec-
tive correction products perform well in LZ. 

3.3.2. Minimum Temperature 
As shown in Figure 5, the accuracy analysis results of ECMWF and objective 
correction products at five sites show that: The annual forecast accuracy has in-
creased by 58% and the mean absolute error has decreased by 45%. Objective 
correction products have improved the quality of minimum temperature predic-
tion in study areas. It is worth noting that the objective prediction method has a  
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Figure 4. Accuracy of maximum temperature objective correction products in different 
months. Bar (for accuracy): Blue stands for ECMWF; Orange stands for objective correc-
tion products; Line (for MAE): Green stands for ECMWF; Red stands for maximum cor-
rection products. 
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Figure 5. Same as Figure 4, but for minimum temperature. 
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higher ability to predict the minimum temperature than the maximum temper-
ature. The objective forecast products of minimum temperature have the best 
forecast ability in XM, with the forecast accuracy increased by 118% and the 
mean absolute error reduced by 70%. Both the forecast accuracy and the mean 
absolute error analysis show that the forecast effect of the objective correction 
products of the annual minimum temperature is better than ECMWF. 

3.4. Analysis on the Effect of Objective Correction Products in  
Different Seasons 

Through the accuracy analysis of objective correction products in different 
months, it is found that the correction effect of objective correction products on 
the maximum temperature in November is not ideal, even less than the 
ECMWF. In order to comprehensively analyze the correction effect of objective 
correction products under local climatic scenario, this paper evaluates the pre-
diction performance of objective correction products for maximum and mini-
mum temperatures from different seasons. Spring is in March, April, and May. 
Summer is in June, July, and August. Autumn is in September, October and 
November. Winter is in December, January, and February. 

3.4.1. Maximum Temperature 
As shown in Figure 6, it analyzes the maximum temperature forecast accuracy 
and MAE of each sites in different seasons. The result shows that: objective me-
thods in spring, summer, and winter all have ability to correct the maximum 
temperature forecast. The accuracy improvement values of the five sites in 
spring are 87% to 211%, 15% to 46% in summer, and 2% to 194% in winter, re-
spectively, the forecast accuracy of objective correction products is higher than 
ECMWF. Overall, the objective method has the best correction effect for spring 
and the worst correction effect for autumn. In autumn, only SY and LZ have 
achieved good correction results, improved the accuracy of the forecast prod-
ucts. From the analysis of different sites, the correction effect of LZ Station is the 
best throughout the year, the accuracy improvement of 115%. The correction ef-
fect of KP Station is the worst; the accuracy improvement was only 47% 
throughout the year. 

MAE also shows that the objective correction product has excellent correction 
ability for the ECMWF, and MAE of all sites throughout the year is reduced by 
50%. 

3.4.2. Minimum Temperature 
As shown in Figure 7, it shows that the objective correction product has the 
correction ability for all sites. The accuracy analysis results show that: the objec-
tive methods for the four seasons of the year have the correction ability for the 
minimum temperature forecast, with the most obvious correction effect for 
spring, and the worst correction effect for summer and winter. 

The accuracy improvement values for the five sites were 97% - 186% in spring, 
14% - 23% in summer, 43% - 123% in autumn, and 12% - 41% in winter. From 
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the analysis of different stations, the spring correct effect for LZ Station is the 
best, with an accuracy improvement of 186%, but throughout the year, the cor-
rect effect for FK is the best, with an accuracy improvement of 84%, on the con-
trary, KP is the worst, accuracy improvement was only 50%. MAE also shows 
that the objective correction products have the good ability to correct the 
ECMWF temperature forecast, and MAE of all sites throughout the year has de-
creased by 37%. It is worth noting that the ability of objective correction me-
thods to predict the minimum temperature is better than the maximum temper-
ature. 
 

 
 

 

Figure 6. Accuracy of objective correction products for maximum temperature in differ-
ent seasons. Top: Accuracy; Bottom: MAE; Red discount chart: the ECMWF forecast; 
Blue Line Chart: Objective Correction Products. 
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Figure 7. Same as Figure 6, but for minimum temperature. 

3.5. Forecast Skill Test (FS) 

Intelligent grid forecast was produced by China Meteorological Administration. 
Using forecast skill test to analyze the advantages of objective correction product 
and intelligent grid forecast, the result is shown in Figure 8. 

In spring, the maximum temperature objective correction products show pos-
itive skills relative to the intelligent grid forecast, but in autumn, it is a negative 
skill. From the sites analysis, SY only showed positive skills in spring, while LZ 
and XM showed positive skills in spring, summer and winter. KP performed 
better in spring and winter, while FK had a significant correction effect in spring 
and summer. In spring, autumn and winter, relative to the intelligent grid fore-
cast, the minimum temperature objective correction products showed positive 
skills. 
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(a) 

 
(b) 

Figure 8. Forecast skill for objective correction products in different seasons. Left: max-
imum temperature; Right: minimum temperature. (a) High, (b) Low. 
 

From the sites analysis, only SY and LZ showed negative skills in summer, 
while other sites showed positive skills. The above conclusions objectively indi-
cate that compared to intelligent grid forecast, objective correction products 
have better prediction effects on minimum temperatures than maximum tem-
peratures. This is consistent with the research conclusion of Liu Xinwei (2020), 
The accuracy of the highest temperature reported by the intelligent grid forecast 
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is still higher than objective correction forecast. However, the correction effect of 
objective correction forecast on minimum temperature is higher than intelligent 
grid forecast. 

4. Conclusions 

Based on the 5 national meteorological observing stations in Northeast China, 
observational data, Wavelet analysis and sliding training technologies were used 
to revise and compare the maximum and minimum temperature forecast of the 
ECMWF model and national intelligent grid forecast. Accuracy, MAE, FS were 
used as the evaluation metrics. The main conclusions are as follows:  

1) The monthly distribution of 2 m temperature also presents obvious charac-
teristics. The temperature in July and August is the highest, and in January and 
February is the lowest. The difference between the maximum and minimum 
temperatures is 50.35 degrees Celsius. 

2) According to the wavelet analysis results, the sliding training period of the 
maximum temperature is smaller than the period of the minimum temperature 
(the average period of the highest temperature and lowest temperature within 24 
hours is 4.05 and 4.63, respectively), and this difference is most significant in 
August, with a period difference of 2.6 days. 

3) In spring, the accuracy improvement values of the five sites are 87% to 
211% for maximum temperature and 97% - 186% for minimum temperature. 
Throughout the year in all sites, the ability of objective correction methods to 
predict the minimum temperature is better than the maximum temperature. 

4) Maximum temperature and minimum temperature objective correction 
forecasts have good correction effect on the southern, LZ belongs to a plain area 
with simple terrain, in spring, the accuracy of maximum temperature objective 
correction products has been improved by up to 211%. 

5) According to the seasonal evaluation, compared with national intelligent 
grid forecast, objective correction products have shown positive skills in pre-
dicting maximum temperatures in spring (up to 0.59). In summer, Except for SY 
and LZ, the minimum temperature prediction shows positive skill (up to 0.68). 
We can say that the objective prediction product of minimum temperature in-
itially possessed the ability to replace subjective prediction. 

5. Discussion 

The revision method is good for correcting result and making distribution of the 
temperature forecast. It can be concluded that the wavelet analysis methods em-
ployed in this study are found quite reliable in the temperature estimation study. 
The applicability of the employed training methods also in the long range tem-
perature forecasting could be analyzed in a future study. It is hoped that the 
presented study can shed light on future machine learning studies modeling 
temperature time series. The prediction ability of the maximum and minimum 
temperature objective correction products generated by the wavelet analysis 
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method is higher than ECMWF and national intelligent grid forecast, which in-
itially has the ability to replace subjective prediction. There are many factors that 
affect temperature prediction. More scientific and rigorous methods can correct 
numerical predictions, thereby improving the accuracy of maximum and mini-
mum temperature predictions. In the application, it is suggested to comprehen-
sively apply the method according to the needs of users, which may be able to 
better solve practical problems. 
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