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Abstract 
As global warming increasingly affects vulnerable regions such as Central East 
Africa, it is crucial to understand future changes in rainfall variability to reduce 
vulnerability. Despite the importance of rainfall variability, it has received less 
attention compared to changes in mean and extreme rainfall. This study eva-
luates the amplification of synoptic (weekly) to annual variability of East Afri-
can Monsoon (EAM) Long Rainfall (March to May) by climatic extremes. Us-
ing band-pass filtered daily rainfall data, we found that EAM rainfall variability 
is anticipated to increase by 20% - 60% across the region under global warming 
conditions. The majority of the intermodal variability in Long Rain EAM rain-
fall forecasting is explained by differences in mean rainfall. Our results show 
that the synoptic variability of Long Rain for EAM rainfall is likely to amplify, 
resulting in more extreme rainfall events and longer dry spells under global 
warming. This amplification is attributed to the warming of the Indian Ocean 
and the associated changes in atmospheric circulation patterns. The projected 
increase in synoptic to annual variability of Long Rain for EAM rainfall has sig-
nificant implications for water resources management and agriculture in the 
region, challenging policymakers to develop adaptive strategies that can miti-
gate the impacts of these extreme events. This study emphasizes the potential 
impacts of projected climate changes in rainfall variability on the East African 
region at all periods and underscores the need for effective adaptation strate-
gies to ensure sustainable development. 
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1. Introduction 

The Central East African Monsoon “EAM” plays a critical role in shaping the 
rainfall patterns of the region, particularly during the Long Rain (LR) season 
from March to May [1]. The variability of rainfall during this period is essential 
for agricultural productivity, water resource management, and overall so-
cio-economic development. However, recent studies have indicated that the va-
riability of EAMLR rainfall from weekly to annul is being amplified by climatic 
extremes posing significant challenges for the region’s vulnerable communities 
[1] [2] [3] [4] [5]. East Africa is not exempt from these changes, experiencing an 
increasing frequency and intensity of extreme climatic phenomena. The fluctua-
tion of amplification from weekly to annual rainfall during East African LR can 
be related to climatic extremes such as heavy rainfall bouts and protracted dry 
spells [6] [7] [8] [9]. 

The Central Eastern Africa region (−15˚S - 5˚N, 26˚E - 45˚E) has witnessed 
significant seasonal rainfall changes over the years [10]. Climate change is cur-
rently viewed as a component of global warming impact on Earth’s weather pat-
terns and intensification of extreme events worldwide. Although there has al-
ways been climate change, the current changes are more rapid and not due to 
natural causes [11]. The observed increase in greenhouse gas (GHG) concentra-
tions in the atmosphere has altered climatic feedback mechanisms posing a sub-
stantial threat to both human and ecological life [12]. While the globe warms by 
1.2 degrees Celsius (34.16 degrees Fahrenheit), many of these effects are already 
apparent. There will be further effects and potential tipping points, such the 
melting of the Greenland ice sheet [12]. This has resulted in a new norm of un-
precedented occurrence of extreme weather events such as droughts, floods, and 
heat waves [13] The scale of the impacts of extreme events varies, with drought 
dominating various economic sectors [14] [15]. 

The impact of these extremes on the region’s rainfall variability is of great 
concern. Intense rainfall events lead to increased risks of flooding, soil erosion, 
and damage to infrastructure and livelihoods [16] [17]. Conversely, prolonged 
dry spells can result in water scarcity, reduced agricultural productivity, and in-
creased vulnerability to drought-related disasters [6]. The amplified variability of 
LR rainfall poses challenges for water resource management, agriculture, and 
adaptation strategies that have traditionally relied on predictable rainfall pat-
terns [18] [19] [20]. The knowledge of the underlying mechanisms driving the 
amplification of rainfall variability is crucial for effective adaptation and resi-
lience-building efforts in East Africa [21]. Moisture transport mechanisms, tem-
perature gradients, and patterns of atmospheric circulation that have changed, 
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play significant roles in modulating the occurrence of climatic extremes and 
subsequent fluctuations in rainfall [22] [23] [24]. These factors are influenced by 
global warming and its associated impacts on the regional climate system. Ad-
dressing the challenges posed by the amplified variability of LR rainfall requires 
robust adaptation strategies [19]. These strategies should encompass improved 
early warning systems, enhanced water storage and irrigation infrastructure, 
promotion of climate-smart agricultural practices, and sustainable land manage-
ment approaches. Furthermore, regional cooperation and international support 
are vital for successful implementation of adaptation measures, knowledge shar-
ing, and capacity building to enhance the resilience of East African communities 
to the impacts of amplified rainfall variability. In this context, this study aims to 
investigate the amplification of the weekly to annual variation of LREAM rainfall 
by climatic extremes. By examining the complex relationship between rainfall 
variability and extreme events, we seek to contribute to a deeper understanding 
of the challenges posed by changing climate conditions in the region. Ultimately, 
this research aims to inform evidence-based adaptation strategies and policies to 
ensure the sustainable development and resilience of East African communities 
in the face of amplified rainfall variability. The remainder of the paper is orga-
nized as follows: Section 2 expands on the data and methods utilized; Section 3 
offers the results of the analysis; Section 4 presents a discussion of the results and 
conclusion. 

2. Materials and Approaches 
2.1. Observation and Model Data 

FGOALS-f3-L, ACCESS-CM2, EC-ERTH3, and MPI-ESM1-2-HR, are the four 
modal data used in our findings, all of which are from Couple model Intercom-
parison Project Phase 6 (CMIP6) for both SSP2_4.5 and SSP5_8.5 scenarios that 
attained all of the daily rainfall in SSP2_4.5 and SSP5_8.5 experiments. Both 
scenarios are for 40 years from 2021 to 2060. This study also compared both 
scenarios experiment by calculating the multi-model ensemble mean (MMEM). 
Due to their exceptionally good performance, this model has been employed in 
earlier investigations [9]. And all variables from CMIP6 model outputs are ana-
lyzed with the original horizontal grid resolution of 2.0˚ × 2.0˚ and bilinearly in-
terpolated over central east Africa domain as defined in Figure 1. The data are 
available at on:  
https://cds.climate.copernicus.eu/cdsapp#!/dataset/projections-cmip6?tab=form. 
For observational datasets, we use daily rainfall data from the Climate Prediction 
center (CPC) with horizontal resolve of 0.5˚ × 0.5˚ [25]. The daily rainfall data 
for Chirps version two reanalysis dataset with a 0.25˚ × 0.25˚ horizontal resolu-
tion satellite imagery and insitu station data [10] [21]. The dataset can be found 
on: 
https://cds.climate.copernicus.eu/cdsapp#!/dataset/insitu-gridded-observations-
global-andregional?tab=form.  
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Figure 1. The simulated average and heavy rainfall and the mean rainfall, RX5day, and CDD, 
and R95pTOT is given for ((a), (d), (g), (j)) Chirps, ((b), (e), (h), (k)) CPC, and ((c), (f), (i), (l)) 
the MMEM of CMIP6 and SSPs. Grid locations with value added via dynamic downscaling are 
referred to as stippling in EnsMean. 
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2.2. Methods (Approaches) 

Daily rainfall data from two regional climate models (SSPs) simulations were 
evaluated in the CMIP6 project for both scenarios in our study. The CMIP6 
models are; FGOALS-f3-L, ACCESS-CM2, EC-ERTH3, MPI-ESM1-2-HR, 
HadGEM3-GC31-LL, and GFDL-ESM4; which have previously been employed 
in research due to their exceptional performance [26] [27]. The historical climate 
for 1991-2020 (HIST) and future climate for 2021-2060 were examined using the 
SSP4.5 (SSPS4.5) and SSP8.5 (SSPS8.5) emission scenarios, respectively. Due to a 
lack of rain-gauge data over East Africa, we compared the model outputs to two 
observation satellite data sets also has been used [9]. The CHIRPS-v2 reanalysis 
rainfall dataset at a horizontal resolution of 0.25˚ × 0.25˚ satellite imaging and 
Insitu station data, and the Climate Prediction Centre (CPC) has a horizontal 
resolution of 0.5˚ × 0.5˚ [21] [28] The Chirps and CPC statistics have been used 
widely and are regarded as a viable choice for testing climate model [29] [30] 
[31]. 

Table 1 summarizes the extreme rainfall indexes studied. All indices are rec-
orded as daily rainfall data and are used by specialists and researches on climate 
variation detection and are widely used on detection, attribution, and forecasting 
of changes in climatic extremes. Those extremes are very wet days at R95pSSPs 
total, maximum consecutive 5 days rainfall (RX5days) and CDD-consecutive dry 
days. The mean rainfall for 1991-2020 and extreme rain catalogs for same period 
are evaluated using a shared period crosswise observations and simulations. And 
these extreme indices are calculated using the following equations. 

2.2.1. R95p: Annual Total PSSPS When RR > 95th Percentile and  
R95p TOT: Contribution to the Rainfall from Very Wet Days 

Let “RRwj” be the amount of rainfall that falls each day on a rainy day “W”, RR is 
greater or equal to 1 mm (≥1.0 mm) in period “j” and let “RRwn95” be the 95th 
percentile of rainfall that falls each day on wet days between 1991 and 2020. If 
“W” is the number of days during the time that were rainy [32] as shown in fol-
lowings equation below. 

1
R95p RR where RR RR 95

W

wj wj wn
w=

= >∑                (1) 

100 R95pR95TOT
PRCPTOT

∗
=                       (2) 

 
Table 1. List and names of drought climate extreme indices. 

Climate Extreme Indices 

R95pSSPs Total rainfall when RR > 95th percentile Very wet days (mm/day) 

RX5day Highest successive 5-day rainfall 
Maximum consecutive 

5-day rainfall (mm/day) 

CDD 
Highest number of consecutive days 

with RR < 1 mm 
Consecutive dry spell 

(mm/year) 
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2.2.2. Consecutive Dry Spell (CDD) 
Where CDD: highest length of dry spell average highest number of successive 
days with “RR” < 1 mm. Let “RRjk” be the daily rainfall amount on day “j” in pe-
riod “k”. Tally the largest number of successive days where “RRjk” < 1 mm. 

2.2.3. Maximum Consecutive 5-Day 
Maximum successive 5-day rainfall (RX5day): Let “RRkj” be the rainfall quantity 
for the 5-day break finish “k”, period “j”. Then maximum 5-day values for pe-
riod “j” are RX5dayj = max (RRkj). The ability of SSPs to improve in the current 
period was measured using the added cost approach developed by [33], as shown 
in Equation (3): 

( ) ( )
( ) ( )( )

2 2
GCM OBS SSP OBS

2 2
GCM OBS SSP OBS

AV
Max ,

X X X X

X X X X

− − −
=

− −
            (3) 

Were the indices produced from observations (CPC), large-scale forcing 
(GCM), and SSPs, respectively, XGCM, XOBS, and XSSPs. In this view, the added 
worth, which is measured at individual network point, is positive when the SSPs 
models squared error is less than that of the equivalent global climate model; i.e., 
when the SSPs models improve the findings of the GCMs. Normalization is 
within −1 ≤ AV ≤ 1 [9]. We utilize the standard deviation (STD) rainfall, which 
is an animated statistic that can be used to define dispersion or variability, as 
mentioned in quantify rainfall variability [34]. The area-weighted averages for 
the East African domain were calculated after the climatic annual run for each 
model network was removed by deducting the 30-year daily rainfall average for 
each step. The drinkable daily anomaly rain for the LR monsoon season 
(March-May, MAM) was retrieved. The tuning between the past and projected 
rainfall (SSps4.5 and SSPs8.5) anomalies, as well as the STD of the drinkable 
daily mean for MAM rainfall anomalies, were measured for all used models and 
timeframe. We employ the rainfall for Coefficient of variation precipitation 
(CVP) provided in Eqn.4 below as an additional way to quantify the erraticism 
of rainfall. 

SDPCVP
RFT

=                            (4) 

where “SDP” is the rainfall standard deviation and “RFT” is the mean rainfall. 
When “RFT” approaches zero, “CVP” may become a problem [35]. Variation in 
the standard deviation of rainfall (SDP), in contrasted, may be argued to be an 
expected result of variation in the mean [36]. Using Equation (4) connection 

SDP RFT CVP= ×                         (5) 

The change Standard Deviation rainfall (SDP) is written as follow: 

( ) ( )HIST HIST

1 2

SDP RFT CVP CVP RFT RFT
SDP SDP

∆ = ∆ × + ∆ × + ∆

= ∆ + ∆
         (6) 

where RFTHIST and CVPHIST represent HIST, CVP, and ΔCVP and ΔRFT 
represent CVP and rainfall changes, respectively. ΔSDP1 denotes the portion of 
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the SDP alteration and entirely explained by vicissitudes in rainfall average, 
whereas ΔSDP2 denotes the portion associated with changes in coefficient of 
variation. Equation (6) is particularly valuable since it quantifies the indepen-
dent donations of variations in rainfall average and vicissitudes in CVP to varia-
tions in rainfall erraticism. We employed a perfect improvement owing the 
Clausius-Clapeyron “CC” connection to measure the effect of thermodynamic 
rises in atmospheric moisture content [37]. Lastly, the MMEMs of both scena-
rios—referred to as “EnsMean”—are used to remove inherent and systematic 
variability prejudices in the model affiliates.  

3. Results 

Prior to evaluating the CMIP6’s capacity models for both SSPs to recreation the 
historical Central East Africa March to May (MAM) rainfall variability and in-
vestigating the possible effects of climate change by the weekly to annual varia-
bility of EAM LR rainfall, we first evaluated the performance of three extreme 
climate models in simulating the mean total rainfall climatology, as presented in 
Table 1. We examined the daily mean rainfall of the LR season, very wet days at 
R95pSSPs total, RX5days, and CDD, as exposed in Figure 1 for CPC, Chirps 
observations values and for EnsMean values, as depicted in Figures 1(a)-(c), 
respectively. The regions with the highest rainfall levels within the Central East 
Africa region were found to be western Kenya, around Lake Victoria basin, LVB, 
southeast and coast of Tanzania, according to the CPC and Chirps observation 
data (Figure 1(a) and Figure 1(b)). While, Figure 1(c) demonstrates that Ens-
Mean indicates the less rainfall values over the study region, these implies that 
we have reduction of the rainfall in our area. 

We calculated the ability of EnsMean to realistically represent the spatial dis-
tribution of LR in Central East Africa and obtained results for climate extreme 
indices on daily total rainfall CCD, Rx5, and, R95pToT as illustrated in Figure 
1(d) and Figure 1(g) and Figure 1(j), respectively. Specifically, Rx5, which 
represents the total rainfall when RR very wet rainfall greater than 1 mm, was 
discovered to be largely captured by Chirps and CPC observation data sets, with 
Ens Mean performing comparably within the range of 50% - 70% and 70% - 
90%, respectively. To recognize dry days from rainy days, we examined highest 
possible number of waterless days around over the Rwanda, Burundi, western 
Kenya Eastern Tanzania and Uganda, as presented in Figure 1(d), Figure 1(e) 
and Figure 1(f). 

In this research, we evaluate past and projected changes in the CMIP6 models’ 
daily rainfall variability for the LR season (March to May). Daily rainfall values 
were obtained from a 30-year climatology as explained in Figure 2. To analyze 
the daily variability for the MAM season, we used observations (Obs) and Ens-
Mean from historical simulations spanning from 1991 to 2020, and the out-
comes are displayed. in Figure 2(a) and Figure 2(b). Maximum rainfall centers 
are found around the coasts of Tanzania and Kenya, as well as the LVB, as illu-
strated in Figure 2(a). The Central East African region has significant daily  
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Figure 2. Rainfall variability over time, spatial pattern of Observation [Mean of CPC and CHIRPS Data] and MMEM standard 
deviation (SD) of daily MAM rainfall (mm/day) anomalies in historical simulations ((a), (b)), and change in SDP of MAM rainfall 
anomalies (%) from historical (1991-2020) to future (2021-2060) for ((c), (e), (f)) SSp4.5 and ((d), (f), (h)) SSp8.5. 
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rainfall variability. These regions are also having significant intense and high 
daily rainfall by its variability test. EnsMean, as exposed in Figure 2(b), repro-
duces observed rainfall variability accurately, albeit with a larger magnitude than 
Obs, particularly in coastal regions and the highlands area. The future (2021-2060) 
changes in daily variations in rainfall under both scenarios SSP-4.5 and SSP-8.5 
are exhibited in Figure 2(c) and Figure 2(d). Owing to global warming, Ens-
Mean predicts a 5% - 30% exceed the variability of daily rainfall across central 
East Africa. The SSP-8.5 scenario shows a greater magnitude and spatial scope of 
the consequences than SSP-4.5, even though the signal of the variation is almost 
similar in both scenarios. Ensemble members show significant inter-model 
agreement regarding the expected changes in EnsMean, with at least 80% of the 
models agreeing on the signal of the variation in most grid sites over East Africa, 
confirming the anticipated projected changes. 

Also, we have analyzed the daily change of coefficient variability of rainfall 
(CVP) over central East Africa, from the historical timescale for the SSP-4.5 and 
SSP-8.5 as future scenarios (2021-2060), using Equation (4). Our results indicate 
that EnsMean predicts a 10% - 30% rise in daily CVP across much of central 
East Africa, with the greatest values appearing when rainfall (RFT) closes to zero 
in the Central East Africa area. We have observed that the projected changes 
have the same sign for both SSP-4.5 and SSP-8.5, but the extent of the variation 
is best in SSP-4.5. Our analysis of Figure 2(c) & d using Equation (4) has led to 
the breakdown of upcoming variations in Figures 2(e)-(f). We have found that 
the projected exceed in rain erraticism due to the mean rainfall variation (SDP1, 
Figure 2(e) and Figure 2(f)) is mainly concentrated in the coast region of Kenya 
and Tanzania, some areas of the LVB, and highland regions. The greatness and 
spatial rating of the changes are greater in SSP-8.5, but the signal of future 
changes is similar in both SSPs. We have also observed that the future variations 
in rainfall change according to CVP change (SDP2, Figure 2(g) and Figure 
2(h)) are larger than the previously studied rainfall variability (Figure 2(c) and 
Figure 2(d)). The network points over East Africa exhibit an increase in varia-
bility, characterized by an increase in CVP. The SDP2 has the almost same signal 
in both SSP-4.5 and SSP-8.5 scenarios, but the strength of the shift is larger in 
SSP-8.5. Furthermore, the ensemble members have a lot of intermodal agree-
ment, with at least 80% of the models agreeing on the signal of the variation at 
most grid sites over East Africa. 

We look into the impact of thermodynamic component on variations in rain-
fall across different regions in East Africa. Additionally, we thoroughly evaluate 
all of the entire model range to determine whether comparable variations in 
rainfall would occur over various time frames. Figure 3 displays the percentage 
exceed in daily rainfall changes at different intervals and East African sub re-
gions. Our findings reveal that EnsMean projects a gradual rise in variation of 
daily rainfall throughout all periods and East African sub regions. Furthermore, 
there is a notable amount of constancy, as evidenced by substantial model con-
sensus across all sub regions and timescales. Although weekly to monthly timescales  
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Figure 3. The contribution of the thermodynamic element to regional variation in rainfall. Band-pass filtered of daily rainfall var-
iations of % standard deviation for the synoptic (weekly), Monthly, Seasonal, and Interannual timescales across Central East Afri-
ca during (2021-2060) against the historical time slice (1991-2020). EnsMean bars for SSP/RCPs4.5 and (SSP/RCPs8.5) are shown 
in Yellow and Red. 

 
show the greatest rise in future variations in rainfall over sub regions, there is 
still a significant intermodal discrepancy, particularly at the yearly scale. As 
such, as mentions in previous section, we project a fictitious increase in daily 
monsoon rainfall. We compare the distinction between the “CC” rainfall varia-
bility changes for SSP4.5 and SSP8.5 with the variations in rainfall change, to 
determine difference between the two SSPs (RCP’s). For all East African sub re-
gions and all timescales, most models, including their EnsMean, simulate lower 
variations in rainfall change than anticipated from the idealized physical re-
sponse (Figure 3), implying that the atmospheric contribution may be the pri-
mary factor influencing projected rain erraticism in East Africa. 

Except for the Rwanda sub region at the synoptic timescale (weekly) under the 
SSp4.5 and SSp8.5 scenarios, where correlations are significant at the 80% level. 
The interseason and annul timescales as mentioned in Figure 4 that the varia-
tion is not a lot of correlation with the HIST rainfall. This lack of substantial 
positive correlations indicates that the variability in rainfall change across mod-
els is not associated with HIST rainfall variability intermodal spread. However, 
at most timescales, variations in rainfall change are significantly and positively 
linked to variation in the mean LR rainfall for each study regions (Figure 4). 
This statistically significant association demonstrates that variations in mean 
rainfall explain a portion of the intermodal variation in rainfall spread. 

The CMIP6 SSP simulations indicate a significant increase in LR rainfall va-
riability across central East Africa, which prompts further investigation into shift 
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of extreme rainfall indices. Figure 5 presents the regional feedback of LR mean 
rainfall, CDD, RX5day, and R95pTOT to global warming, comparing the future 
time slice (2021-2060) to the historical era (1991-2020) under the SSP4.5 and 
SSP8.5 scenarios. The analysis reveals a 40% increase in average rainfall around 
the central and northwest of Tanzania, west Kenya, Uganda, Rwanda and Bu-
rundi, along with a 70% increase in RX5day and R95pTOT in the future. The 
expected changes are highly robust for mean rainfall and R95pTOT, with at least 
80% of SSP members agreeing on the signal of the change for most grid loca-
tions. However, there is high intermodal spread for changes in RX5day and 
CDD, and the amplitudes of the projected exceed or less gap are larger under 
SSP8.5, possibly due to stronger forcing. These changes could potentially threaten 
the region’s water resources, the major economic of agriculture, and social sta-
bility with hydroelectric power generation, as future increases in EAM rainfall 
variability are linked to longer streaks of dry days and intense rainfall. 
 

 

Figure 4. The relationship between variation in mean rainfall and variation in rainfall variability. Change in mean MAM rainfall 
(%) vs change in MAM rainfall inconsistency (%) from HIST (1991-2020) to SSPS4.5 and SSPS8.5 (2020-2060) for the weekly, 
seasonal, and annual timescales. (a), (d) and (g) are weekly, (b), (e) and (h) are season and (c), (f) and (i) are annual for both 
SSPS4.5 (2.4) and SSPS8.5 (5.8) in the central East Africa respectively.  
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Figure 5. Future modifications to average and extreme change (%) Climatology rainfall (Pr), CDD, Rx5day and R95ToTof MAM 
during 1991-2020. Modification for SSp4.5 (a), (b), (c) and (d) and SSp8.5 and (e), (f), (g) and (h) projected changes of mul-
ti-model ((a), (e)) daily rainfall, ((b), (f)) CDD, ((c), (g)) RX5day, and ((d), (h)) R95pTOT respectively. Stippling identifies grid 
points in EnsMean where at least 80% of the SSPs agree on the signal of the variation. 

4. Discussion and Conclusion 
4.1. Discussion 

To gain a comprehensive understanding of the hydrological cycle’s rejoinder to 
universal warming impact, it is crucial to comprehend exceed in rainfall varia-
bility. This study examined changes in LR monsoon rainfall variability in East 
Africa from weekly to annual timescales, under the historical and the scenarios 
(SSP4.5 and SSP8.5) for future climate. By applying band-pass filtering, we iso-
lated the erraticism at individual period and determined the range of standard 
deviations for the past climate in 1991-2020 and future climate (2021-2060) un-
der the SSP4.5 and SSP8.5 scenarios. Our findings suggest that future changes in 
the variation coefficient and partial owing to vicissitudes in the average value 
rainfall would lead to a rise in the daily rainfall variability in East Africa. Most of 
the sub regions with various timescales, there are small changes but it’s totally 
change from HIST. For long durations, especially annually, a slight intermodal 
spread is noticeable, showing the uncertainty of projections. The study also dis-
covered that, over most of central East Africa region with various timescales, 
variations in rainfall change are not significantly connected with the HIST rain-
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fall variability. Otherwise, for each region, increases in mean MAM rainfall are 
significantly positively linked with variations in rainfall change at weekly scale. 
Moreover, the projected rainfall intensity variability is associated with the ex-
ceeding of mean rainfall over LVB and the coastal region, as well as increased 
extreme rain over Central East Africa area. The majority of EnsMean indicates 
small changes in predicted variations in rainfall around the Central East Africa 
region than predicted by the perfect local atmospheric reaction at all timescales. 
This suggests that the potential impact of the atmosphere is the most important 
determining factor. EnsMean’s application greatly reduces the degree of doubt in 
our findings, and the study results are generally consistent with rainfall variabil-
ity signal and associated extreme events study can be used as reliable source of 
scientific basis for East African regional adaptation and development strategies. 

4.2. Conclusions 

In conclusion, this research has provided valuable insights into the variability of 
rainfall in Central East Africa, emphasizing the following key points: 

1) The evaluation of climate models revealed variations in their ability to cap-
ture rainfall patterns, with EnsMean generally performing well but indicating 
lower rainfall values compared to observation data. 

2) The study projected future increases in daily rainfall variability, driven by 
global warming, with greater magnitude and spatial scope under SSP-8.5. This 
has significant implications for the region’s climate. 

3) Changes in CVP indicated increased variability in rainfall, particularly in 
regions with minimal rainfall. These changes were consistent across both SSP 
scenarios. 

4) The analysis suggests that atmospheric factors may be the primary drivers 
of projected rainfall variability in East Africa. 

5) The findings have important implications for water resources, agriculture, 
social stability, and hydroelectric power generation in the region, as increased 
rainfall variability is associated with longer dry periods and intense rainfall 
events. 

Overall, this research contributes to our understanding of climate dynamics in 
Central East Africa and underscores the urgency of addressing climate-related 
challenges in the region. 
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