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Abstract 
This research develops a comparative study between different multiplicative 
weights that are assigned to the covariance matrix that represents the back-
ground error in two hybrid assimilation schemes: 3DEnVAR and 4DEnVAR. 
These weights are distributed between the static and time-invariant matrix 
and the matrix generated from the perturbations of a previous ensemble. The 
assigned values are 25%, 50%, and 75%, always having as a reference the en-
semble matrix. The experiments are applied to the short-range Prediction 
System (SisPI) that works operationally at the Institute of Meteorology. The 
impact of Tropical Storm Eta on November 7 and 8, 2020 was selected as a 
study case. The results suggest that by giving the main weight to the ensemble 
matrix more realistic solutions are achieved because it shows a better repre-
sentation of the synoptic flow. On the other hand, it is observed that 
3DEnVAR method is more sensitive to multiplicative weight change of the 
first guess. More realistic results are obtained with 50% and 75% relations 
with 4DEnVAR method, whereas with 3DEnVAR a weight of 75% for the 
ensemble matrix is required. 
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1. Introduction 

Data assimilation incorporates the information from meteorological observations 
into the Numerical Weather Prediction models (NWP), applying consistency re-
strictions and dynamic balance between all the meteorological variables, to pro-
duce an analysis field that constitutes the initialization of the model [1] [2]. 
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The objective of this process is to obtain initial conditions that produce the 
best possible numerical forecast. For this reason, most of the main world fore-
casting centers that have Numerical Weather Modeling systems dedicate great 
efforts to making this activity count with the highest data availability and the 
most robust and accurate assimilation system  
(https://www.nhc.noaa.gov/modelsummary.shtml, consulted: June 23, 2020). 

Taking into account the current needs of the national meteorological service, 
the SisPI project (Short-range Forecast System, acronym in Spanish) evaluated 
the implementation of a robust and efficient data assimilation design that would 
improve the ability of short-term forecasts while adjusting to current technolo-
gical capabilities. In this way, it is obtained that the hybrid assimilation schemes 
constitute the option that allows for obtaining more realistic results [3] [4]. 

However, a data assimilation key concept is that the weight given to back-
ground and observations is inversely proportional to their error variance: infor-
mation with a smaller error variance (implies a smaller expected error) receives 
more weight [5]. A critically important component for data assimilation is the 
background error (BEC, Background Error Covariance), which is represented by 
a covariance matrix at different points. This means that, if the model error in 
one place is usually related to an error in another place, applying a correction in 
the first place implies the need to correct the second place as well. 

The largest volume of national research in this direction has been carried out 
mainly using the 3DVAR scheme (3-Dimensional Variational) [6] [7]. Sensitivi-
ty studies using different covariance matrices showed that the generation of do-
main-dependent matrices leads to more realistic results [8]. Following this same 
line [9], evaluated the impact of the number of previous days necessary to build 
the background error, performing experiments with 7, 15, 30, and 45 days before 
the initialization instant, obtaining that matrices between 15 and 30 days are 
those with the greatest contribution to the assimilation process. 

Finally, in 2021 [3] [4] hybrid assimilation methods are evaluated in SisPI, for 
the first time in Cuba. The results of this study suggest that the 4DEnVAR 
(4-Dimensional Ensemble-Variational) scheme is the most robust but at the same 
time the most computationally expensive, while 3DEnVAR (3-Dimensional En-
semble-Variational) tends to be unstable in performance since it can lead to very 
realistic solutions or others similar to 3DVAR, showing a discrete modification 
of the background field and therefore, very close to the version of the model 
without data assimilation. 

Various foreign authors agree that giving a higher weight to the ensemble 
BEC, because theoretically its better represents the error of the day, leads to more 
realistic solutions [10] [11]. A similar result was obtained by Zhu et al. [12], who 
estimated that a much higher weight for the ensemble covariance in a hybrid 
covariance, helps the proposed assimilation system to produce a more reasona-
ble analysis field. Other authors, however, limit themselves to stating the advan-
tages of combining the static BEC of the variational system with the ensemble 
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BEC [12] [13] due to if the set does not adequately represent the flow of the day, 
it could be negative for the assimilation system. 

Taking into account the previous approaches, this research aims to evaluate 
the impact of the multiplicative weight of the covariance matrix in hybrid 
schemes, which can lead to a more adequate calibration of the assimilation me-
thod used in SisPI. 

2. Materials and Methods 
2.1. Short-Range Forecast System (SisPI) 

To carry out the experiments, the WRF (Weather Research and Forecasting) 
mesoscale model is used, with its ARW (Advanced Research WRF) dynamic 
core in version 3.8.1. This constitutes the SisPI’s core [6] [14]. The SisPI design 
has two-way nested domains of 27 and 9 km (kilometers) of spatial resolution, 
respectively (d01: 140 × 78; d02: 199 × 112). It also has a high spatial resolution 
domain of 3 km (d03: 421 × 184) one-way nested through the down tool (Figure 
1). 

The 27 and 9 km domains output is every three hours, the high resolution 
domain prints the solutions hourly basis. The model is initialized with data from 
the GFS (Global Forecast System) with 0.5˚ spatial resolution. These characteris-
tics related to the execution and initialization of the operational version of SisPI 
were respected in the experiments described in this document to evaluate the 
operating system as homogeneous as possible. 

The configuration proposed by SisPI includes 28 vertical levels, the Mel-
lor-Yamada-Nakanishi and Niino2.5 PBL scheme, and the RRTM longwave  
 

 
Figure 1. SisPI’s domains. (27 km) Parent domain, (9 km) blue box, (3 km) red box. 
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parameterization for all domains. In the case of low-resolution domains, it con-
tains the microphysics of WSM5, the Grell-Freitas cumulus parameterization, 
and the shortwave Dudhia scheme. For the high resolution domain, the Morrison 
double-moment microphysics is used, the cumulus parameterization is deacti-
vated and the Goddard shortwave radiation scheme is used. These differences 
have been supported by sensitivity studies made in the project development [6] 
[14]. 

2.2. Assimilation Desing 

To develop the assimilation experiments, the WRFDA (WRF Data Assimilation) 
was used in its version 3.9, available free of charge at  
https://github.com/wrf-model/WRF/releases?page=3. The selection of this slightly 
higher version than the WRF version used in SisPI responds to the fact that it 
incorporates the 4DEnVAR method for the first time, in addition to updating 
and improving the assimilation of satellite data compared to previous versions. 

Assimilation was executed only on the high resolution domain, a decision that 
responds to several factors. In the first place, the fact that data assimilation can 
be carried out only in one domain at a time would force us to modify the execu-
tion philosophy of SisPI with the consequent increase in computational cost by 
repeating the process in each of the domains. On the other hand, one-way nest-
ing gives the high-resolution grid the possibility of having initial and boundary 
conditions adjusted to it, which allows assimilation to be carried out in this do-
main by adding only the computational cost of the assimilation process itself. 

The main disadvantage of this design is that the spatial coverage is limited and 
this can produce fluctuations concerning the availability of data to assimilate, 
especially with radiances, which come from polar-orbiting satellites. 

Data is assimilated in prepbufr format, which contains information from 
weather stations in FM12 and METAR format, as data from ships, buoys, and 
soundings. The radiances are assimilated from information from polar-orbiting 
satellites with information from microwave channels in bufr format, the sensors 
AMSU-A (NOAA-15/16/18/19), MHS (NOAA-18/19), SSMIS (DMSP-16) and 
ATMS (Suomi-NPP) were used, in all cases downloaded free of charge from the 
site: https://rda.ucar.edu/datasets. The set of assimilable data to make the expe-
riments was the same in all cases. 

Assimilation Experiments Design 
The hybrid methods, as well as the purely variational case, can be summarized as 
the iterative solution to find the state x that minimizes the cost function J(x) [5] 
[15]. This solution represents the maximum probability (least variance) estimate 
of the true state of the atmosphere. 

Hybrid schemes combine two ways of obtaining the BEC. On the one hand, 
they use a BEC generated for a variational process. In this case, the differences or 
perturbations between valid forecasts for the same time but with different initia-
lization are calculated, generally following the scheme (T1 + 24) minus (T2 + 
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12), where T is the instant of initialization in each run [15] [16]. These differ-
ences are usually constructed using different times of the day to remove the di-
urnal cycle, typically using 00:00 and 12:00 UTC (United Time Coordinated). 

The differences obtained are averaged over a period that must range from 15 
to 30 days before the initialization of interest at least [17], which provides the 
system with a mean background error. The BECs obtained in this way tend to be 
synoptically dependent and time invariant, which acts as an encapsulated clima-
tology, which can provide poor results when the flow of the day differs from the 
one fixed in the covariance matrix [2] [18]. For these experiments, static BECs 
built with 15 days are used, taking into account that previous results obtained 
with SisPI [8], do not show statistically significant differences between the re-
sults obtained with BECs with 15 and 30 days. 

The other way to obtain the BEC is by calculating the perturbations from a 
previous ensemble, where all the members contain the initialization time of the 
experiment to be carried out. For this, the SisPI solutions corresponding to two 
days before the initialization time are used. This feature responds to the fact that 
SisPI is executed 4 times a day and has a forecast extension of 36 hours. This al-
lows to generation a small ensemble of 6 members (Figure 2). 

The ensemble size can be a point of discussion because several authors work 
with ensembles larger than 20 members ([19] Kong et al. 2017), others authors 
like Tong et al. [20] suggest that with small ensemble a satisfactory analyses can 
be achieved. By the other hand, the adjustment of the ensemble size responds to 
the technological limitations because its work with a design that can be used 
operationally. 

This way of calculating the covariance matrix generates a flow-dependent BEC 
similar to that used in sequential assimilation schemes such as EnKF (Ensemble 
Kalman Filter). It is based on the fact that the covariances that weight the errors 
of the model extracted from the set, being dependent on the flow, can better 
represent the error of the day, as opposed to the isotropic and static characteris-
tics in purely variational schemes [21]. 

The same authors suggest that because the purely variational BEC is flow- 
independent may not adequately represent the structure of a cyclonic vortex, 
since the not geostrophic and vortex motion of tropical cyclones implies that this  
 

 
Figure 2. Illustrative scheme that represents the construction of the ensemble used in the 
hybrid methods used in this research. 
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background error may vary with the flow of the system, making it dependent on 
the characteristics of the flow where it is embedded. 

Therefore, the hybrid methods proposed in this research use a combination of 
both ways to calculate the BEC. The control variables associated with the BECs 
obtained for this research are detailed in Table 1. 

The main advantage of using a hybrid scheme is the fact that it uses small en-
sembles to obtain flow-dependent perturbations, in these cases the use of static 
BEC can be beneficial to obtain a high covariance index [18] [20] [21]. On the 
other hand, the main disadvantage is precise that the ensemble used must well 
represent the flow of the day, otherwise, the result of the assimilation may not be 
the most appropriate.  

In 3DEnVAR formulation (Equation (1)) the ensemble is valid only for the 
analysis time [10] [11]: 
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Here J(x,α) is the cost function, x is the analysis field, xb the background field, 
C is the diagonal matrix that controls the spatial correlation of α, which in turn 
represents the control variable used, Bs covariance matrix static, Be the flow- 
dependent covariance matrix, B the weight that is established between the ma-
trices, H the observational operator contained within the WRFDA module, 
which interpolates the grid point values at the location of the observations and 
transforms the variables predicted by the model in observational quantities, fi-
nally R is the observational covariance error also contained within the assimila-
tion package. Bs, Be and R matrices assuming a zero-mean Gaussian error dis-
tribution and are not correlated. 

According to [21] and [22] the calculation of the increments is rewritten tak-
ing into account the contribution of both matrices (Equation (2)). 
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In this case, x1 represents the increase associated with the static BEC, while the 
expression on the right represents the increase associated with the ensemble 
perturbation. On the other hand, xi represents the average perturbation of the  
 
Table 1. BECs variables control. 

BEC Variable Description 

static/flow-dependent 

u zonal wind component (m/s) 

v meridional wind component (m/s) 

T temperature (˚K) 

p surface pressure (Pa) 

q pseudo relative humidity (kg/kg) 
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ensemble members, whose size is indicated by N (for this research N = 6). 
The weight between the ensemble and static BEC must follow the relationship 

(Equation (2a)): 

1 1 1
s eB B
+ =                          (2a) 

4DEnVAR is very similar, the only difference is that it requires flow-dependent 
perturbations and observations for multiple time steps (Equation (3)). The 
weight assigned to the covariance matrices does not vary over time and in this 
case, a time window of 6 hours is used, 3 before and 3 after the initialization 
time. 
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where k represents the multiple perturbations used in the algorithm. 
For this research, it was decided to study 3 possible combinations of relation-

ships between the static BEC and the flow-dependent BEC. These combinations 
were established arbitrarily, being, in terms of percentage, 75/25, 50/50, and 
25/75, always placing first the value of the variational BEC and in second place 
the one assigned to the ensemble BEC. The purpose of this design is to give 
greater importance to one or the other matrix over the background error, as well 
as equalize the impact of the matrices. From now on, for synthesizing the expla-
nations, the weight value relative to the flow-dependent BEC will be taken as a 
reference. The nomenclature assigned to the different experiments is reflected in 
Table 2. 

2.3. Experiments Evaluation 

Because the evaluation is made on landfall of tropical storm Eta, it focused on 3 
fundamental parameters of the storm, trajectory, intensity, and precipitation. 

For this evaluation, continuous verification statistics are used, such as the 
mean absolute error (MAE), (Equation (4)), the root mean square error (RSME)  
 
Table 2. Experiments nomenclature and their relationship with the weight attributed to 
the different matrices expressed in %. 

Nomenclature 
static BEC  
weight (%) 

flow-dependent BEC  
weight (%) 

3DEnVAR_25 75 25 

3DEnVAR_50 50 50 

3DEnVAR_75 25 75 

4DEnVAR_25 75 25 

4DEnVAR_50 50 50 

4DEnVAR_75 25 75 
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(Equation (5)), and Pearson’s correlation (Pearson) (Equation (6)) [23]. Where, 
in all cases, O represents the observations and P the experiment’s solutions. 
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The evaluation also includes a dichotomous analysis with the use of statisti-
cians calculated through a contingency table (Table 3), which was applied mainly 
in the evaluation of precipitation. This type of analysis allowed a more detailed 
description of the behavior of the error of the precipitation forecasted by the 
different experiments for different thresholds. 

The calculated statistics allow for obtaining an estimate of the occurrences that 
are correctly predicted (Equation (7)) and the proportion of non-occurrences that 
were incorrectly predicted (Equation (8)) [23]. 

aH
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+

                          (7) 

bF
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+

                          (8) 

The critical success index (CSI) is calculated too. However, despite this statis-
tician is used for low-frequency events since it does not take into account the 
correct negatives, the calculation of the extreme dependency index (EDI) is also 
introduced (Equation (10)), which can offers a better characterization than the 
CSI, given that it tends to give very low values when there are significant differ-
ences between the frequencies of manifestation of an event, which can lead to 
difficulties when making an adequate interpretation. This often happens with 
precipitation because large accumulations tend to occur in small areas and are 
less frequent. 
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Table 3. Contingency table. 

Forecasted 
Observed 

Yes No 

Yes a b 

No c d 
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In the particular case of precipitation, the accumulated every 6 hours mea-
surements by conventional meteorological stations distributed throughout the 
country was used for evaluation purposes (Figure 3). 

Incremental analysis is carried out to measure the impact of each of the first 
guess proposed designs. The value of the increases or corrections is obtained by 
subtracting the values of the variables of the analysis field (assimilation result) 
and the background field (initial condition without assimilation). This step al-
lows understanding of the reason for the model solutions, providing exact values 
of how the observations and the background error modify the first guess. Higher 
values of increments suggest a greater impact on the assimilation process. 

Since the objective of SisPI is short and very short-term forecasting, the evalu-
ation is made within the first 24 forecasting hours after the initialization. 

3. Results 
3.1. Brief Description of Studies Case 

After reacquiring tropical depression status on November 6, located east of Bel-
ize, the system turned toward the east-northeast, a movement favored by the 
flow resulting from the combination of a mid- and upper-level trough with the 
circulation of the subtropical anticyclone (Figure 4) [24]. 

At the beginning of day 7th, Eta once again reaches the category of a tropical 
storm, maintaining course, but temporarily accelerating its forward speed during 
that day to estimated speeds of 28 km/h. With this movement, it made landfall 
on the southern coast of the central region of Cuba, specifically through the 
province of Ciego de Ávila, at approximately 09:00 UTC on day 8th, with maxi-
mum sustained winds around 100 km/h, according to data from the reconnais-
sance plane. 

 

 
Figure 3. Spatial distribution of conventional weather stations in Cuba. 
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Figure 4. Wind speed maps produced by the National Forecasted Center of INSMET, corresponding to November 7th, 2020 at 
12:00 UTC. (a) 200 hPa level; (b) 500 hPa level. Courtesy of the National Forecast Center, INSMET. 

https://doi.org/10.4236/acs.2023.132015


P. M. González-Jardines et al. 
 

 

DOI: 10.4236/acs.2023.132015 265 Atmospheric and Climate Sciences 
 

3.2. Track Forecast Evaluation 

The erratic nature of Eta’s track after emerging into the Caribbean Sea and its 
subsequent interaction with an upper-low pressure system made it very difficult 
to forecast the track of the tropical system. On the other hand, over the national 
territory, Eta experienced a reduction in its movement speed and an inflection in 
its trajectory, changing its course towards the northwest, aspects that tend to 
complicate this forecast in practice. 

The runs initialized on November 7th at 12:00 UTC show great uncertainty 
during the first 6 to 9 hours (Figure 5(a)). This fact is related to the low ability 
of the model to locate the center of circulation, a usual difficulty in very weak 
systems such as the case of Eta at that time. Subsequently, the errors of all methods  

 

 
Figure 5. Comparison between Eta best track (black), SisPI (grey), and the different assimilation experiments. (a) Initialization 
corresponding to November 7th; (b) initialization corresponding to November 8th. 
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are similar, although, in the intermediate terms, the designs with a greater in-
fluence of the static BEC tend to lead to less effective solutions than SisPI. 

On the other hand, in the experiments started on day 8 at 00:00 UTC, a de-
crease in the trajectory error and a lower dispersion of the solutions can be seen 
(Figure 5(b)). 

Common points are observed in both initializations. At the first place, the 
impact of data assimilation is evident, since the initial location of the cyclonic 
circulation center is more consistent with reality than in the case of SisPI, de-
creasing the model’s location error. On the other hand, the 4DEnVAR_75 
scheme showed the best performance, generating the lowest forecast errors 
about the other designs. 

These results are directly related to the forecast environment surrounding the 
storm. In this sense, the direction and speed of mean flow in the layer of isobaric 
surfaces that are between 700 and 400 hPa are decisive for the movement of the 
storm. 

Concerning November 7th initialization, a tendency of the experiments to dis-
place the center of circulation of the low-pressure zone in the height towards the 
southeast, where the latitudinal error is more significant, is observed (Figure 6).  
 

 
Figure 6. Mean flow behavior in 700 to 400 hPa layers (lines), mean wind speed in that layer (shading), and forecasted position of 
the Eta circulation center (L). (a) Reanalysis of the RAP (Rapid Refresh Model); (b) 4DEnVAR_25; (c) 4DEnVAR_75. Maps cor-
responding to November 8th at 06:00 UTC forecast. Experiments b and c was initialized on November 7th. 

https://doi.org/10.4236/acs.2023.132015


P. M. González-Jardines et al. 
 

 

DOI: 10.4236/acs.2023.132015 267 Atmospheric and Climate Sciences 
 

The schemes that give greater weight to the flow-dependent BEC tend to gener-
ate an average circulation associated with this incipient low, a result that is more 
consistent with reality, which indicates that the set better represents the flow 
conditions where the storm is embedded than the static BEC. 

It can be seen that a further eastward localization of the upper low core leads 
to solutions that turn more northward to Eta’s best track, which increases the 
trajectory error. About November 8th initialization, it can be observed that the 
solutions of the 4DEnVAR_50 and 4DEnVAR_75 experiments better represent 
the mean circulation of the layer selected, although generating a dipole with a 
northeast-southeast orientation as a result of a deepening of Eta, indicating an 
overestimation of storm intensity. In the case of the 3DEnVAR method, the 
3DEnVAR_75 experiment better represents these characteristics, coinciding 
with a better representation of those experiments where the flow-dependent 
BEC has greater weight (Figure 7). 

3.3. Eta Intensity Forecast Evaluation 

The intensity forecast presented several difficulties. SisPI generated an overesti-
mation of this indicator, forecasting minimum pressures within category 1 hur-
ricane thresholds, something that never happened. A probable cause of these re-
sults lies precisely in the trajectory error since advancing the turn northward and 
therefore moving the system further westward, kept it longer over the sea, a fac-
tor that usually favors the intensification processes. 

In both initializations, it is observed how the error is considerably reduced 
during the first 9 forecasting hours and, after this time, the experiments solu-
tions converge to SisPI (Figure 8). This indicates that the impact of assimilation 
reaches its maximum effectiveness precisely at this time threshold. 

The experiments related to 4DEnVAR method show the lowest errors, as a 
result of a more realistic reproduction of the synoptic environment unlike 
3DEnVAR. In this sense, the 4DEnVAR_50 and 4DEnVAR_75 designs exhibit  

 

 
Figure 7. Mean flow behavior in 700 to 400 hPa layer (lines), mean wind speed in that layer (shading), and forecasted position of 
Eta circulation center (L). (a) 3DEnVAR_25; (b) 3DEnVAR_75. Maps corresponding to November 8th at 06:00 UTC forecast. 
Experiments b and c was initialized on November 7th. 
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Figure 8. MAE comparison for the first 24 forecasting hours for both 
initializations. (a) November 7th; (b) November 8th. 

 
the best results, coinciding with the most accurate track forecasts. 

These differences between both methods are also related to the volume of as-
similated observations, which is much greater in the case of 4DEnVAR since it 
includes data contained in a 6 hours window time, in contrast to 3DEnVAR, 
which only assimilates the observations present in the environment of the initia-
lization time. This allows 4DEnVAR to have information, not only about the real 
state of the atmosphere over the high-resolution domain at the initialization in-
stant but also about the behavior of the real gradients in the assimilation window 
used. 

The way of different experiments solves the interaction of the storm with the 
upper low significantly influences the intensity forecasts. Eta was subjected to 
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dry and cooler air intrusion from the third and fourth quadrants, this affected 
the storm’s core, which is usually warm and humid, limiting the intensification 
processes and leading Eta to remain in a kind of transition between a classic 
tropical system and a subtropical storm. 

The cold, dry air intrusion mechanism works by generating undersaturated 
convective downdrafts that reduce the wet static energy in the boundary layer, 
thus limiting the energy available to the storm. In situations like this, it takes 
several hours for evaporation to recover moisture from the surface boundary 
layer before the intensification process can resume. 

Therefore, this interaction affects the inertial stability of the storm, which is 
nothing more than its resistance to external forcing [2]. This is due to the iner-
tial stability tends to decrease with height, due to the weakening of the rotational 
wind and the absolute vorticity of the upper anticyclonic outflow, which makes 
Eta susceptible to fluctuations of the upper low, a process that is reflected in the 
experiments, with different accuracy degrees. 

The designs that make a better forecast of this extremely complex process 
were the most successful in predicting intensity. Figure 9 illustrates this by 
comparing temperature and relative humidity advection forecasts between the 
3DEnVAR_25 (low performance) and 4DEnVAR_50 (high performance) de-
signs. 
 

 
Figure 9. Temperature advection forecast comparison; (a)-(b); and relative humidity; (c)-(d); at 950 hPa for the 3DEnVAR_25 
(a)-(c) and 4DEnVAR_50 (b)-(d) experiments. In both cases initialized on November 8th. The time shown corresponds to No-
vember 8th at 06:00 UTC, near the storm’s landfall. 
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In this example, the 3DEnVAR_25 solution shows cold advection around the 
core but without interrupting the warm advection generated by deep convection 
growing around the center of the cyclonic vortex (Figure 9(a)), which is consis-
tent with the limited dry advection around the center of Eta (Figure 9(c)). 

On the opposite, 4DEnVAR_50 shows an interruption of the warm advection 
generated by the growth of deep convection clouds and a rearrangement of the 
greater convection, expressed in a greater warm advection, to the left side of the 
circulation center, one of the characteristics that they usually show subtropical 
cyclones or in transition to extratropicalization. This also coincides with a great-
er entry of dry air (Figure 9(b) and Figure 9(d)), which limits the intensifica-
tion of the system and, by affecting the growth of deep convection cells due to 
interruptions in the flow of humidity, also limits the ability of Eta to produce 
significant precipitation over the central region. 

In general, it can be summarized that all the proposed experiments lead to a 
reduction in the intensity forecast error, mainly during the first 9 forecasting 
hours. However, both hybrid schemes lead to an underestimation of the intensi-
ty of the storm, as opposed to SisPI which overestimates this feature, mainly at 
November 8th initialization (Figure 8). 

Once again, it is observed that when weighting the background errors funda-
mentally using the flow-dependent BEC, more realistic solutions are achieved, 
although, in the case of 4DEnVAR, the variant that gives equal weight to both 
BECs also generates satisfactory results. 

3.4. Eta Precipitation Forecast Evaluation 

As Eta is a relatively weak system and moves very close to the Guamuhaya 
mountains, crossing extensive areas of agricultural importance in the country, 
precipitation is precisely the most important associated phenomena for fore-
casting purposes, whose forecast, as expected, is more or less accurate in corres-
pondence with the ability to forecast the track and intensity of the storm. 

An increase in the ability to forecast precipitation is observed in all the assi-
milation schemes, fundamentally in the initialization corresponding to Novem-
ber 7th, being somewhat more discreet in those experiments initialized on No-
vember 8th (Figure 10). 

In the experiments initialized on November 7th, 4DEnVAR_50 and 4DEnVAR_ 
75 designs showed the best performance indices for accumulates exceeding 
10 mm/6 hours (Figure 10(a)). On the opposite, the experiments carried out 
with the 3DEnVAR method led to an underestimation of the accumulated pre- 
cipitation, where the 3DEnVAR_50 design showed slightly superior results to 
the rest. In this sense, 3DEnVAR_75, with an increase in false alarms, and 
3DEnVAR_25, with failures, exhibit a marked underestimation of the precipita-
tion forecast. 

The experiments initialized on November 8th show more modest results. In 
this sense, the highlight is a substantial increase in false alarms, as a consequence  

https://doi.org/10.4236/acs.2023.132015


P. M. González-Jardines et al. 
 

 

DOI: 10.4236/acs.2023.132015 271 Atmospheric and Climate Sciences 
 

 
Figure 10. Performance diagrams evaluating the accumulated 
precipitation forecasts that exceed the threshold of 10 mm/6 
hours. (a) initialized at November 7th; (b) initialized at No-
vember 8th. 

 
of an overestimation of the humid advection towards the west of the country 
(Figure 11), together with a greater volume of faults towards the central region 
due to an increase in dry advection associated with a greater intrusion of dry air 
from the upper low. 

This dry advection overestimation is directly related to the forecast of the ap-
proximation of the center of the upper low to Eta core, since those solutions 
where both circulations are closer, the more depressed the precipitation will be 
in the center of the storm, which responds, as stated above, to the fact that dry  
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Figure 11. Moisture advection outputs at 500 hPa level (shaded); combined with the flow in the layer between 700 and 400 hPa 
(lines) and the relative position of cyclonic circulation center (L), initialized on November 7th, forecast corresponding to Novem-
ber 8th at 09:00 UTC when Eta was over Cuban territory. (a) 3DEnVAR_75; (b) 4DEnVAR_50. 
 

air weakens the convection, creating undersaturated downdrafts that subse-
quently cool the surface boundary layer and reduce its moisture. 

Analyzing the results taking into account different precipitation thresholds, it 
is observed that these differ to a certain extent from those shown up to now 
(Figure 12). This behavior is directly related to the fact that the Eta forecast does 
not manage to generate enough deep convection around the core and extensive 
areas of stratiform precipitation predominate, particularly towards the western 
and central portions of the country. 

The experiments reflect this environment, however, it overestimates the spa-
tial distribution of stratiform precipitation while underestimating deep convec-
tion zones. These differences are related to the dry advection around the storm 
core, something that, as has been seen, has a significant weight in the increase of 
errors in the designs where the influence of the static BEC predominates. 

In general, it can be seen that 4DEnVAR method loses effectiveness as the 
value of the precipitation threshold increases. This means that the method pre-
dicts spatially limited deep convection zones, mainly towards the storm center, 
where the largest accumulated were generated. In this case, the 4DEnVAR_25 
experiments, in both initializations, are the ones with the best performance with 
this method. This result indicates that when these experiments overestimate the 
convection around the center of Eta, not disrupting the center of the vortex, they 
improve the correct detections towards the central region and compensate, to 
some extent, the failures towards other regions of the country. 

Related to 3DEnVAR method, the 3DEnVAR_75 experiments show the best 
results in both initializations. The main difficulties are presented towards the 
weakest precipitation thresholds, approximately from 0 to 20 mm/6hours. 
However, for heavy rain (≥50 mm/6hours) it exhibited EDI values above 0.5 in 
both initializations. 
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Figure 12. EDI behavior for different precipitation thresholds. (a) 
November 7th initialization; (b) November 8th initialization. 

3.5. Complementary Evaluation 
3.5.1. Cost Function 
The cost function, by definition, represents the minimum deviation from the 
true state of the atmosphere [11] [15]. This breaks down into a linear combina-
tion of three functions: Jo which is associated with the observations, Jb which is 
related to the static BEC, and Je which represents the contribution of the 
flux-dependent BEC (Equation (11)).  

( )J x Jo Jb Je= + +                         (11) 

The general behavior is that as the minimization process advances, the va-
riance of the observations decreases, and that of the BECs increases, in such a 
way that the dynamic consistency of the meteorological fields is maintained. The 
results show that the minimization requires a greater number of iterations in the 
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case of the 4DEnVAR method, which is not surprising since the volume of assi-
milated information is greater than in the case of 3DEnVAR. However, it can be 
noted that in both initializations the number of additional iterations required by 
4DEnVAR is usually not more than two, which indicates a high efficiency of the 
method (Figure 13). 

The cost functions resulting from giving a higher weight to the flow-dependent 
BEC, generate higher values of J(x). This means that, since the contribution of 
the BECs is the same, these experiments (3DEnVAR_75 and 4DEnVAR_75) al-
low assimilating a greater number of observations. 

This response is to the fact that, in 4DEnVAR case, a smaller number of ob-
servations are rejected when passing the pre-established quality control inside 
the assimilation process. For 3DEnVAR method, this detail influences the speed 
with which the method reaches the maximum reduction of the cost function, 
requiring some additional iterations in the 3DEnVAR_25 and 3DEnVAR_50 
experiments. These results suggest that 3DEnVAR could be more sensitive to the 
BEC contribution than 4DEnVAR, therefore, when the adjusted error in the co-
variance matrices does not adequately represent the flow of the day, their solu-
tions could be more affected than in the case of 4DEnVAR. 

 

 
Figure 13. Cost function for both initializations and all assimilation experiments. 
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3.5.2. Incremental Analysis 
A brief evaluation of the behavior of these corrections or increases corroborates 
the explanation above. For example, concerning the temperature fields (Figure 
14), it is observed that 4DEnVAR generates a more realistic initial condition, by 
representing the growth of convective cells that took place in the Eta circulation. 
This process is characterized by a slight cooling at low levels and heating at high 
levels, in response to the flow of sensible heat (heat transfer), which favors the 
conversion of wet static energy into kinetic energy, allowing the intensification 
of the system. 

The evaluation also shows that the contributions tend to be discrete and more 
notable between the experiments in the case of 4DEnVAR, since with the 
3DEnVAR method the differences between the experiments are barely percepti-
ble and, on the other hand, in the low and medium model levels, generates a 
modification of the first guess that tends to zero, which indicates a limited effect 
with the propagation of the correction of the observations, suggesting some iso-
tropic characteristics that are not appreciated with the 4DEnVAR method. 

On the other hand, the 4DEnVAR_25 experiments show a tendency to cool 
around the intermediate model levels. This behavior translates into an accelera-
tion of the vertical movements in their ascent through the wet adiabatic gradient,  
 

 
Figure 14. Temperature (˚K). Mean of gridded analysis increments. 
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advancing the appearance of the convective cells for the other experiments, a fact 
that explains the behavior of their solutions with the precipitation forecast. 

The differences, expressed by RSME between the analysis field and first guess, 
in the case of temperature are therefore discrete, in thresholds of 0.2 to 0.4 ˚K, 
reaching values close to 1.0 ˚K in the upper levels, as a result of radiances inges-
tion. The 4DEnVAR method shows to be less susceptible to BEC fluctuations com- 
pared to 3DEnVAR, which exhibits the greatest differences with the 3DEnVAR_ 
75 experiments (Figure 15). 

Pressure field increments showed very similar results (Figure 16). In general, 
the assimilation schemes lead to a slight increase in the atmospheric pressure 
values, as a result of predicting a weaker cyclonic vortex in contrast to the back-
ground field represented by SisPI, which overestimates the intensity of Eta in 
both initializations. 

In the experiments initialized on November 7th, again, little difference is ob-
served between the mean increments per grid point obtained through the dif-
ferent experiments with the 4DEnVAR scheme. However, the 4DEnVAR_50 and 
4DEnVAR_25 generate greater increments from surface to middle levels, exces-
sively weakening the low-pressure region associated with Eta, which is related to 
a greater underestimation of the intensity of the cyclone forecasted by these  

 

 
Figure 15. Temperature (˚K). RSME between analysis field and first guess. 
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Figure 16. Pressure (Pa). Mean of gridded analysis increments. 
 

experiments. 
In 3DEnVAR method, the differences between the weight given to the BECs 

are more significant. In this case, 3DEnVAR_25 and 3DEnVAR_50 generate 
very discrete increments, which do not sufficiently correct the pressure field of 
the first guess. On the other hand, 3DEnVAR_75 generates a volume of correc-
tions comparable to those obtained with 4DEnVAR, however, the result of the 
increases is a weaker initial vortex. 

The differences between the analysis and the background field indicate pre-
cisely that the 3DEnVAR method and, to a lesser extent, the 4DEnVAR_25 ex-
periment, show the largest positive differences, as a result of an average increase 
in atmospheric pressures over the high-resolution domain. On the other hand, 
the 4DEnVAR_50 and 4DEnVAR_75 experiments generate a more discrete av-
erage increase, as a result of a more realistic representation of the intensity of the 
cyclonic vortex at initialization (Figure 17). 

With the initialization corresponding to November 8th, it can be observed that 
the experiments with a greater influence of the flow-dependent BEC lead to 
more discrete contributions compared to those more dependent on the static 
BEC. 

This indicates that the experiments with a greater influence of the static BEC  
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Figure 17. Pressure (Pa). RSME between analysis field and first guess. 
 

tend to create zones of higher atmospheric pressure around Eta, affecting the 
static stability of the system and therefore incurring greater trajectory and inten-
sity errors, as described in the previous sections. This is, to some extent unders-
tandable, since the static BEC was obtained by averaging the model disturbances 
15 days before the initialization instant, where the synoptic flow was not dis-
turbed by the presence of any synoptic-scale low-pressure system, so it does not 
adequately reflect the background error of the model under the conditions 
where the experiments are carried out. This reality negatively affects the propa-
gation of the contribution of the assimilated observations. In this case, the 
flow-dependent BEC better reflects the error of the day and generally leads to 
obtaining a new initial condition that is closer to reality. 

4. Conclusions 

This research shows the impact of data assimilation with the hybrid 3DEnVAR 
and 4DEnVAR methods, by empirically modifying the weight of the covariance 
matrices on the assimilation process. 

It suggests that the impact of data assimilation, for both methods, has a max-
imum influence that extends for up to 6 or 9 hours after the initialization time, 
after which the results converge to the solution without assimilation, although a 
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decrease in errors in a general sense is appreciated for the first 24 forecasting 
hours. 

Track, intensity, and precipitation forecasts were strongly influenced by how 
the experiments reflected the interaction between Eta and the upper-low system. 
The main errors were associated with a displacement toward the southeast of the 
center of the upper low and an increase in the baric gradients in the 700 - 400 
hPa layer, which increased the speeds of guiding currents. 

Experiments that give more weight to the static BEC tend to generate higher 
pressures in the domain and, as a result, predict a weaker storm. They do not 
adequately reflect the interaction with the upper low and consequently, their so-
lutions are far from reality by failing to predict the vortex disruption due to dry 
air intrusion, this generates greater errors of trajectory and intensity mainly, 
compared to the designs that give more weight to the flow-dependent BEC. 

The 3DEnVAR scheme seems to be more sensitive to BEC changes, presenting 
the greatest differences between experiments. On the other hand, 4DEnVAR is 
usually more robust and efficient, presenting the best results except for the pre-
cipitation forecast. Precipitation turned out to be the most problematic variable 
with low skill indices in the experiments. 4DEnVAR does not show homogene-
ous results in the evaluation carried out, while the 3DEnVAR_75 experiments 
exhibited the best ability for all the thresholds analyzed with an EDI ≥ 0.5. 

These results suggest that giving a weight of 75% to the flow-dependent BEC 
leads to the most realistic solutions with both methods since it reflects the flow 
conditions more accurately than the static BEC. In the case of 4DEnVAR as-
signing a 50% weight between both BECs can also lead to satisfactory results. 
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