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Abstract 
The present work is a comparative study between the foF2 variabilities for 
two equatorial regions (Ouagadougou: lat. 12˚21'N; long. 1˚30'E, dip. 1.43˚ in 
Africa and Huancayo: Lat. 12˚S; Long. 75˚12'W in America) during solar 
cycles 20 and 21 minima and maxima phases under geomagnetic extreme 
conditions (quiet and disturb). Profiles from these two stations are very simi-
lar for all the seasons over the solar cycles. However, measured data from 
Huancayo station are higher than those from Ouagadougou station during 
winter with a reverse phenomenon for summer. The investigations suggest 
that the gap between foF2 values and the reverse phenomenon observed for 
the two stations may be explained by their hemispheric location (Huancayo 
in south hemisphere and Ouagadougou in North one). Longitudinal irregu-
larities in ionosphere may also contribute to that little difference observed 
during the time interval of our investigation. 
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1. Introduction 

The ionosphere is an ionized layer of Earth’s atmosphere. It is one of the most 
important layers of Earth’s atmosphere for its role in wave propagations (com-
munication). Understanding the behavior of this region may be useful for inves-
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tigations of solar disturbances and their terrestrial impacts. To better seize the 
level of the variations of this region in the equatorial region through its critical 
frequency foF2 profiles many authors have reviewed the seasonal variations of 
foF2 [1]-[14]. This ionospheric parameter through its in situ measurements al-
lowed [6] to classify foF2 diurnal profiles as follow: 1) Morning peak profile 
characterized by a predominance morning peak; 2) Plateau profile; 3) Dome 
profile; 4) Reverse profile characterized by predominance afternoon peak; 5) 
noon bite out profile due to the presence of double peaks (morning and after-
noon peaks) with trough around midday. All these previous investigations have 
provided useful suggestions for the prediction in the GNSS recordings. 

The objectives of our present investigation are to better understand the dy-
namic of the ionosphere in two regions (Ouagadougou: lat. 12˚21'N; long. 
1˚30'E, dip. 1.43˚ in Africa and Huancayo: Lat. 12˚S; Long. 75˚12'W in America). 

In the current study, foF2 data from Ouagadougou and Huancayo ionosonde 
stations are used to illustrate the various characteristics of the F2 layer of the io-
nosphere through is critical frequency foF2 seasonal time variation during solar 
cycle minima and maxima for Ouagadougou and Huancayo. 

2. Data and Methodology 
2.1. Data 

1) The ionospheric parameter studied is the critical frequency of the F2 layer 
(foF2) taken from www.spidr.ngdc.noaa.gov. 2) The values of sunspots Rz are 
obtained from the SPIDR database (URL http://sidc.oma.be/sunspot-data/. 3) 
The geomagnetic index aa used to selected quiet days conditions are from 
http://isgi.unistra.fr/data_download.php. Figure 1 is an example of pixel dia-
gram displaying aa index as a table and allowing us to select geomagnetic condi-
tions [15] [16]. 

2.2. Methodology 

The Solar cycle phases are determined using sunspot number Rz [17] and crite-
ria fully described in many works [18] [19]: 1) the minimum phase: Rz < 20; 2) 
the ascending phase: 20 ≤ Rz ≤ 100 and Rz greater than the previous year’s value; 
3) the maximum phase: Rz > 100; 4) the decreasing phase: 100 ≥ Rz ≥ 20 and Rz 
less than the previous year values. 

 

 
Figure 1. Diagram pixel of year 1979. 
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Local (north hemispheric) seasons are classified as followed: winter (Decem-
ber, January, and February); spring (March, April, May); summer (June, July, 
August) and autumn (September, October and November). 

To perform our study, we proceed as follow: 
1) At solar maximum and solar minimum: select days with the highest Rz and 

the lowest Rz respectively; 
2) Choose five days the most disturbed (highest aa index) and five quietest (aa 

lowest index); 
3) Monthly and seasonal average (hourly) of foF2 per cycle and solar activity. 

3. Results and Discussion 

In this section we present and analyze the results of our investigations in other 
to allow comparison between measurements from two equatorial regions: Africa 
and America. 

Figures 2-5 present the diurnal variation of foF2 during geomagnetic quiet  
 

 
Figure 2. Diurnal and seasonal foF2 during solar minimum phase of the cycle solar 20. 

https://doi.org/10.4236/acs.2022.121008


K. M’Bi et al. 
 

 

DOI: 10.4236/acs.2022.121008 108 Atmospheric and Climate Sciences 
 

 
Figure 3. Diurnal and seasonal foF2 during solar maximum phase of the cycle solar 20. 
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Figure 4. Diurnal and seasonal foF2 during solar minimum phase of the cycle solar 21. 

 

 
Figure 5. Diurnal and seasonal foF2 during solar maximum phase of the cycle solar 21. 
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activity for solar minima and disturbed geomagnetic activity for solar maxima at 
Ouagadougou and Huancayo stations over the solar cycle 20 (1965-1976) and 
the solar cycle 21 (1976-1986) Each figure show the seasonal (a—Winter, 
b—Spring, c—Summer, d—Autumn) behavior of foF2 during our investigation 
period. It is easy to remark that all the profiles suggested by [12] for equatorial 
region in Africa are reproduced at Huancayo station. During the minimum 
phase of the solar cycle 21 foF2 presents “Dome” or “D” profile characterized by 
a double peak (morning and evening) in winter while “Noon bite out” or “B” 
profile characterized morning is recorded for the three other seasons (Figure 4). 
Regardless of the season, foF2 presents “Morning Peak” or “M” profile during 
the solar maximum phases for both solar cycles 20 and 21 (Figure 3 and Figure 
5). During the minimum phase of solar cycle 20, foF2 presents “Noon bite out” 
or “B” profile for all the seasons except winter where foF2 is characterized by 
“Reversed” or “R” profile. 

From these investigations it appears for both solar cycles 20 and 21, foF2 
presents similar profiles for the two stations. The little difference in magnitude 
may be attributed to the longitudinal irregularities in the F2-layer [20]. Table 1 
summaries the most important seasonal values of foF2 during solar cycle and 
solar activity for Ouagadougou and Huancayo stations. 

In general, the recorded values of foF2 at Huancayo station are higher than 
those from Ouagadougou station during winter. A reverse phenomenon is ob-
served during summer. These observations for two equatorial regions may be 
due to the fact that they are not located in the same hemisphere (seasons are 
permitted). 

4. Conclusion 

Seasonal and diurnal profiles of foF2 values measured at the stations of Huan-
cayo and Ouagadougou present a similar morphology with little difference dur-
ing winter and summer. The difference observed during these seasons can be  

 
Table 1. Comparative value of most significant values of foF2 during season and solar cycle phases Oua-
gadougou and Huancayo stations. 

Stations Solar Cycle phases 
Winter 

foF2 (Mhz) 
Spring 

foF2 (Mhz) 
Summer 

foF2 (Mhz) 
Autunm 

foF2 (Mhz) 

Ouagadougou 

Minimum of Cycle 20 08.30 08.82 07.95 08.62 

Maximum of Cycle 20 12.36 12.27 11.01 12.49 

Minimum of Cycle 21 08.13 09.56 07.52 08.91 

Maximum of Cycle 21 13.68 13.73 11.60 14.21 

Huancayo 

Minimum of Cycle 20 09.02 07.56 06.35 08.60 

Maximum of Cycle 20 12.55 11.83 09.91 12.71 

Minimum of Cycle 21 08.94 07.61 06.39 08.98 

Maximum of Cycle 21 13.35 14.13 10.13 14.15 
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explained by the fact that the two stations are located in different hemispheres. 
The season may be reversed in the hemispheres strongly link to the ionization 
phenomenon. Solstice anomaly is observed only during the intense geomagnetic 
activity (solar maximum) as summarized in table for these two stations. 
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