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Abstract 
In recent years, there has been increasing demand for high-resolution season-
al climate forecasts at sufficient lead times to allow response planning from 
users in agriculture, hydrology, disaster risk management, and health, among 
others. This paper examines the forecasting skill of the North American Mul-
ti-model Ensemble (NMME) over Ethiopia during the June to September 
(JJAS) season. The NMME, one of the multi-model seasonal forecasting sys-
tems, regularly generates monthly seasonal rainfall forecasts over the globe 
with 0.5 - 11.5 months lead time. The skill and predictability of seasonal rain-
fall are assessed using 28 years of hindcast data from the NMME models. The 
forecast skill is quantified using canonical correlation analysis (CCA) and 
root mean square error. The results show that the NMME models capture the 
JJAS seasonal rainfall over central, northern, and northeastern parts of Ethi-
opia while exhibiting weak or limited skill across western and southwestern 
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Ethiopia. The performance of each model in predicting the JJAS seasonal 
rainfall is variable, showing greater skill in predicting dry conditions. Overall, 
the performance of the multi-model ensemble was not consistently better 
than any single ensemble member. The correlation of observed and predicted 
seasonal rainfall for the better performing models—GFDL-CM2p5-FLOR-A06, 
CMC2-CanCM4, GFDL-CM2p5-FLOR-B01 and NASA-GMAO-062012—is 
0.68, 0.58, 0.52, and 0.5, respectively. The COLA-RSMAS-CCSM4, CMC1- 
CanCM3 and NCEP-CFSv2 models exhibit less skill, with correlations less 
than 0.4. In general, the NMME offers promising skill to predict seasonal 
rainfall over Ethiopia during the June-September (JJAS) season, motivating 
further work to assess its performance at longer lead times. 
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1. Introduction 

Seasonal rainfall variability throughout Ethiopia is a subject of recent research, 
particularly as extreme rainfall events have incurred significant negative impacts 
on agriculture, water, energy, and other sectors of the country [1]. 

In recent years, there has been increasing demand for high-resolution weather 
and climate forecasts at sufficient lead times to allow response planning from 
users in agriculture, hydrology, disaster management, energy, health, and plan-
ning, among others. Skillful seasonal forecasts at lead times of several months 
can help farmers anticipate the onset of seasonal rainfall to select crop variety 
and sowing time and to identify the risk of extreme events in the season and 
hence minimize impacts of such events. However, the performance of at least 
some seasonal rainfall forecasts has been shown to be poor due to uncertain ini-
tial conditions and model errors at global and regional levels [2] [3] [4] [5]. 
Here, we examine the performance of the models comprising the North Ameri-
can Multi-model Ensemble (NMME) in predicting the June-September (JJAS) 
seasonal rainfall over Ethiopia. 

There are currently several operational systems that provide global seasonal 
rainfall forecasts, for example, the National Centers for Environmental Predic-
tion (NCEP) Climate Forecast System Version 2 (CFSV2) [6], and the European 
Centre for Medium-Range Weather Forecasts (ECMWF) [7]. Recently, the NMME 
was introduced, and the ensemble system was found to reduce forecast uncer-
tainty and to increase the seasonal forecast skill [8]. The preliminary validation 
of forecast skill in the NMME model exhibited better confidence globally [9] 
[10] [11] [12]. However, some significant forecast errors were detected at re-
gional or local scales [13]. Generally, the predictability of the seasonal climate 
signal in the NMME is highest in the tropical latitudes and decreases towards the 
extra-tropical latitudes; less than 30% of global drought onsets could be detected 
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by the NMME [14] [15]. In spite of this, the NMME has been utilized with some 
success in global and some regional contexts, in the outlook of precipitation 
[16], soil moisture [17] and hydro-meteorological variables [18]. The seasonal 
forecasting systems and techniques used by Ethiopia’s National Meteorological 
Agency (NMA) have been documented in [19]. 

The NMA uses indices of sea surface temperatures (SSTs) over the tropical 
Pacific Ocean, the Southern Oscillation Index (SOI) and North Atlantic Oscilla-
tions (NAO) the Multivariate ENSO Index (MEI as described by [20] and the 
ENSO (El Niño-La Niña) outlook obtained from NOAA/CPC. Historical and 
current Niño 3.4 SSTs (the Niño 3.4 region is located in the central equatorial 
tropical Pacific Ocean) are used to select years with ENSO evolution similar to 
the forecast prediction season/year. Rainfall prediction for the current year is 
then based on rainfall observed in these analog years. Monthly SSTs are com-
pared for several months in advance of the season to be predicted. Finally, the 
seasonal forecast is presented in terms of the probability of rainfall being below, 
near, and above the climatological normal [21] evaluated the skill of Febru-
ary-May (FMAM) and June-September (JJAS) rainy seasons during the period 
1999-2011, and the results revealed that the forecasting system is biased toward 
the near-normal category over Ethiopia. Moreover, there are limitations relating 
to accuracy, forecast methodology, geographic scale, and interpretation of lead-time. 
Some studies demonstrate that combining statistical and dynamical methodolo-
gies has the potential to improve the seasonal forecast skill [22]. 

The focus of this paper is to examine the seasonal prediction skill and predic-
tability of North American Multi-Model Ensemble Models (NMME) In the 
June-September rainy season (JJAS). We explore the general circulation models 
of NMME, employing canonical correlation analysis (CCA) as a post-processing 
methodology, and assess the skill of the forecasts with respect to JJAS precipita-
tion. 

2. Study area and Data 
2.1. Study Area 

Ethiopia is located in the Horn of Africa within 3˚N - 15˚N and 33˚E - 48˚E, 
bordered with Eritrea to the north, Djibouti to the east, Sudan to the west, Kenya 
to the south, and Somalia to the south and east. It covers an area of about 1.14 
million square kilometers (944,000 square miles), the country’s topography is 
characterized by high and rugged plateaus and peripheral lowlands. Elevation in 
the country range from 160 meters below sea level (northern exit of the Rift Val-
ley) to over 4600 meters above sea level (of northern mountainous regions) 
(Figure 1). The highest mountains are concentrated on the northern and south-
ern plateaus of the country [23]. 

Ethiopia has three climatological rainy seasons, namely February-May (FMAM, 
known as Belg in Ethiopia), June-September (JJAS, known as Kiremt), and Oc-
tober-January (ONDJ, known as Bega) [24]-[31]. Figure 1 indicates that JJAS is 
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the main rainy season, accounting for 50% - 80% of annual rainfall totals and the 
largest seasonal rainfall for many portions of the country [19]. The seasonal 
rainfall is highest over northwestern, western, southwestern, and central portions 
of Ethiopia (Figure 1). As Cleary document by [19], the National Meteorological 
Agency (NMA) has issued seasonal forecasts three times a year since 1987 by as-
sessing the time-lag correlations of SSTs with seasonal rainfalls of various re-
gions over Ethiopia. The seasonal probability forecasts of four-month seasonal 
rainfall totals are provided with typically one-month lead time (e.g. the forecast 
for June-September [JJAS] is issued in late May). 

2.2. Data 
2.2.1. Description of NMME Models 
The NMME is an ensemble of ensemble predictions across several coupled mod-
els from US and Canadian institutions [8]. The NMME multi-model ensemble 
forecast system has been shown to exhibit better performance than any single  

 

 
Figure 1. Digital elevation map of predictand or target area in meter (top left panel), annual total rainfall (top right panel), 
June-September seasonal total rainfall (bottom left panel) and JJAS % of contribution (bottom right panel). 
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model ensemble, motivating the NMME undertaking [31] [32] [33]. 
The NMME forecast variables include SST, precipitation, and T2m, with real 

time and archived forecast products available online  
(http://www.cpc.ncep.noaa.gov/products/NMME). The NMME data represents 
one of the most extensive archives of seasonal predictions made using active 
seasonal forecast models currently available [8], and are of tremendous interest 
and value to both the research and forecasting communities. These represent 
only some of the most recent studies making use of this extensive and unique 
dataset [8]. The hindcast and forecast data are also archived at the International 
Research Institute for Climate and Society (IRI)  
https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/).  

For this study, we used a total of seven individual NMME models (90 ensem-
ble members). Table 1 indicates the models included in NMME (including their 
expanded names). The first column includes the institution where each model 
was produced and the name of the model. The models have various ensemble 
sizes, ranging from 10 members to 24. Further details about the individual mod-
els can be found in their reference papers, listed in Table 1. The hindcasts for 
the NMME models are available from 1982-2010 and all model outputs have 1.0˚ 
latitude by 1.0˚ longitude horizontal resolution and forecast leads of at least 0.5 - 
11.5 months. In this study, we analyzed the rainy season in Ethiopia for the JJAS 
season using one-month lead time, which means a forecast made from initial 
conditions at the beginning of one month for the next. For example, the 
one-month-lead forecast from May’s initial conditions is the forecast for June. 

2.2.2. Observation Datasets 
The NMME models’ rainfall forecasts are evaluated based on Climate Hazards 
Infrared Precipitation with Stations (CHIRPS) precipitation datasets. CHIRPS is  

 
Table 1. Selected NMME models for seasonal forecast of JJAS season. 

Model Expanded model name No. 
ensemble 
members 

lead time 
(months) 

Reference resolution 

1 CMC1-CanCM3 Canadian coupled model 1 10 0.5 - 11.5 (Merryfield & Coauthors, 2013) [34] 1˚ × 1˚ 

2 CMC2-CanCM4 Canadian coupled model 2 10 0.5 - 11.5 (Merryfield & Coauthors, 2013) [34] 1˚ × 1˚ 

3 COLA-RSMAS-CCSM4 COLA/University of 
Miami/NCAR coupled model 

10 0.5 - 11.5 (Infanti & Kirtman, 2016) [16] 1˚ × 1˚ 

4 GFDL-CM2p5-FLOR-A06 Expanded version of GFDL 
coupled model, FLOR-A06 

12 0.5 - 11.5 (Vecchi & Coauthors., 2014) [35] 1˚ × 1˚ 

5 GFDL-CM2p5-FLOR-B01 Expanded version of GFDL 
coupled model, FLOR-B01 

12 0.5 - 11.5 (Vecchi & Coauthors., 2014) [35] 1˚ × 1˚ 

6 NASA-GMAO-062012 Modified version of NASA 
coupled model 

12 0.5 - 8.5 (Vernieres et al., 2012) [36] 1˚ × 1˚ 

7 NCEP-CFSv2 NOAA/NCEP coupled model 24 0.5 - 9.5 (Saha et al., 2014) [6] 1˚ × 1˚ 
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a gridded analysis provided at 1.0˚ × 1.0˚ resolution [37] [38]. The dataset is ac-
cessed from International Research Institute Data Library (IRDL)  
https://iridl.ldeo.columbia.edu/SOURCES/.UCSB/.CHIRPS/). 

3. Methodology 
3.1. Canonical Correlation Analysis (CCA) Approaches 

In this study, forecasts are derived from the various dynamical model outputs by 
applying post-processing based on Canonical Correlation Analysis (CCA) [39]. 
The predictor (i.e. dynamical model) spatial domain is usually designed to be 
larger than the predictand (forecast) domain, so that relevant features outside of 
the targeted domain can be used for better model error correction, for example, 
to correct for systematic errors in model spatial structure of circulation and re-
lated variables (Figure 1). In the CCA method used here, preorthogonalization, 
using empirical orthogonal function (EOF) analysis, is done separately on the 
model hindcasts (the X variable, or predictor) and on the corresponding obser-
vations (the Y variable, or predictand), and a truncated set of the principal 
component time series from these EOFs is used as input to the CCA. The main 
purpose of the EOF/PCA analyses is to reduce the potential for over-fitting, 
through data compaction and noise filtering [40]. 

3.2. Deterministic and Probabilistic Skill Assessment 

This section provides both deterministic and probabilistic skill assessment of the 
NMME system. We utilize both deterministic and probabilistic methods of as-
sessment as there is evidence that the two approaches together provide a more 
complete representation of skill [41]. The forecast skill of NMME models is eva-
luated by using several deterministic skill measures: two alternative forced 
choice (2AFC), Spearman, Pearson correlation, and ROC [42]. The Spearman 
rank and Pearson correlation is computed for the NMME mean precipitation 
forecast at one-month lead-time before the start of JJAS season. The NMME 
mean represents the ensemble mean of the post-processed individual NMME 
model forecasts. Both correlations are computed separately for the JJAS season 
and at one-month lead-time, for the hindcast period of 1982-2010. According to 
[43] reported that the sign of the correlation coefficient determines whether the 
correlation is positive or negative and the magnitude of the correlation coeffi-
cient determines the strength of the correlation. Moreover [43] suggests the cor-
relation categories 0.00 - 0.19: “very weak”, 0.20 - 0.39: “weak”, 0.40 - 0.59: 
“moderate”, 0.60 - 0.79: “strong” and 0.80 - 1.0: “very strong”. We applied root 
mean square error (RMSE) (also called the root mean square deviation [RMSD]) 
to measure the difference between modeled and observed variables. 

3.3. Taylor Diagram 

A Taylor diagram summarizes the statistical relationship between model and the 
observed/reference field [44]. The diagram is useful for evaluating the accuracy 
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of multiple model outputs against a reference data. Further information on the 
Taylor diagram is provided in the supplemental material. 

4. Results and Discussion 
4.1. Climatology of JJAS Season 

We first analyzed the spatial seasonal rainfall distribution of rainfall climatology 
for Ethiopia using CHIRPS data. Rainfall over the tropical semi-arid and arid 
areas was characterized by high inter-annual variability [45]. Therefore, unders-
tating the seasonal rainfall performance is important for agriculture, water, 
energy and for other socio-economic activities. In Ethiopia, June-September is 
the main rainy season, and the magnitude of rainfall is higher over most parts of 
the country. The June-September rainy season is very important for its water 
resources management and agriculture production. Figure 2 shows that north-
western, western, and central parts of the country exhibit the highest rainfall 
during this season, and the spatial averaged daily rainfall amount varies between 
0 to 10 mm/day and exceeds 10 mm over the western portions of Ethiopia. The 
daily mean spatial rainfall pattern obtained from ensemble NMME models 
hindcasts shows similarity with CHIRPS over most parts of the country, but the 
models slightly underestimate rainfall over northern parts of Ethiopia. 

4.2. Deterministic and Probabilistic Skill of NMME Models 

In this section we summarize the deterministic verifications methods utilized. 
The accuracy of the predictions can be indicated by their correlation coefficient, 
standard deviation and root mean square error with respect to the observations, 
over the 1982-2010 period. The root mean square error is defined as the average, 
for predictions for a given target month and lead time, of the squared differences 
between the predictions and their corresponding observations. The skill of the 
NMME models, in terms of spatially averaged correlation coefficient, root mean 
square error, and standard deviation metrics, are presented in Figure 3. The  

 

 
Figure 2. Comparison of observed and ensemble model mean daily rainfall during JJAS season. 
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Figure 3. Taylor diagram displaying statistical comparison of correlation coefficient, root mean 
squared error (RMSE) and standard deviation of NMME models. 

 
correlation skill of NMME models varies between 0.1 and 0.68 (Figure 3). The 
GFDL-CM2p5-FLOR-A06, CMC2-CanCM4, GFDL-CM2p5-FLOR-B01 and 
NASA-GMAO-062012 models exhibit relatively high skill (0.68, 0.58, 0.52 and 
0.5, respectively). The COLA-RSMAS-CCSM4, CMC1-CanCM3 and NCEP- 
CFSv2 models exhibit correlations of <0.3, and these models have limited skill in 
simulating and predicting JJAS seasonal rainfall over Ethiopia (Figure 3). 

The two alternatives forced choice (2AFC) score and relative operating cha-
racteristics (ROC) score for above and below are presented in the following sec-
tions. The NMME model forecast skill for JJAS seasonal precipitation is not 
equally distributed over Ethiopia (Figures 4-6). The red colors, which charac-
terize the north, northwest, northeast, central and eastern portions of Ethiopia, 
depict where NMME skill is higher in capturing JJAS seasonal rainfall, and blue 
areas indicate the opposite. The 2AFC result of individual NMME models de-
picts that skill difference over most parts of Ethiopia in predicting the June- 
September seasonal rainfall (Figure 4). The 2AFC skill of the GFDL-CM2p5- 
FLOR-A06, CMC2-CanCM4 and GFDL-CM2p5-FLOR-B01 models are skillful 
over northern, central and southwestern portions of Ethiopia and these models 
depict that limited skill over western and southeastern portion of Ethiopia. The 
models NASA-GMAO-062012, COLA-RSMAS-CCSM4, CMC1-CanCM3 and 
NCEP-CFSv2 show comparably less skill over most parts of Ethiopia. Generally, 
the 2AFC scores of the NMME results show limited skill in predicting the 
June-September seasonal rainfall over Ethiopia across the western region of the 
country. It is also noted that most models predict worse than climatology over  
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Figure 4. Comparison of 2AFC plot of individual with ensemble NMME models. 
 

western and southeastern portion of Ethiopia. 

4.2.1. Verification Metrics 
Figure 5 and Figure 6 shows the ROC skill scores for above and lower tercile 
forecasts for Jun-September seasonal rainfall. During June-September most of 
the models show a forecast skill better than the climatological forecast. The rela-
tive (or receiver) operating characteristic (ROC) is a representation of the skill of 
a forecasting system in which the hit rate and the false-alarm rate are compared 
[38] [46] [47]. The spatial plot of ROC above and ROC below is presented in 
Figure 5 and Figure 6 for each individual model and for the NMME ensemble. 
In particular, the GFDL-CM2p5-A06, GFDL-CM2p5-B01, CMC2-CanCM4, and 
COLA-CCSM4 models exhibit ROC above scores exceeding 0.6 over northwestern,  
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Figure 5. Comparison plot of individual ROC above plots of and ensemble of NMME models. 
 

central, northeastern, and northern portions of Ethiopia. The regions with a 
ROC score between 0.6 and 0.7 indicate skill in predicting the JJAS seasonal 
rainfall over Ethiopia. The United Kingdom Meteorological Office reported that 
ROC scores equal to or greater than 0.6 indicate skill that is better than guessing, 
whereas those between 0.5 and 0.6 are associated with predictions that are little 
better than guesswork. 

But the skill of these models is limited over western, southwestern, and sou-
theastern parts of the country, with ROC scores < 0.4. On the other hand the 
skill scores of NASA-GEOSS2S, CMC1-CanCM3 and NCEP-CFSV2 depicts < 
0.5 over western, northwestern and pocket areas of northeastern parts of Ethi-
opia (Figure 5). When probability is low, such as 0.10, a false alarm (meaning  
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Figure 6. The same as Figure 5 but for ROC below plots of individual and ensemble of NMME models. 
 

that the event does not occur) is more desirable than a hit. With a possible range 
of 0% - 100%, a 50% rate of correct discrimination (appearing as a ROC area of 
0.5) is expected by chance and reflects 0 forecast skill [46]. The spatial ROC re-
sult shows promising skill of NMME models in predicting the JJAS rainfall over 
portions of Ethiopia. And the skill of the multimodel ensemble is comparable or 
slightly better than any single model. 

The spatial plot of ROC below for NASA-GEOSS2S, GFDL-CM2p5-A06, 
CMC2-CanCM4, and GDL-CM2P5-B01 NMME models show scores > 0.7 over 
northern, central, and southwestern regions of Ethiopia during the JJAS season 
(Figure 6). The ROC below skills of COLA-CCSM4, CMC1-Can-CM3, and 
NCEP/CFSV2 models are decidedly lower over the northern region. Overall, the 
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ROC below skill is higher than ROC above skill. 

4.2.2. Correlation Skill of NMME Models 
This section compares the cross-validated skill of NMME models at a one- 
month lead-time based on Pearson and Spearman correlations. Rainfall general-
ly has lower prediction skill than other variables, due to relatively higher spatial 
variability in rainfall patterns [16]. For the Pearson correlation, an absolute value 
of 1 indicates that a perfect linear relationship and a correlation close to 0 de-
picts that no linear relationship between variables. 

Our result of Pearson correlation for the models of GFDL-CM2p5-FLOR-A06, 
CMC2-CanCM4, and GFDL-CM2p5-FLOR-B01 shows promising skill to pre-
dict and capturing the JJAS seasonal rainfall over Ethiopia (Figure 7 and Table 
2). These models capture most parts of northern, northeastern, central, and 
south-western portions of Ethiopia with promising Pearson correlation of >0.6 
(Figure 7). However, the Pearson correlation skill indicates negative correlation 
−0.6 over western and southeastern and the models are very limited in capturing 
the June-September seasonal rainfall (Figure 7). Moreover, the NASA-GEOSS2S, 
COLA-RSMAS-CCSM4, CMC1-CanCM3, and NCEP-CFSv2 models reveal more 
limited skill in predicting the JJAS seasonal rainfall over most parts of Ethiopia 
with the skill of <0.4 (Figure 8 and Table 2). Noticeable skill differences are ob-
tained between individual NMME models based on Pearson correlation. How-
ever, the skill of ensemble NMME models of Pearson correlation shows promis-
ing improvement compared to individual NMME models (Figure 7). 

4.3. Extreme Event Diagnosis in the Case of El Niño 2015 

The variability of seasonal rainfall over Ethiopia leads to the recurrence of ex-
treme drought and flood, and the intensity of extreme events affects various so-
cio-economic activities of the country [48]. Ethiopia is one of the largest huma-
nitarian aid beneficiaries in the world and experiences significant climate in-
duced drought and water related stresses on crop and livestock productivity 
[49]. Every year approximately three million Ethiopians are affected by crop 
production shortfalls adding to the 7.6 million supported every year by the  

 
Table 2. Spatially averaged Pearson correlation coefficient of individual NMME models. 

Model Correlation coefficient 

GFDL-CM2p5-FLOR-A06 0.68 

CMC2-CanCM4 0.58 

GFDL-CM2p5-FLOR-B01 0.52 

NASA-GMAO-062012 0.50 

COLA-RSMAS-CCSM4 0.37 

CMC1-CanCM3 0.20 

NCEP-CFSv2 0.10 

https://doi.org/10.4236/acs.2022.121005


A. Teshome et al. 
 

 

DOI: 10.4236/acs.2022.121005 66 Atmospheric and Climate Sciences 
 

 
Figure 7. Pearson correlation skill comparison of individual and ensemble NMME models at a 1-month lead-time. 
 

Productive Safety Net Program a social safety net supporting some of Ethiopia’s 
poorest and most food-insecure families [50] because of extreme drought. Very 
recently the 2015 El Niño-induced drought has caused food insecurity among 
10.2 million people one of the highest on the record [1]. It is thus very important 
to analyze extreme events [51]. Particular example in Ethiopia is droughts and 
flood continuously occurred over northeastern, eastern, central and northern 
parts of the country and recently become an annual problem for loss of lives and 
properties [48]. 

Accurate and reliable prediction of the seasonal rainfall prior few months in 
advance can assist in anticipating extreme events such as drought. We have cho-
sen to focus on the extreme drought year of 2015 in order to examine the skill of 
the NMME system in capturing the dry extreme event. Figure 9 indicates that  
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Figure 8. The same as Figure 7 but for Spearman correlation skill comparison of individual and ensemble NMME models at a 
1-month lead-time. 
 

the NMME models predict a below normal probability category rather than 
above normal. The models capture more than 85% of the area that experienced 
below normal rainfall over northern, northeastern, central, and eastern parts of 
Ethiopia during the strong El Niño year of 2015 in the JJAS season. Due to this 
most parts of Ethiopia affected by drought extremes in 2015. So, NMME based 
forecasting is skillful to detect the drought extremes over Ethiopia. Previous stu-
dies of [52] revealed that NMME models had a higher skill to predict the season-
al drought extremes. Moreover, [15] used seasonal precipitation forecasts from 
the NMME and other GCMs to examine the predictability of drought onset 
around the globe. 
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Figure 9. Ensemble NMME model rainfall probability category of below and normal (top left and right) above 
normal (bottom left) and 2AFC deterministic skill (bottom right panel) during 2015 El Niño year. 

5. Conclusions and Recommendations 

In this paper, we have evaluated the skill of the North American Multi-Model 
Ensemble (NMME) in forecasting June-September (JJAS) seasonal rainfall over 
Ethiopia, based on hindcasts spanning 28 years (1982-2009). The performance of 
seasonal forecast rainfall was evaluated using Pearson and Spearman correlation, 
ROC, and root mean square error (RMSE), including both deterministic and 
probabilistic skill scores. Noticeable skill differences in seasonal rainfall predic-
tion were found between individual models at a one-month lead time. 

The main findings of our study are the following: 
1) The GFDL-CM2p5-FLOR-A06, CMC2-CanCM4, GFDL-CM2p5-FLOR- 

B01, and NASA-GMAO-062012 models have relatively high skill (correlation 
of >0.5 and higher) over northern, northwestern, northeastern, and few places in 
central parts of Ethiopia. The COLA-RSMAS-CCSM4, CMC1-CanCM3, and 
NCEP-CFSv2 NMME models show lower skill (correlation <0.5), and these 
models reveal limited skill. GFDL-CM2p5-FLOR-A06, CMC2-CanCM4, GFDL- 
CM2p5-FLOR-B01, and NASA-GMAO-062012 show better skill performance in 
predicting the JJAS seasonal rainfall at 1 one-month lead time. 

2) These models capture most of the JJAS seasonal rainfall over northern, 
northeastern, central, southwestern, and northwestern portions of Ethiopia with 
promising skill. However, the models exhibit limited skill in predicting the JJAS 
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seasonal rainfall over western and southeastern parts of the country. Pearson 
and Spearman’s correlations are weak or strongly negative over western Ethi-
opia. 

1. The performance of the multi-model ensemble of the NMME model re-
vealed better skill over the northern portion of Ethiopia, and the ensemble skill 
is very limited over western parts of Ethiopia. It appears that a multimodel en-
semble of only the better performing individual models would exhibit additional 
skill. 

3) This assessment of NMME models also shows that the models are more 
promising for forecasting dry conditions (including extreme drought events) 
relative to wet conditions over Ethiopia. 

Generally, the NMME is a promising tool for seasonal forecasting over Ethi-
opia during the June-September season. However, both individual and ensemble 
NMME model skill of rainfall forecasts is limited over the western and southeas-
tern parts of Ethiopia. A more comprehensive skill assessment is a necessary 
next step to understand the skill of NMME models to predict the seasonal rain-
fall in different seasons with different lead times over Ethiopia. The results pro-
vide promise for significant advancement in operational rainfall forecasting over 
Ethiopia. 
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