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Abstract 
The Ugandan economy is largely dependent on rural-based and rain-fed agri-
culture. This creates a critical need to understand the rainfall dynamics at the 
local scale. However, the country has a sternly sparse and unreliable rain gauge 
network. This research, therefore, sets out to evaluate the use of the CHIRPS 
satellite gridded dataset as an alternative rainfall estimate for local modelling 
of rainfall in Uganda. Complete, continuous and reliable in situ station obser-
vations for the period between 2012 and 2020 were used for the comparison 
with CHIRPS satellite data models in the same epoch. Rainfall values within 
the minimum 5 km and maximum 20 km radii from the in situ stations were 
extracted at a 5 km interval from the interpolated in situ station surface and 
the CHIRPS satellite data model for comparison. Results of the 5 km radius 
were adopted for the evaluation as it’s closer to the optimal rain gauge cover-
age of 25 km2. They show the R2 = 0.91, NSE = 0.88, PBias = −0.24 and RSR = 
0.35. This attests that the CHIRPS satellite gridded datasets provide a good 
approximation and simulation of in situ station data with high collinearity 
and minimum deviation. This tallies with related studies in other regions that 
have found CHIRPS datasets superior to interpolation surfaces and sparse rain 
gauge data in the comprehensive estimation of rainfall. With a 0.05˚ * 0.05˚ 
(Latitude, longitude) spatial resolution, CHIRPS satellite gridded rainfall es-
timates are therefore able to provide a comprehensive rainfall estimation at a 
local scale. Essentially these results reward research science in regions like Ugan-
da that have sparse rain gauges networks characterized by incomplete, incon-
sistent and unreliable data with an empirically researched alternative source of 
rainfall estimation data. It further provides a platform to scientifically inter-
rogate the rainfall dynamics at a local scale in order to infuse local policy with 
evidence-based formulation and application. 
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1. Introduction 

Precipitation is one of Uganda’s most critical and valuable resources. Its availa-
bility and variability have direct implications on the country’s overall develop-
ment given the predominance of rain-fed agriculture [1]. Indeed, rain-fed agri-
culture and agriculture-related production are vital to the Ugandan economy; 
they averagely employ 80% of the labour force, account for 42% of the GDP, and 
bring in 90% of export earnings [2] [3]. However, Uganda is in the deficit of a 
dense rain gauge network and long-term in situ precipitation measurements are 
required for detailed assessment of her rainfall [4] [5]. The rain fall records are 
typical of non-continuity with only a few years of quality data, sparse rain gauge 
network, incomplete, inconsistent and non-reliable datasets. Notably, under-
standing the dynamics of climate variations and extremes that are consistent 
with the region requires long-term accurate precipitation data representations 
and a dense network of in situ observation stations [6] [7]. The World Meteoro-
logical Organization (WMO) set the classical period of assessing climate varia-
bility to 30 years. 

Research [8] puts the optimum rain gauge network density between 14 km2/gauge 
and 38 km2/gauge, with an average of 25 km2/gauge. With Uganda having a total 
area of 241,550 km2, this puts the total gauge requirement per 25 km2 close to 
about 9500 weather stations. However, as of 2013, Uganda had 21 weather sta-
tions [9]. With the proliferation of automated weather stations, as of 2021, the 
total number of weather stations had been improved to 37. Incidentally, of these, 
25 are working, 7 were vandalized and 5 had power problems. This puts the total 
landmass covered to 625 km2 out of the total 241,550 km2, accounting for only 
0.0026% gauge coverage. This has characterized the country with a critically sparse 
and unreliable rain gauge network. Traditionally, it should be noted that set rain 
gauges are affected by animal and human interference, uncalibrated measuring 
mechanisms, level placement, wind, poor monitoring and evaporation [10] [11] 
[12]. This further worsens the dependency on completeness and consistency of 
in situ measurements from rain gauges. Also, relative to satellites that can pro-
vide precise measurements at every location, for developing countries, the sparsely 
distributed weather stations are characterized by poor coverage for rural areas 
and require interpolation between stations [13] to relay general coverage of a re-
gion. This makes the reliance on satellite data sets inevitable to achieve alterna-
tive estimates of rainfall with adequate sampling density, accuracy, completeness 
and reliability. However, satellite-based precipitation estimates are often not as-
sessed for integration into operational and decision-making applications due to 
the lack of empirical research on their uncertainty and reliability [14]. For Uganda, 
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no explicit countrywide empirical research has been done to assess the suitability 
of satellite gridded precipitation datasets as an alternative rainfall estimate at a 
local scale. It should be noted that the region is challenged with scarce and in-
consistent precipitation data. The objective of this research was, therefore, to eva-
luate satellite gridded datasets as an alternative rainfall estimate for modelling rain-
fall at a local scale. The research will enable satellite-based precipitation estimates 
to be integrated into the operational analysis of rainfall dynamics as a proxy for 
in situ rainfall data in Uganda.  

2. Satellite Gridded Datasets as Alternative Rainfall  
Estimates 

Numerous satellite gridded precipitation data sets exist at a global and regional 
scale [15]. Though satellites have trouble measuring some ground phenomena 
such as precipitation as compared to weather stations, they provide a more com-
plete spatial coverage of various parameters over a landscape [13]. This has prom- 
pted research to understand the contrast between the two sets of data. Throughout 
the literature, several studies have compared satellite remote sensing products to 
in situ data [16] [17] [18] [19] [20]. The satellite-based datasets have generally 
presented a better performance at annual and seasonal scales. Some scholars 
[21], explored the performance of stochastic models for spatial rainfall down-
scaling to reproduce statistics for precipitation observable at a local scale. The 
analysis, however, would not allow preference among the studied models. Other 
scholars [22] have explored algorithms of blending the in situ measurements 
with satellite observations to derive more accurate products for local rainfall 
analytics. However, none of the research has been conclusive leaving a gap in 
the analysis of local precipitation using satellite gridded rainfall estimation da-
tasets. 

3. Materials and Methods 
3.1. Study Area 

This research was carried out within the spatial domain of the Republic of Ugan-
da. Uganda is a landlocked country in the eastern part of Africa and lies within 
the northern and southern hemispheres, being crossed by the Equator. Neigh-
boring countries are Kenya to the East, South Sudan to the North, the United 
Republic of Tanzania and Rwanda to the South and the Democratic Republic of 
Congo to the West. According to [23], the country has a total surface area of 
241,550 km2 of which 41,743 km2 (17.2%) is occupied by open water and swamps, 
and 199,807 km2 is open land. Uganda is a plateau surrounded by four main 
mountain ranges; namely: Rwenzori in the west (with a peak of 5110 m), Elgon 
in the East, Mufumbira in the Southwest, and Moroto in the Northeast. The lowest 
part is within the Albert Nile at 620 m above sea level. This topographic com-
plexity is associated with a high density of micro-environments where climatic 
variables become difficult to study [24]. In essence, this makes the area suitable 
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for this study relative to other gauge complexities. The map in Figure 1 shows 
the location of Uganda in Africa, its administrative districts and large water bo-
dies.  

3.2. Rainfall Data Sets 
3.2.1. Satellite Gridded Data Sets 
The Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) data 
set was used as the proxy for satellite gridded datasets. The datasets blend station 
precipitation data with infrared Cold Cloud Duration (CCD) at 0.05˚ * 0.05˚ (la-
titude, longitude) spatial resolution [25]. It has been adopted for this research 
mainly for three reasons: 1) It has high sub-regional suitability in comparison to 
other precipitation satellite products [26] [27] [28]; 2) It has substantial im-
provement over non resampled satellite products due to gauge based bias cor-
rection [29]; 3) Other alternative satellite products offer a coarse spatial resolu-
tion; Global Precipitation Climatology Project (GPCP) and the Climate Precipi-
tation Centre (CPC) Merged Analysis of Precipitation (CMAP) have a 2.5˚ * 2.5˚  
 

 
Figure 1. Location map of Uganda. 
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spatial resolution while the African Rainfall Climatology version 2 (ARC2) and 
Tropical Rainfall Measuring Mission (TRMM) have a spatial resolution of 0.1˚ * 
0.1˚ and 0.25˚ * 0.25˚ respectively. 

3.2.2. In Situ Measurements 
In Situ precipitation data was gotten from Uganda National Meteorological Au-
thority (UNMA). The data was for multiple weather stations. However, the da-
tasets were assessed for completeness, continuity, consistency, and reliability. On 
this basis, only 12 of the 25 data stations were utilized. Their distribution is illu-
strated in Figure 2. Though long time series are often required, the datasets used 
in this research were for the temporal period of 2012 to 2020. Beyond this period 
there were no sufficient datasets that fulfilled the criteria suitable for effective 
comparison with the gridded datasets. 

4. Statistical Metrics 

Spatial Inference research on precipitation studies has utilized a vast continuum 
of statistical criteria to assess agreement between models [24] [27] [28]. This re-
search adopted the statistical metrics shown in Table 1. 
 

 

Figure 2. Location map of the in situ precipitation stations. 
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Table 1. Adopted statistical metrics. 

Statistic Formula Range 
Best 
value 

Conditioning 

Coefficient of 
determination 

( )( )
( ) ( )

2

12
2 2

1 1

R i i i ii

i i i ii i
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N N
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INS SAT SAT SAT
=
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 − − =
 − − 

∑
∑ ∑

 0 to 1 1 
Describes the proportion of variance in the in 
situ data that are accounted for by the satellite 
data the closer to 1 the better [30]. 
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standard 

deviation ratio 
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N

ii
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σ
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A low RSR is directly proportional to the Root 
Mean Square Error (RMSE). The closer it is to 
zero the better [31]. 

Nash-Sutcliffe 
efficiency 
coefficient 
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The normalized statistic determines the relative 
magnitude of the residual variance of the 
satellite observation in comparison to the in situ 
measured variance [31]. The closer the value 
is to 1 the better. 
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Measures the average tendency of satellite 
models to be smaller or larger than the in situ 
measurement [32]. Low values close to zero (0) 
indicate accurate simulation of the satellite data, 
positive values indicate underestimation while 
negative values indicate overestimation [31]. 

5. Methodology (Figure 3) 

Datasets collected from the weather stations were assessed for consistency, com-
pleteness and continuity for the study period between 2012 and 2020. The data 
were interpolated between stations across the country. The validity of the re-
sulting interpolation was assessed through independent weather stations (15% of 
the original weather stations) repetition were used to validate the Interpolation. 
The geostatistical ordinary Kriging was used as previous studies showed that it 
achieved the best results in precipitation interpolation [24] [33]. A fishnet was 
generated over Uganda with a 5 km point grid. Buffers of 5 km to 20 km from 
the in situ measurement stations were generated to clip the points of the fishnet. 
The clipped points were used for the extraction of values from the interpolated 
surface and satellite gridded dataset (CHIRPS). A bivariate linear regression was 
run between the extracted values of the interpolation surface and the CHIRPS 
surface in iteration to acquire the best sample points extraction range for com-
paring the two surfaces at an R2 greater than 0.75. This was in consideration of 
[8] analysis on optimal distance for in situ station coverage. Buffers of 5 km and 
20 km were chosen as the furthest and nearest ranges for further analysis of the 
comparison between the CHIRPS satellite gridded dataset and in situ station 
measurement rainfall estimates (the minimum 5 km range was chosen because 
the CHIRPS has a 0.05˚ * 0.05˚ (latitude, longitude) spatial resolution). These 
were subjected to further spatial statistical metrics shown in Table 1 to derive a 
detailed evaluation of the relation between the two surfaces.  

6. Results and Discussion 

Precipitation data from the in situ weather stations was mapped by Kriging  
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Figure 3. Methodology flow diagram. 
 
interpolation for each year as shown in Figure 4. The results showed an average 
representation of most precipitation being received along the northwest-southeast 
belt and the Lake Victoria basin. From the results, it can also be deduced that the 
southwest-northeast belt received less rainfall. This is consistent with observa-
tions of the cattle corridor that show a pronounced increase in dry spells along 
the southwest-northeast corridor [34]. Related research [35] also observed the 
highest rainfall in the north-west and central east of Uganda and Lake Victoria 
vicinity  

Satellite gridded datasets were collected for the same epoch (2012-2020) as the 
in situ data sets and mapped as shown in Figure 5. Similar to observations by 
[35] the lowest precipitation totals are in the northeast (Karamoja region) and 
the south-west while the highest levels of precipitation are observed in the Lake 
Victoria vicinity, central-east and north-west.  

Research [8] approximates optimal rain gauge coverage to about 25 km2 beyond 
which the quality of representation drops. From the in situ measurement posi-
tions in Figure 2, buffers points at 5 km intervals were generated as shown in 
Figure 6 for extraction of values from each surface at minimum 5 km and maxi-
mum 20 km ranges.  

Between the in situ and satellite observations at 5 km, the coefficient of de-
termination (R2) showed very strong collinearity of 0.91 as shown in Figure 7. 
The Nash-Sutcliffe Efficiency (NSE) coefficient = 0.88, Percentage of Bias (PBias) = 
−0.24, and the RMSE-observations Standard deviation Ratio (RSR) = 0.35. 
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Figure 4. Interpolated average annual precipitation. 
 

 

Figure 5. Average annual precipitation from satellite gridded data sets—CHIRPS. 
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Figure 6. 5 km and 20 km sample range. 
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Figure 7. Collinearity between in situ and satellite precipitation observations within a 5 
km radius of the weather station. 
 

Between the in situ and satellite observations at 20 km, the coefficient of de-
termination (R2) showed strong collinearity of 0.75 as shown in Figure 8. The 
Nash-Sutcliffe Efficiency (NSE) coefficient = 0.461, Bias Percentage (PBias) = 
0.84, and the RMSE-observations Standard deviation Ratio (RSR) = 0.51. 

Several studies [36] [37] have adopted the performance rating of the statistical 
metrics R2 [30], and RSR, NSE, PBias [31] shown in Table 2. According to this 
rating, at 5 km there is very good collinearity between the in situ data and the 
CHIRPS satellite model with an R2 of 0.91. This implies that a high proportion of 
the variance in the in situ observations is accounted for in the CHIRPS gridded 
satellite observations. The RSR of 0.35 low value at 5 km indicates a very good 
approximation by the CHIRPS satellite model. The 0.88 NSE also implies a very 
good simulation of in situ data by the CHIRPS satellite data. The PBias of −0.24 
indicates minimal deviation of the data being evaluated which also accounts for 
the very good simulation by the CHIRPS model. At 20 km an R2 of 0.75 indi-
cated a good collinearity between the in situ and satellite observation. The RSR 
of 0.51 also indicated a good approximation of the in situ data by the CHIRPS 
satellite model. The PBias of 0.84 also indicated an acceptable deviation between 
the in situ data and the gridded satellite data. However, the NSE of 0.461 indi-
cated an unsatisfactory simulation of the in situ data by the CHIRPS satellite 
model.  

Similar statistical metrics were run for each of the in situ stations and its 5 km 
and 20 km radius as shown in Table 3. Within the 5 km radius, 75% of the sta-
tions presented with an R2 above 0.86 indicating very good collinearity between 
the in situ observations and CHIRPS satellite data model. However, the Kabale 
station presented an unsatisfactory R2 of 0.44. Also, 60% of the stations indicated 
an above satisfactory RSR statistic indicating a good approximation of the in situ 
data by the CHIRPS satellite data model. Correspondingly, 65% of the stations 
presented an NSE statistic above satisfactory indicating an acceptable simulation 
of in situ data by CHIRPS satellite gridded data. All the stations had above sa-
tisfactory PBias indicating acceptable deviation between the two datasets. At 20 
km, only 25% of the records presented R2 and RSR above satisfactory levels in-
dicating low levels of collinearity and approximation between the models, 40% 
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Figure 8. Collinearity between in situ and satellite precipitation observations within a 20 
km radius of the weather station. 
 
Table 2. Performance rating of the statistical metrics. 

Performance 
Rating 

RSR NSE PBIAS R2 

Very Good 0.00 ≤ RSR ≤ 0.50 0.75 ≤ NSE ≤ 1 PBIAS < ±10 0.86 < R2 ≤ 1 

Good 0.60 < RSR ≤ 0.50 0.65 < NSE ≤ 0.75 ±10 ≤ PBIAS ≤ ±15 0.75 < R2 ≤ 0.86 

Satisfactory 0.70 < RSR ≤ 0.60 0.50 < NSE ≤ 0.65 ±15 ≤ PBIAS ≤ ±25 0.65 < R2 ≤ 0.75 

Unsatisfactory RSR > 0.7 NSE ≤ 0.50 PBIAS ≤ ±25 R2 ≤ 0.65 

 
Table 3. Statistical metrics at 5 km and 20 km sample range of in situ weather stations. 

 
Statistical Metrics at 

5 km Per Station 
Statistical Metrics at 

20 km Per Station 

In Situ Station NSE PBIAS R2 RSR NSE PBIAS R2 RSR 

Arua 0.88 0.17 0.88 0.35 0.16 −0.58 0.46 0.92 

Entebbe 0.91 −1.75 0.97 0.3 0.5 6.18 0.62 0.71 

Gulu 0.24 4.1 0.89 0.87 0.46 3.24 0.64 0.74 

Jinja 0.63 −1.56 0.66 0.61 0.69 2.48 0.76 0.55 

Kabale −0.04 −8.64 0.41 1.02 −0.01 −6.13 0.5 1 

Kasese 0.82 2.79 0.87 0.43 −0.51 −7.18 0.02 1.23 

Lira 0.34 −8.91 0.9 0.81 0.45 3.21 0.67 0.74 

Masindi 0.71 −4.48 0.95 0.54 0.66 −3.45 0.77 0.59 

Mbarara 0.89 0.31 0.92 0.33 0.05 −6.33 0.53 0.97 

Namulonge −6.24 19.08 0.74 2.69 0.58 2.78 0.63 0.65 

Soroti 0.47 5.36 0.94 0.73 0.22 −1.95 0.57 0.88 

Tororo 0.96 −0.89 0.97 0.21 0.08 10.26 0.47 0.96 

 
of the stations presented an NSE statistic above satisfactory level implying that 
more than 60% of the in situ observation couldn’t be interpreted at this range. 
However, the PBIAS indicated acceptable deviations between the two models. 
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7. Conclusion 

The assessments and monitoring of precipitation variation, changes and extremes 
are critical to an agriculturally based economy. However, for Uganda, the availa-
bility of consistent, complete, and reliable precipitation data required for this 
monitoring and assessment has remained a challenge. This research sets out to 
validate the use of CHIRPS satellite gridded data sets as an alternative source of 
precipitation data. Based on the [8] review of best rainfall in situ observations 
being in the optimal range of 25 km2, this research forms an evaluation basis to 
validate the use of CHIRPS satellite gridded dataset as an alternative precipita-
tion estimation dataset by comparing the 5 km range and radius sample points 
between surfaces of interpolated in situ surfaces and CHIRPS satellite dataset. It 
further shows that widening the validation area beyond the optimal coverage of 
the rain gauge generates dwindling effects on the validation between the in situ 
and CHIRPS satellite gridded dataset surfaces. Spatially based statistical metrics 
that include the coefficient of determination (R2), the Nash-Sutcliffe Efficiency 
coefficient (NSE), Bias Percentage (PBias), the RMSE-observations and the Stan-
dard deviation Ratio (RSR) were used to check collinearity, simulation, deviation 
and approximation respectively between the two rain estimation models. Gener-
al results indicate that the R2 = 0.91, NSE = 0.88, PBias = −0.24 and RSR = 0.35. 
This attests that the CHIRPS Satellite gridded datasets provide a good approxi-
mation and simulation of in situ station data with high collinearity and mini-
mum deviation. This can be attributed to the spatial resolution and temporal res-
olution of the CHIRPS dataset as well as its gauge bias correction. The results tally 
with related studies [27] in other regions that have found CHIRPS datasets supe-
rior to interpolation surfaces and sparse rain gauge data in the comprehensive 
estimation of rainfall. With a 0.05˚ * 0.05˚ (latitude, longitude) spatial resolution, 
CHIRPS satellite gridded rainfall estimates are able to provide rainfall represen-
tation at a local scale. Essentially these results reward research science in regions 
like Uganda that have sparse rain gauges networks characterized by incomplete, 
inconsistent and unreliable data with an empirically researched alternative source 
of rainfall data. It further provides a platform to interrogate the rainfall dynamics 
at a local scale in order to infuse local policy with evidence-based formulation and 
application.  
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