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Abstract 
This study evaluates the improvement of the radar Quantitative Precipitation 
Estimation (QPE) by involving microphysical processes in the determination 
of Z-R algorithms. Within the framework of the AMMA campaign, mea-
surements of an X-band radar (Xport), a vertical pointing Micro Rain Radar 
(MRR) to investigate microphysical processes and a dense network of rain 
gauges deployed in Northern Benin (West Africa) in 2006 and 2007 were used 
as support to establish such estimators and evaluate their performance com-
pared to other estimators in the literature. By carefully considering and cor-
recting MRR attenuation and calibration issues, the Z-R estimator developed 
with the contribution of microphysical processes and non-linear least-squares 
adjustment proves to be more efficient for quantitative rainfall estimation and 
produces the best statistic scores than other optimal Z-R algorithms in the li-
terature. We also find that it gives results comparable to some polarimetric 
algorithms including microphysical information through DSD integrated pa-
rameter retrievals.  
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1. Introduction 

An important step in the quantitative estimation of rain by radar is the determi-
nation of a suitable algorithm to efficiently transform radar information into 
rain characteristics. Due to its easy implementation, the relationship bZ A R= ∗  
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between radar reflectivity (Z) and rain rate (R) is the most widely used in the li-
terature when solving attenuation and calibration problems affecting the mea-
surement of reflectivity. However, the main limitation of this algorithm is attri-
buted to the raindrop size distribution (DSD) variability within the rainfall and 
thus to the diversity of microphysical processes involved in the formation of 
these raindrops [1]. 

In the absence of direct consideration of the mechanisms underlying the va-
riability of raindrops and aiming to take into account the fluctuating nature of 
the DSD in rain estimators design, several authors have favored either an event-by- 
event study [2] [3] or a classification according to the nature of the precipitation 
[3]-[8], either by season [9] [10] or by taking into account the maritime or con-
tinental origin of the convective precipitation system [11]. These approaches are 
implicit ways of taking into account the dominant microphysical processes within 
each precipitation system or specific parts of these convective rainy systems. 
However, as discussed by [12] and [13], for rain rates considered separately as 
stratiform or convective, there is great variability in the relationships determined 
by considering only one type of rainfall. The reason for this lies in the non-injective 
nature of the relationship itself, i.e. a single value of radar reflectivity may cor-
respond to different DSD spectra and rain rate values [13] [14]. These fluctuations 
can plausibly be attributed to variations in the microphysical processes underlying 
the formation of precipitation that change over time the rain rates and convec-
tive or non-convective nature of precipitation. 

Assuming the DSD data at the ground as a result of physical processes aloft 
[15] showed that the variability of the coefficients of the Z-R relation is governed 
by three specific modes of variability, namely the modes associated with the va-
riability of total drop concentration NT, drop size through the volume median 
diameter parameter D0 or a combination of both modes through the ratio (D0/NT). 
To characterize the variability of the Z-R relationship, [13] suggested that the 
size (represented by the volume median diameter of the DSD, D0) and the num-
ber of raindrops (represented by NT) should be considered simultaneously 
through the ratio that best reflects how they vary with Z for a given Z-R rela-
tionship. Finally, [10] analyzing 12 years of DSD measurements in Northern Tai-
wan, indicated that the pre-factor A would be sensitive to the presence of drops 
of large or small drop diameters while the exponent b determines the micro-
physical process nature. 

Microphysical interpretation of Z-R relationships coefficients seems to be a 
way to understand and account for their high variability in rainfall estimation. 
However, involving the temporal fluctuations of the DSD to adjust the depen-
dence of rainfall estimation algorithms on the physical processes prevailing within 
precipitation systems remains a challenge in the case of the operational use of 
weather radars [8]. Although the work of [10] [13] [15] shows the interest in tak-
ing into account microphysics to improve the quantitative estimation of rainfall by 
radar, the use of their approach remains difficult to implement in operational 
use. Moreover, the fact that they are only interested in the raindrop size distri-
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bution at the ground level whereas the DSD fluctuations occur aloft where the 
radar measurements take place is a handicap. A promising approach to address 
such type of issues remains the use of a vertically looking radar such as Micro Rain 
Radar (MRR) to probe raindrop medium aloft and study the vertical variability of 
the drop size distribution to determine microphysical processes [12] [16] [17] 
and incorporate their fluctuations into the adjustment of radar rainfall estima-
tion algorithms. 

During the intensive AMMA (African Monsoon Multidisciplinary Analysis) 
campaign in 2006, a Micro Rain Radar (MRR) operated in Northern Benin in 
addition to two horizontal scanning radars (C-band and X-band) installed to 
monitor rainfall systems in the region and estimate rainfall over small basins 
[18] [19], a dense rain gauges network [20] and disdrometers [21]. Such a system 
offers the opportunity to develop rainfall estimation algorithms by including the 
microphysical processes that cause rainfall. So far, although the measurements of 
the other instruments mentioned above have been exploited through different 
studies [18] [19] [21] [22], the data collected by the MRR during the AMMA 
campaign have remained unexploited to date. One of the reasons is related to the 
problems of correcting acute attenuation in K-band [23] for moderate to high 
rainfall rates encountered in the region and the calibration of the MRR [24] [25] 
which did not allow the quantitative use of these data. In this study, we propose 
an approach that exploits the co-location of the different radars and the polarimetry 
advantages of the X-band radar to develop a method for correcting the absolute 
calibration of MRR data using a polarimetric variable of the X-band radar, the 
specific differential phase shift, unaffected by the rain-induced attenuation of the 
signal. Therefore, the objective of this study includes the correction of the MRR 
dataset for calibration and attenuation problems for quantitative use in: 1) de-
termining microphysical processes; 2) designing algorithms involving the mi-
crophysical processes to improve the estimation of rain by horizontal scanning 
radar. 

The remainder of the paper presents in Section 2, the study area, data and 
methods for pre-processing the MRR data. Section 3 describes the method for 
determining dominant microphysical processes and Z-R relationships. Section 4 
presents all the results concerning the rainfall estimation from the algorithms 
including the consideration of microphysical processes and their discussion by 
comparison to the rainfall estimators with or without consideration of micro-physi- 
cal processes. Finally, Section 5 is devoted to the conclusion and perspectives of 
this study.  

2. Data and Experiment Description 
2.1. General Overview 

The Upper Ouémé Hydro-meteorological observatory AMMA-CATCH (Couplage 
Atmosphere Tropicale Cycle Hydrologique), depicted in Figure 1, is one of the 
three mesoscale sites instrumented during AMMA Enhanced Observing Period 
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Figure 1. AMMA-CATCH experimental area in Benin showing the measuring instruments 
installed. Top (on the left) we show a view of Benin (West Africa) and (on the right) the 
AMMA-CATCH site. Rain gauges are indicated by black dots. Bottom: (on the left), the 
Xport radar, positioned in Djougou ; (on the right), the Micro Rain Radar (MRR) in 
Nangatchori (10 km far from radar Xport). 
 
from 2006 to 2007 [26] to analyze the mesoscale convective systems and the rain-
fall in northern Benin. Radars experiment in that region involved a wide collec-
tion of ground-based instruments including rain gauges network of 54 instru-
ments, two horizontal scanning weather radars (C-band radar and X-band radar), 
a vertically pointing Micro Rain Radar (MRR), and three disdrometers which un-
fortunately did not regularly operate simultaneously during the intensive cam-
paign because of technical difficulty. The aim of the observational strategy was 
to provide reliable estimates of rain rates with a very high spatial and temporal 
resolution. In the present study, mainly details about X-band radar and MRR in-
struments (shown in Figure 1) and data collected simultaneously by Xport radar 
(X-band polarimetric radar) and MRR (K-band radar) are concerned because of 
the unique opportunity given to compare data at the same height levels and thus 
reduce errors in sampling data even if there are differences in the resolution vo-
lumes, which is not the same for both radars. For ground validation of rainfall 
estimates from radars, rain gauges network dataset is used. The dataset results of 
60 rain events, which has been divided into two parts, one for the attenuation 
correction and the calibration of the MRR, and the other for the validation of the 
MRR data processing. 

2.2. Description of Experimental Datasets 

Within African rainfall projects, the LTHE (Laboratoire d’Etude des Transferts 
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en Hydrologie et Environnement) of Grenoble (France) developed an X-band 
polarimetric radar (see Figure 1) whose main characteristics were described in 
[19]. During the AMMA campaign, the X-band polarimetric radar (Xport radar) 
operated in 2006 and 2007. Its position within the Upper Oueme Hydro-meteoro- 
logical AMMA-CATCH (Couplage Atmosphere Tropicale Cycle Hydrologique) 
observatory allows for a full coverage of the Donga basin and others sensors in-
stalled such as disdrometers, rain gauges and MRR. With this latter sensor which 
was installed in Nangatchori (10 km from X-band radar), the Xport radar has a 
common volume of measurements useful for the MRR calibration and providing 
valuable information about the quality of that calibration. 

Xport radar is X-band dual polarimetric radar. It has a significant advantage 
over single-polarization systems because it allows multi-parameters measurements 
using orthogonal polarization. The polarimetric radar observables which were 
used in this study are the horizontal reflectivity (ZH) and the specific differential 
phase shift (KDP) at low elevations. Reflectivity was corrected from rain attenua-
tion based on the processing carried out in [19]. 

The MRR (Micro Rain Radar) is vertical pointing K-band radar that operates 
using the FM-CW (Frequency Modulated Continuous Wave) technique, i.e. it emits 
a continuous, frequency modulated wave [27]. It is used to measure raindrop 
size distribution profiles and thus to deduce those of all parameters useful for 
precipitation characterization. Its main characteristics are summarized in Table 
1. It was installed at Nangatchori (9.64˚N; 1.74˚E) and operated only in 2006 
during the Special Observation Period (SOP) in the middle of the Enhanced 
 
Table 1. Main technical characteristics of the Micro Rain Radar (MRR). 

Transmitter 

Frequency 24 GHz 

Modulation band 1.5 MHz 

Transmitter power 50 mW 

Antenna 

Diameter 60 cm 

Beamwidth to 6 dB 2˚ 

Elevation Vertically pointing 

Acquisition 

Sampling frequency 125 kHz 

Temporal resolution 10 s 

Range resolution 100 m/160m 

Number of gates 30 

Spectral velocity resolution 0.191 m/s 

Number of bins (Maximal velocity) 64 (12.3 m/s) 

Scanning Protocol Volume scans 
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Observation Period (EOP) of AMMA. The data collected by the MRR was ob-
tained from a spectrum of droplet fall velocity from 0 to 12 m∙s−1 over 64 classes for 
30 radar gates with a radial resolution of 160 m every 10 s. The processing chain of 
MRR measurements up to the deduction of the raindrop size distributions is 
performed by the software provided by the manufacturer. The spectral reflectiv-
ity is dynamically analyzed to estimate and remove spurious noise in measure-
ments. Then, the relation of [28] is used to convert the falling speed of rain-
drops, corrected for the variation of air density with altitude, into diameter D 
(mm). The analyzed velocity range is limited to velocities from 0.76 m∙s−1 to 9.36 
m∙s−1 corresponding to a diameter range from 0.246 mm to 5.8 mm. Thus, as-
suming that the raindrops are flattened spheroids of equivalent diameter, the ef-
fective backscattering cross-section of a single raindrop calculated according to 
Mie theory was used to obtain the corresponding raindrop size distribution pro-
file (DSD). Finally, raindrop size distribution provides the radar reflectivity fac-
tor Z (mm6∙m−3), the rain rate R (mm∙h−1) and the specific attenuation coeffi-
cient k (dB∙km−1). 

The characteristic precipitation parameters deduced from MRR, used in this 
study, were calculated from spectra recorded in 10 s time resolution for all the 
events observed at Nangatchori (10 km far from Xport radar). Its include radar 
reflectivity, precipitation rate, median volume diameter [29], total raindrop con-
centration (DSD 0-order moment) and the ratio D0/NT. These quantities were 
then averaged in integration time of 1 min and 5 min respectively to be consis-
tent with the time resolution of Xport radar measurements.  

During the AMMA campaign, 54 tipping bucket rain gauges were deployed in 
2006 and 2007 at the AMMA-CATCH Benin site to carry out hydrological stu-
dies. In this work, only the data recorded by the forty rain gauges located less 
than 50 km away from the Xport radar were considered for the different valida-
tions and comparisons. The data recorded by the five rain gauges of the Nan-
gatchori super site, located 10 km from the Xport radar, were particularly con-
cerned for the validation of the MRR measurements. All the data from rain gauges 
were sampled in 5-min resolution as explained in [30]. 

3. MRR Data Processing Chain 
3.1. Rain Attenuation Correction 

Very high-frequency radars such as the MRR, are confronted with large attenua-
tions of the radar signal for precipitation rates between 0.5 mm/h and 100 mm/h 
[31]. As far as gas attenuation is concerned, it can be neglected, provided that 
quantitative interest is given only to corresponding measurements at altitudes 
below 1500 m. But, attenuation due to rain must be considered regardless of the 
altitude of measurements. Therefore, rain attenuation is an important issue that 
needs careful evaluation for quantitative use of data from this type of radar oper-
ating at very high frequencies. The steps for rain attenuation correction of MRR 
data are based on the method detailed in [23] which is an improvement of the 
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algorithm of [32]. For this purpose, in order to correct the MRR data for rain at-
tenuation, the attenuation coefficient k was derived from the knowledge of the 
raindrop size distribution restored from the Doppler spectrum. 

3.2. MRR Calibration Correction Method 

The measurements of the Xport radar installed in Djougou during the intensive 
phase of the AMMA campaign have been validated through different studies 
[18] [19]. Indeed, these works showed that the deduced rainfall rates and DSD 
parameters retrieved by the Xport radar have a good agreement with the mea-
surements of rain gauges and disdrometers. Thus, the Xport radar measurements 
could be considered as a reference that can be used to calibrate the MRR first 
and then to verify its performances. To this end, simultaneous measurements of 
Xport and the MRR (located in Nangatchori at 10 km from Xport position) were 
used to make quantitative comparisons. The Xport radar performs a horizontal 
scan protocol at different elevations while the MRR scanning protocol is vertical. 
Thus, due to their respective positioning and scanning protocol, the Xport and 
MRR radars have a common volume of beam overlap. Furthermore, due to 0.7˚ 
and 3˚ of Xport elevation angle and the MRR located at 10 km from the Xport, 
the theoretical gate numbers corresponding to this common volume are gate 67 
for the Xport and gates 2 and 3 for the MRR. This configuration offers the possi-
bility to compare the identical variables derived from the two radars at the same 
altitude. This overcomes the difficulty of comparing the same variable from both 
radars measurements. Therefore, to calibrate the MRR, the simultaneous mea-
surements from the MRR and the Xport at the same altitude were compared. 
Specifically, the specific differential phase shift KDP that is independent of the ef-
fect of attenuation and partial beam occlusion was used for the absolute calibra-
tion of the MRR.  

In this study, the reflectivity bias due to a calibration error is determined with 
a method based on consistency between different polarimetric variables. This 
method is in essence close to the extended Kalman Filter [33]. The principle is 
based on the fact that the different polarimetric variables can be estimated from 
each other. For example, KDP is estimated from a linear (logarithmic scale) rela-
tionship with the unattenuated horizontal reflectivity ZH [19] [33] [34]. Thus, 
using the disdrometer data gathered during the AMMA campaigns and radar 
variable simulations with the T-Matrix, [19] suggested the following relation-
ship: 

( )1045.0 12.02 logeH DPZ K= + ×                   (1) 

where ZeH is in dBZ. This relationship is obtained by assuming [35] raindrop 
shape model and considering a temperature of 25˚C. 

From Equation (1), theoretical KDP values are calculated from different offsets 
added on the MRR radar reflectivity factor corrected for attenuation. For im-
plementation, offset values ranging from −20 dBZ to 20 dBZ in steps of 0.01 dBZ 
are used. By comparison of the theoretical KDP with the intrinsic values derived 
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from Xport in the common MRR-Xport sample volume, the offset determination 
is associated with the lowest value of the absolute specific differential phase shift 
bias. 

3.3. Statistic Metrics for Evaluation 

The quality of attenuation and calibration correction and estimators for quantit-
ative precipitation estimation is performed using performance criteria such as 
normalized bias (NB), normalized root mean square error (NRMSE), and Nash 
Sutcliffe Efficiency. As a reminder, the NRMSE less well known to all others is 
given by Equation (2): 

( )2 2

1 1
NRMSE

N N

i i i
i i

e m m
= =

= −∑ ∑                 (2) 

with, m standing for the observations and e indicating radar rainfall estimates. 
Performance criteria calculations and comparisons were done exclusively with 

MRR data at the 480 m altitude (third gate and first valid gate in the MRR mea-
surements). Indeed, the data from the first two gates are spurious as they are not 
quantitatively exploitable [36] and are not considered in future analyses. 

3.4. Dominant Microphysical Processes and Z-R Relationship  
Determination 

The microphysical processes taking place at altitude are responsible for the N(D) 
distribution of the raindrops observed at the ground. Reference [37] showed that 
microphysical processes such as coalescence, breakup, combination of coalescence 
and breakup, collection, evaporation, updraft, downdraft, and sorting of rain-
drops act together or alone to form the actual distribution of drops. Reference [15] 
suggested that the shape of the raindrop size distribution (DSD) is governed by 
variations in raindrop concentration and size and by the combined variation of 
these two parameters. Thus, based on the works of [15] [16] [37], the various do-
minant microphysical processes that modulate the shape of the DSD were de-
termined using DSD profiles measured by the MRR and averaged over a 
5-minutes time step. 

The raindrop distributions ratio ( ) ( )test refN D N D  at different altitudes and 
their evolutions are analyzed to determine the most plausible processes responsi-
ble for DSD. ( )refN D  refers to the distribution of raindrops at the reference al-
titude of 1120 m (sixth gate of the MRR) considered as close to the base of the 
cloud generally located at 1000 m in this region. ( )testN D  is the distribution of 
raindrops at a given altitude outside the reference altitude. For the discrimina-
tion of microphysical processes, the growth ( ( ) ( )test ref 1N D N D < ) or decay 
( ( ) ( )test ref 1N D N D > ) characterizing the DSD at the reference altitude com-
pared to those at higher test altitudes are analyzed for three different classes of 
drop diameters representing respectively small drops ( 2 mmD < ), medium 
drops ( 2 4 mmD≤ ≤ ) and large drops ( 4 mmD > ) as proposed in [16]. Thus, 
based on the classification of [37], the following microphysical processes are 
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highlighted: 
 The coalescence which decreases the number of small drops and increases 

the number of larger drops; 
 The breakup which causes an increase in the number of small drops and a 

decrease in those of large drops; 
 The coalescence-breakup combination which includes the effects of coales-

cence and breakup simultaneously; 
 Evaporation which causes a greater decrease in the number of small drops 

than in the number of large drops; 
 The updraft which leads to a decrease in the number of small drops at lower 

altitudes. 
 Downdraft which increases the flow of raindrops for any diameter; 
 Sorting of drops according to their size, which tends towards a monomodal 

distribution of drops. 
Based on a rainy averaged sequence of 5 minutes per 10 s sampling step, a mi-

crophysical process is associated with each fraction of ( ) ( )test refN D N D  rain-
drop concentration. Ultimately, the microphysical mechanism of greatest occur-
rence is related to the entire 5-minutes sequence considered. 

In terms of rainfall algorithm, the coefficients A and b of the Z-R relationship 
are obtained by combining the reflectivity Z deduced from radar and the rain 
rates R provided by ground rain gauges. Differences in sampling between these 
two sensors and differences in measurement altitudes may affect the representa-
tiveness of these coefficients and the rainfall estimates derived from these algo-
rithms. To circumvent this drawback, other authors use disdrometer measure-
ments to determine coefficients A to b, taking advantage of the fact that mea-
surements of raindrop size distributions allows the calculation of rainfall rate 
and reflectivity from a single instrument. However, the estimates depend on the 
types of disdrometers used, the mathematical method used to determine these 
coefficients, and the representativeness of a disdrometer’s measurements relative 
to radar measurements. 

Z-R relationships are usually inferred from a linear regression in a semi-log 
space. Linear regression adjusts a line that minimizes intercept deviations between 
the measurement points and the fitting line. The line found is therefore not the 
same depending on whether one or the other variable is placed on the ordinate 
(dependent variable). Reference [38] showed that the choice of the dependent va-
riable (Z or R) for establishing the relationships is important since the differenc-
es are as large as if one were dealing with different types of precipitation. In ad-
dition, [39] indicated that the determination of Z-R coefficients is sensitive to 
the analytical methods used. 

In the present work, the corrected and validated MRR data from which rain 
rate and reflectivity were derived are used to calculate the pre-factor A and the 
exponent b of the Z-R relationships using two analytical methods. Thus, with or 
without taking into account microphysical processes, we have, using the linear 

https://doi.org/10.4236/acs.2021.114039


G. Kouadio et al. 
 

 

DOI: 10.4236/acs.2021.114039 667 Atmospheric and Climate Sciences 
 

regression method and the non-linear least squares adjustment method, to de-
termine the various A and b coefficients of the Z-R relations at each MRR radar 
gate, i.e. as a function of altitude. 

The Z-R relationship is of the form: 

MRR MRR
bZ A R= ⋅                         (3) 

where the reflectivity ZMRR and rain rate RMRR are deducted from the MRR mea-
surements of DSD. A and b in Equation (3) are obtained by linear regression at 
the semi-logarithmic scale. For the non-linear least squares fitting method [40], 
the power law coefficients A' and b' are calculated by minimizing a cost function 
that is equivalent to a quadratic deviation of the form: 

( ) ( ) ( ) 2
MRR1, M

iF A b R i R i
=

′ ′ = −  ∑                 (4) 

where, F is the function to be minimized, i indicates the spectrum considered in 
a 5-minute rainy sequence and R is the theoretical rain rate calculated from the 
relation: 

( )MRR10log 10 log10 Z b A bR ′ ′ ′−=                     (5) 

A' and b' are the optimized coefficients of the Z-R relations calculated at each 
iteration and Equation (5) is obtained from Equation (3). The optimization al-
gorithm thus adopted is a subspace method called “trust region” and is based on 
Newton’s interior-reflective method [41] [42]. The optimized coefficients are 
calculated iteratively from the coefficients obtained using the linear regression 
method which are used as the starting point for the iteration procedure.  

In total, for each radar gate, four Z-R relations were determined, namely two 
rainfall estimators taking into account the microphysical processes derived from 
linear and non-linear regression respectively and two others without taking into 
account these processes still deduced from the two statistical methods mentioned 
above. Finally, we analyzed the vertical variability of the Z-R relations by dis-
cussing, as a function of the different dominant microphysical processes, the 
implication of the drop size parameters D0, total drop concentration NT and the 
resulting ratio D0/NT. 

4. Results and Discussion 
4.1. Impact of MRR Data Correction 

Figure 2 shows the absolute bias curve between the intrinsic and theoretical KDP  
values as a function of the initial bias to compensate for the miscalibration of the 
reflectivity measured by the MRR. The minimum of the curve shown indicates a 
bias of 8.08 dBZ. Figure 3 shows the contours and profiles of the Xport and 
MRR radar reflectivity factor before and after the attenuation and calibration 
corrections, respectively, for the event of 01-02/08/2006. These contours and pro-
files show a qualitative improvement with a significant increase in the corrected 
reflectivity values over those uncorrected. Indeed, by comparing these figures, qu-
alitative improvement is obvious showing an increase in the values of corrected 
reflectivity with respect to uncorrected one. 
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Figure 2. Absolute bias between the directly estimated Kdp from Xport radar measurements 
and et Kdp retrieved from MRR using the Kdp-Zh relationship for different reflectivity cor-
rection values. 
 

 

Figure 3. Fields of (a) measured, (b) corrected radar reflectivity factor from Xport radar 
(Top panels) and MRR plot of measured (c) and corrected (d) reflectivity factor Z in dBZ 
(bottom panels) for the 02 August 2006 case in Nangatchori.  
 

Figure 4 shows the comparison of the radar reflectivity factor measured by 
the MRR and the Xport radar before and after the attenuation and calibration 
corrections. The normalized bias (NB) displayed on the graphs has been improved 
from −0.23 to 0.04, while the Nash-Sutcliffe criterion (Eff) has increased from 
−0.34 to 0.17. Thus, overall, the reflectivity measurements, which were strongly 
underestimated, are slightly overestimated after the correction. However,  
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(a)                                        (b) 

Figure 4. Scatter plots of Xport versus MRR reflectivity (a) before and (b) after correction 
of datasets. This scatter plots was produced with data collected by Xport and MRR in 
Nangatchori in 2006. 
 
despite a very strong increase (+0.51) in the Nash-Sutcliffe criterion, it remained 
low compared to the reference value of very good performance for this criterion, 
which is 1. The reason for this is that even though the MRR and the Xport radar 
have a common measurement volume, due to the overlap of the two radar beams, 
there is a difference between the sampling volumes of the two radars. Specifical-
ly, the sampling volume of the Xport radar is much larger than that of the MRR. 
This difference between the sampling volumes of the two radars and the non-homo- 
geneous filling of this volume could explain the relative weakness of the Nash-Sut- 
cliffe criterion. However, we can see for reflectivity [20] [43] (dBZ) range, the cor-
rections allowed a better dispersion of values around the first bisector. Alternatively, 
comparison of frequency histogram of MRR reflectivity values with the corres-
ponding values from Xport was done (in Figure 5) with the same dataset those 
used to make Figure 4. Figure 5 shows more coincident distributions after calibra-
tion and correction attenuation compared to results based on non-calibrated data 
from MRR. This is shown by a better agreement between probability density fre-
quency curves of Xport and the MRR after data correction. Moreover, this is 
quantitatively confirmed by the close statistical scores (modal, mean and stan-
dard deviation values) shown in Figure 5. Basing to the fact that DSD is propor-
tional to reflectivity, calibration correction also affects raindrop spectra and thus 
deduced rain rates.  

As it can be observed in Figure 6, the results in term of rainfall show no signifi-
cant differences between MRR and gauges measurements PDF after measure-
ments corrected for attenuation and calibration issues applied to the MRR data. 
Correction algorithms result in a strong improvement of rainfall accumulation 
from MRR (21.6 mm before correction versus 211.9 mm), which lead to a com-
parable value to rain gauges measurements (187.9 mm). Thus, despite some dis-
crepancies, similarity between frequency distributions is obvious after MRR off-
set correction. After attenuation and calibration correction, the superimposition 
of the frequency distributions of rain rates retrieved by the MRR and rain  
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(a) 

 
(b) 

Figure 5. Comparison of frequency histogram of the MRR reflectivity values (a) before 
and (b) after attenuation and calibration correction vs reference determined reflectivity 
from Xport KDP-based attenuation correction. These distributions were carried out with 
data collected in Nangatchori during in 2006.  
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(a) 

 
(b) 

Figure 6. Frequency histogram of estimated rain rate from MRR measurements (a) be-
fore and (b) after data correction vs co-located Nangatchori gauge rainfall. These distri-
butions were carried out with data collected in Nangatchori during in 2006.  
 

rates measured by the rain gauges confirms the good agreement between the 
MRR and the rain gauges data.  

Figure 7 shows the comparative evolution of the rates estimated and measured 
respectively by the MRR and rain gauges for three rain events (Figures 7(a)-(c)) 
and the dispersion curve (Figure 7(d)) for 32 rain events. For these three events, 
the MRR estimated the rainfall well and restituted relatively well the dynamics of 
the precipitation systems, as indicated by the performance criteria inscribed 
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Figure 7. Time series of rainfall rates determined from MRR vs gauge direct measurements 
for three selected storm events in Nangatchori (a): 15/07/2006; (b): 28/07/2006; (c): 
01-02/08/2006; and (d) comparison of event rainfall accumulations between gauge mea-
surements and MRR estimates for 32 events in 2006 at Nangatchori MRR site.  
 

on the different graphs. Indeed, for all the events presented, the correlation coef-
ficients are higher than 0.8, which indicates a good correlation between the rain-
fall estimated by the MRR and that measured by the rain gauges. The Nash-Sutcliffe 
coefficients are greater than 0.7, indicating that the rainfall estimate by the MRR 
is of good quality. As for the normalized bias, its value attesting to the difference 
between the estimated and measured values is very low for the events of 15/07/2006 
(−0.04) and 28/07/2006 (−0.02) and much higher for the events of 01-02/08/2006 
(0.23). In terms of the cumulative scatter plot (Figure 7(d)), the high correlation 
coefficient (0.95) indicates a strong correlation between the values estimated by 
the MRR and those provided by the rain gauges. The Nash-Sutcliffe coefficient 
value of 0.89 corroborates the performance of the correction algorithms applied 
to the MRR data which, at the scale of the rain event, reproduce the ground re-
ferenced accumulations. For the normalized bias, the value of 0.12 (12%) global-
ly indicates a slight overestimation of the event totals by the MRR, but this seems 
globally satisfactory. 

Overall, there is an overestimation of rainfall by the MRR. This discrepancy 
between the rain estimated by the MRR and the in-situ observations could be 
explained by the fact that vertical wind effects were not taken into account in the 
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processing of MRR data. Indeed, [44] and [45] found vertical wind to be a sig-
nificant source of error, especially for heavy precipitation. In addition to the ef-
fect of vertical wind, there are the effects of turbulence, air density [36] and spec-
tral folding [45] that were not considered in the processing chain. Also note the 
effects of sampling differences and the separation in altitude between the MRR 
(480 m is considered as the first valid gate) volume and the rain gauges (at ground) 
could also explain the discrepancy in measurements of these instruments. Com-
parisons between the corrected MRR data and Xport radar ones on the one hand 
and in-situ observational data provided by rain gauges on the other hand showed 
that the MRR is a good quality radar and can be used to estimate rainfall in a trop-
ical environment such as West Africa rain medium. 

4.2. Microphysical Processes Classification 

The different microphysical processes that generated the rainfall at the Nangatchori 
site in 2006 during the AMMA campaign were discriminated against with the 
validated MRR data. Although the factors do not actually act alone, this analysis 
allows us to focus on dominant processes within convective systems. To this end, 
out of all the N(D) drop distribution profiles explored, 18,810 profiles sampled 
every 10 s, i.e. 627 profiles averaged at 5-minute intervals, made it possible to 
unambiguously discriminate four dominant microphysical processes: coalescence, 
rupture, the combination of coalescence and rupture, and downdraft. Figure 8 sh- 
ows a 5-minutes rainfall sequence, an illustration of these dominant microphysical 
processes, which reflect a variation in the concentration of drops from the tested 
altitudes to the reference altitude, on four example cases (or four 5-minutes rain-
fall sequence).  

The criterion ( ) ( )test ref 1N D N D > , reflecting a decrease in the concentration 
of raindrops, was observed for small drops while for medium or large drops, 

( ) ( )test ref 1N D N D <  (Figure 8(a)). This pattern suggests an aggregation of the 
small drops into either medium or large drops. Finally, the microphysical process 
illustrated in Figure 8(a) showed an overall decrease in the concentration of small 
drops and an increase in the concentration of medium and large drops between 
the tested and reference altitudes. All these changes in the shape of the DSD, il-
lustrate a coalescence process that from a certain altitude onwards seems less ef-
ficient for the largest drop diameters (3.5 mm), as shown by the small differences 
in the concentration ratios for this range of diameters. 

In Figure 8(b), the criterion ( ) ( )test ref 1N D N D < , was found for small and 
medium drops, while we have ( ) ( )test ref 1N D N D >  for large drops. These var-
iations in ( )N D  indicate a fragmentation of the large drops which led to an in-
crease in the concentration of the small and medium drops. The changes in DSD 
shown in Figure 8(b) show an increase in the number of small and medium 
drops and a decrease in the number of large drops. This indicates that these 
changes in the DSD are indicative of a breakup process. It seems to have a great-
er effect on the number of drops with relatively larger vertical profile deviations 
for rain drops with a diameter less than 4 mm. 
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Figure 8. Fraction N(D)Test/N(D)Référence illustrating four dominant microphysical processes 
on the raindrop size distribution: (a) raindrop coalescence, (b) raindrop break-up, (c) 
coalescence and break-up acting simultaneously, and (d) downdraft effect from MRR ob-
servations. For the the sake of easy analysis, N(D)test/N(D)ref > 1 (decrease) or N(D)test/ N(D)ref 
< 1 (increase) in DSD at the referenced altitude ~1 km with the respect to DSD at higher 
altitude should be considered at different diameter ranges such as small (D < 2 mm), mid 
range (2 < D < 4 mm) and large (D > 4 mm). On each figure, the four curves represent 
the variation of the DSD for 5-minutes rainfall sequence. 
 

The criterion ( ) ( )test ref 1N D N D >  was observed for both small and large 
drops (see Figure 8(c)). This indicates both a decrease in the concentration of 
small drops and large drops. Also in Figure 8(c), ( ) ( )test ref 1N D N D <  was ob-
served for medium size drops, suggesting an increase in the concentration of drops 
in this diameter range. Thus, the changes in DSD shown in Figure 8(c) induce an 
aggregation of small drops and a fragmentation of large drops. On the other hand, 
the aggregation of small drops and fragmentation of large drops led to an overall 
increase in the concentration of medium-size drops. Finally, the changes in DSD 
shown in Figure 8(c), led to a combined coalescence of small drops and break-up 
of large drops: indicating a process of combined coalescence and break-up. The 
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combined action of coalescence and fragmentation would cause, compared to 
other microphysical processes, a relatively smaller variation with DSD altitude 
even for small raindrop diameters. According to [43], the combined action of 
coalescence and fragmentation of drops leads to equilibrium DSD as we see with 
drop concentrations independent of the altitudes considered for almost all drop 
diameters (concentration ratios close to 1). 

In Figure 8(d), ( ) ( )test ref 1N D N D <  was observed for all drop size ranges. 
These changes in the DSD indicate that the concentration of the number of 
drops regardless the diameter increases from the tested altitudes to the reference 
altitude as a result of the downdraft process. In Figure 8(d), an appearance of 
raindrops with diameters greater than 4.25 mm at altitudes below 3680 m is 
noted. This indicates a mechanism for the growth of drops during this downwind 
process in which particles undergo growth by accretion or collision-coalescence [46] 
with other particles among the small, intermediate and relatively large drops [12]. 
According to [46], collision efficiency increases with rainfall rate and is depen-
dent on wind within the convective system. 

Additional information characterizing the influences of microphysical processes 
can be determined through profiles of integrated DSD parameters such as the 
median volume diameter (D0), the concentration of the total number of drops 
per unit volume (NT) and their simultaneous consideration (D0/NT) important in 
the adjustment of radar rainfall estimation algorithms [13]. Figure 9 shows the 
mean vertical profiles of these three parameters for all sequences identified by 
microphysical processes. Moreover, the mean evolution rates of NT as percentage 
are showed on Figure 9(b). 

The median volumetric diameter D0 increases from high to low altitudes for 
all four processes, but this increase is of variable amplitude depending on the 
microphysical processes considered. As regards the concentration of drops, the 
results show that NT decreases (with negative mean evolution rates) for all processes 
except the downwind process where it increases (positive mean evolution rate). 
However, the decrease of NT is stronger during the coalescence process than dur-
ing the rupture process (60.4% decrease rate for coalescence against 20.2% for 
the rupture process). In the present study, variations in DSD parameters during 
breakup processes seem to contradict the findings of [37]. Indeed, they showed 
that the breakup processes lead to an increase of NT. However, based on the 
theoretical study of [46], it seems obvious that almost all of the breakup processes 
highlighted in our study are collision-breakup processes. These latter induce a de-
crease in NT. In addition, [37] showed that D0 increase and decrease respectively 
for coalescence and breakup processes. For the combination of coalescence and 
breakup processes, D0 depends on the dominant process between coalescence 
and breakup. But, their study was theoretical, so ours used real data. In addition, 
[37] considered that each process acted alone, which is rarely the case. Thus, col-
lision-breakup processes can give rise to collisions between drops and to evapo-
ration processes which would influence D0 differently. 
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Figure 9. Mean vertical Profiles median diameter D0 (a), Total raindrop size number NT 
(b) and their ratio D0/NT (c) for all rainfall sequences identified as determining the 
processes of raindrop coalescence, break-up, coalescence and break-up acting simulta-
neously, and downdraft. 
 

On average, raindrop fragmentation is a process in which the mode of varia-
bility of the DSD is controlled by variation in the total number of raindrops, with 
little variation in the median volume diameter. The evolution of D0/NT is then 
inferred from the inverse of that of NT to within a multiplicative factor. A similar 
behavior is attributed to the downdraft process for which the dependence on NT 
is rather low for lowest values of D0 (D0 < 1 mm) despite a relatively large varia-
tion with altitude. On the other hand, the coalescence and coalescence-breakup 
processes are characterized by the combined variation in drop size (D0) and NT. 
Indeed, the variations of D0/NT in the DSDs of these two processes follow those 
of D0 while having curves at the opposite paces to that of NT. The main differ-
ence between these two processes would be related to the differences in the total 
concentration profiles of the large drops (D ≥ 4 mm) when they occur separately 
(Figure 10). Thus, since microphysical processes do not necessarily act alone in 
convective systems, whether or not a process is effective in the formation of such 
large droplets would determine the acuity of the D0/NT variation mode of DSD 
for these two processes. 
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Figure 10. Mean vertical profiles (5-min rainfall sequence) of the total raindrop size 
number NT for large raindrop diameter (D ≥ 4 mm) for coalescence and break-up.  
 

Based on the 627 DSD profiles sampled in 5-min steps (about 3135 1-min spec-
tra) of discriminated raindrop size distributions, there are (415 1-min spectra) for 
coalescence, (550 1-min spectra) for breakup, (1610 1-min spectra) for the com-
bination of coalescence and breakup, and 560 min for the downdraft process. 
These different microphysical processes then represent 13.3% (coalescence), 17.6% 
(breakup), 51.4% (combination of coalescence and breakup) and 17.86% (down-
draft) of the data set used. Thus, the processes of coalescence and rupture or the 
combination of these two represented 82.14% of the processes highlighted with 
the method that was used. This confirms the conclusions of [47] that the shape 
of the raindrop size distribution is essentially controlled by coalescence and rup-
ture processes (in which it includes collision and collection processes). However, 
it should be noted that the method used in the present study did not reveal mi-
crophysical processes such as the processes of evaporation, collection, upwind 
and sorting of drops according to their size. 

4.3. Variability of Z-R Relations in Connection with Microphysical  
Processes and DSD Parameters 

The DSD parameters and the A and b coefficients of the Z-R relations were de-
termined for each dominant microphysical process. In this section, the connection 
between the microphysical processes and the DSD parameters was investigated. 
In addition, the variability of Z-R relationships as a function of dominant mi-
crophysical processes and DSD integrated parameters was also analyzed. 

Figure 11 shows the vertical profile of the A and b coefficients of the Z-R rela-
tionships for the four microphysical processes derived from the MRR dataset 
used in this study. A variation in the A factor and b exponent within each micro-
physical process and between microphysical processes was observed as a func-
tion of altitude. A clear difference in coefficient values of Z-R relations between 
microphysical processes is the main feature although at certain altitudes there 
are similar values between coalescence and coalescence-break at one hand and 
breakup and downdraft processes. Obviously, it was found that  

C CB B DA A A A> > >  (see Figure 11(a)), where , ,C CB BA A A  and DA  represent  
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(a)                                        (b) 

Figure 11. Vertical profile of Z-R relationship (a) pre-factor A, (b) exponent b, for different 
microphysical processes. 
 
the pre-factor A for the coalescence, the combined coalescence and breakup, the 
breakup and downdraft processes respectively. According [12], large coefficient 
could be attributed to the presence of large raindrops produced by coalescence 
and collision breakup (size or mixed controlled processes) which are also asso-
ciated with small exponents, whereas the small coefficients associated with large 
exponents are induced by the presence of large number density (number con-
trolled processes) in the small drop diameter range. In contrast, based on results 
from Figure 11, for altitude lesser than 1300 m, large (small) exponent are linked 
to large (small) coefficient and differences between microphysical processes be-
come more prominent and clear, unlike the unprecedented and sometimes am-
biguous situations of variability of exponent b at higher altitudes. Given the highly 
uncertain evolution of exponent b from one microphysical process to another and 
within a microphysical process (Figure 11(b)) it seems obvious analyzing Z-R 
variability by taking into account simultaneously the size and number of raindrops 
[13]. Such an approach derives its success from the fact that in reality the processes 
do not act alone. Indeed, very often, we can be in the presence of a conjunction 
of number and/or size controlled processes, according to the range of diameter 
classes.  

As illustrated by Figure 9(b), Figure 11(a) and Figure 11(b), the higher value 
of D0 (coalescence process), corresponds to the higher value of pre-factor A (as 
the exponent b) while the lower value of D0 (process of rupture) corresponds to 
the lower of the factor A (like the exponent b). Likewise, the higher value of pre- 
factor A (as the exponent b) corresponds to the higher value of NT (Figure 9(b) 
and Figure 11(a) and Figure 11(b)). The D0/NT ratio, relating to the coalescence 
process is lower than that relating to the breakup process (see Figure 9(c)). In 
addition, the pre-factor A of the coalescence process is higher than that of the 
rupture process (see Figure 11(a)). Thus, from comparison with D0/NT, two dis-
tinct main cases are evolved:  
 For coalescence and coalescence-breakup processes  

If ( ) ( )0 01 2T TP P
D N D N<  then 1 2P PA A>  and 1 2P Pb b<  pointing to an in- 

verse evolution of D0/NT and coefficient, unlike similar evolution with exponent. 
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 For breakup and downdraft processes  
If ( ) ( )0 01 2T TP P

D N D N>  then 1 2P PA A>  and 1 2P Pb b>  with, P1 and P2 
are two distinct rainy sequences. 

Thus, both value of exponent b and pre-factor A being highly depending on 
DSD integrated parameters, therefore it strongly suggests the need to determine 
coefficients of Z-R algorithm by involving microphysics assumption that govern 
the DSD. 

4.4. Rainfall Retrieval Algorithms Evaluation 

To reduce bias in rainfall estimates compared to ground reference measurements, 
estimators based on MRR measurements are developed with data as close to the 
ground as possible. For this purpose, the reflectivity Z and the rain rate R of the 
third gate of the MRR which is the first valid gate are used. With regard to the 
algorithms taking into account microphysical processes, the coefficients of the 
unique relationships obtained are the averages of the coefficients determined per 
process weighted by the percentages of occurrence of the processes analyzed in 
the rainfall sequences observed by the MRR. Thus, the following algorithms were 
obtained: 
 Without taking into account the dominant microphysical processes (non-linear 

least squares adjustment): 1.55208Z R= ; 
 With consideration of dominant microphysical processes (non-linear least 

squares adjustment): 1.66253Z R= .  
As a comparison with the recent Z-R relationships applied to the same Xport 

data we indicate three algorithms from the literature, including the 1.29655Z R=  
algorithm of [19] determined by fitting radar—rain gauge data from the intensive 
AMMA 2006-2007 campaign. The second ( 1.36460Z R= ) was obtained by adjust-
ing Z-R estimators based on radar and rain gauge comparisons, from Z-R esti-
mators previously established for West Africa [18] [19] [21]. It is a fitting method 
suggested by [48] which consists in searching for an optimal relationship by tra-
versing the space of the values of the coefficients A and b in ranges drawn from 
algorithms in the literature on AMMA observations [49]. The so-best algorithm 
called in the following “fitted estimators” satisfies a set of criteria contained in a 
cost function integrating a good distribution of rain rates scatterplot estimated 
by this relation around the first bisector by giving more weight to high values, a 
good agreement between the rain rate probability distribution frequency (PDFs) 
estimated and measured by the rain gauge network, a good agreement of the class 
contributions to the total accumulation (in other words, evaluating the contribu-
tions of class rainfall PDFs weighted by the average rain rate of the class). The 
third algorithm ( 1.62218Z R= ) also derived from [19] is obtained by simulating 
the disdrometric dataset of the AMMA campaign [18] [21] by making the as-
sumptions of Andsager's raindrop shape model [35] and a temperature of 25˚C. 

Given that the determination of Z-R coefficients is sensitive to the analytical 
methods used [39], and that the performance of our estimators is evaluated by 
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comparison with optimized algorithms in the literature, we considered only op-
timized Z-R algorithms for rainfall estimation. Thus, the results of linear least 
squares Z-R estimators are not displayed. 

For the evaluation of the algorithms, the horizontal reflectivities measured by 
the Xport radar in 2006 during the intensive AMMA campaign in Benin are used. 
The different rainfall estimates are then compared with ground measurements 
provided by rain gauges located within 50 km around Xport radar. 

Figure 12 shows scatterplots of 1) MRR-based optimized Z-R without micro-
physics’ processes, 2) optimized Z-R accounting microphysical processes, 3) ra-
dar-rain gauges fitting Z-R, 4) Z-R estimators fitting based on those from AMMA’s 
literature and e) DSD-based simulated Z-R against 5-minutes time steps gauges 
accumulations. It indicates that estimators derived from vertical pointing radar 
(MRR) measurements perform better on the fine time scale than those derived 
from radar—rain gauges observations. In terms of coefficient of efficiency (Nash 
criterion), the algorithms dependent on DSDs from the MRR are 1.5 to 2.5 times 
better than the others. This highlights the interest of establishing these algorithms 
from measurements from the same instrument to remove the biases introduced 
by the sampling difference between the measuring devices. Indeed, the algorithm 
obtained by simulation from the disdrometer data alone also has performances 
relatively close to the MRR algorithms. In particular, the algorithm based on mi-
crophysical processes gives the lowest normalized standard error among all the 
algorithms and the associated Nash coefficient (0.708) in terms of bulk statistics 
(all rain rates are considered) is 1.5 times higher than that of the algorithm de-
rived from the MRR data abstracting from microphysics. Thus, with this evalua-
tion, it emerges that knowledge of the DSD is decisive for a more suitable Z-R 
relationship for rainfall estimation. In addition, the best estimates are obtained 
by including the dominant microphysical processes underlying the formation of 
the DSD, particularly for estimates with a time step of 5 minutes. At rainfall 
event scale (Figure 13), the climatologically relationship derived from simula-
tions based on all DSDs of the AMMA intensive campaigns has estimates com-
parable to those of the algorithm that suggest taking into account the dominant 
microphysical processes. The similarity of their Nash and NRMSE values is strik-
ing (NRMSE = 0.25/Eff = 0.84 for algorithm taking into account the microphys-
ical processes versus NRMSE = 0.22/Eff = 0.86 for Z-R disdrometer-derived es-
timator). This suggests that, at rainfall event scale, all the processes through the 
DSD measured at the ground is a reliable alternative for the determination of 
adapted Z-R algorithms reducing biases in the rainfall estimates. The closeness 
of the results of these two algorithms shows the interest of taking into account 
microphysical processes in their determination, giving that estimator based on 
DSDs dataset of the AMMA campaign includes implicitly various events in which 
different microphysical processes are combined. However, using algorithms de-
rived from the ground-based DSD, we should keep in mind that the increased 
presence of large diameter raindrops at high altitudes where the radar 
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Figure 12. Scatter plots of rainfall rates retrieved by five Z-R algorithms against rainfall 
rates measured by rain gauges: (a) 1.55208Z R=  (non-linear regression without taking into 
account microphysical processes called “Optimization without MP”), (b) 1.66253Z R=  
(non-linear regression with microphysical processes called “Optimization with MP”), (c) 

1.29655Z R=  (fitting radar-rain gauge datasets: “Radar-rain gauges fitting”), (d):  
1.36460Z R=  (adjusting Z-R estimators based on radar and rain gauge comparisons: “Es-

timators fitting”), (e) 1.62218Z R=  (Algorithm derived from T-matrix simulations based on 
DSDs gathered during AMMA campaigns: “Simulations Andsager T = 25˚C”).  
 
measurements are done would limit the quality of these estimators, since Z-R is 
sensitive to the presence of large diameter raindrops [1] [50]. Such exceptional 
diameters are generally unobserved in ground-based DSDs since raindrop 
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Figure 13. Scatter plots of rainfall event accumulation retrieved from Xport radar reflectiv-
ity by employing four most performing Z-R algorithms (“Radar-rain gauges fitting”, “Es-
timators fitting”, “Optimization with MP”, “Simulations Andsager T = 25˚C”) against 
rainfall measured by rain gauges.  
 
breakup processes reduce their occurrence. Since rainfall events are monitored 
by radar at finer time steps, an algorithm that integrates the highly variable mi-
crophysical processes during the life cycle of the convective systems [51] and 
from one rainfall event to another is highly recommended [1]. In comparison 
with the work of [19], such an algorithm would seem to be as efficient as polari- 
metric estimators even without setting a threshold on the reference intensities. 

Overall, with this Z-R algorithm taking into account microphysical processes, 
an important step is done in the way to reduce errors in rainfall estimation in-
troduced by the variability of microphysical processes, as suggested by [1]. As a 
comparison [52], with the idea of including the consideration of microphysical 
processes in rainfall estimation algorithms [53], have designed an algorithm (named 
SCOP-ME) that simultaneously includes integrated DSD parameters associated 
with drop size (the median volume diameter D0) and their number (the intercep-
tion parameter Nw). These parameters Nw and D0 are estimated from the polari- 
metric radar variables. The evaluation of this algorithm, in terms of rainfall es-
timates, gave for different integration times (15/30/60 minutes) Nash coefficients 
(0.82/0.79/0.83 respectively for corresponding time steps) of the same order as 
the Z-R algorithm based on a more direct consideration of the microphysical pro- 
cesses developed in our work (0.84 at rainfall event scale and 0.71 at the 5 min 
time step). In terms of NRMSE, SCOP-ME (0.63; 0.59; 0.51 for 15, 30, 60 minutes 
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integration time respectively) remains less efficient than Z-R adjusted by the dis-
crimination of the microphysical processes (0.25 and 0.45 at the rainfall event 
scale and at the 5 min time step, respectively). Certainly, the NRMSE high values 
of SCOP-ME rainfall estimates depends on the performance of the Nw and D0 
retrieval algorithms as implicitly recognized by its authors [52]. 

5. Summary and Conclusions 

In this study, the devices (a Micro Rain Radar, a polarimetric X-band horizontal 
scanning radar, a dense network of rain gauges) for radar experiment during the 
AMMA radar campaign in 2006 that operated in Northern Benin for monitoring 
the rainfall systems in the region and estimating rainfall provided an appropriate 
framework for evaluating a Z-R algorithm including the microphysical processes 
within the rainstorms monitored. Such a framework offered the opportunity to 
exploit for the first time the MRR data gathered during AMMA by taking ad-
vantage of the co-location of a polarimetric X-band radar to correct the rain at-
tenuation and calibration issues that hampered the expectation of having such 
low cost micro radar. The main conclusions drawn from this study are summa-
rized as follows: 
 The normalized DSD variations showed a clear relation between raindrop 

concentration, DSD integrated parameters and coalescence, coalescence-break- 
up, breakup, and downdraft processes. Micro rain radar DSD-derived Z-R 
relations according the various processes above mentioned are found to be 
different from a process to another according that size, number or mix con- 
trolled modes are dominant within rainstorms.  

 The unique adjusted Z-R algorithm coefficients including various microphysical 
processes are derived as the averages of the coefficients determined per domi-
nant process weighted by the percentages of occurrence of these processes. In 
this case, nonlinear regression is established to determine optimal coeffi-
cients comparable to existing optimized Z-R relations. 

 The performance of microphysical processes induced Z-R algorithm was com-
pared against three other optimized Z-R in literature based on AMMA data-
set. Bulk statistics comparison exhibits that Z-R algorithm involving micro-
physical processes outperforms the other in terms of Nash coefficient and nor-
malized standard error. 

 The impact of taking into account the dominant microphysical processes in 
the Z-R quantitative rainfall estimation is also evaluated by comparison to 
rainfall rate estimates with SCOP-ME, a polarimetric algorithm involving rain 
microphysics retrievals [52]. In terms of error and efficiency statistics, suffi-
ciently similar results are found. 

Although the Z-R relationship calibration based on the microphysical processes 
led to progress in radar QPE, future studies focusing on the combination of mi-
crophysical processes discrimination by precipitation type (light or heavy rain) 
and derived subsequent Z-R optimized estimators, not dealt with in the present 
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study, could certainly improve quantitative precipitation estimation. Furthermore, 
since rainfall events are monitored by radar at finer time steps, an algorithm that 
integrates the highly variable microphysical processes during the life cycle of the 
convective systems and from one rainfall event to another is highly recom-
mended. 
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