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Abstract 
This study consists of hydrological simulations of the Muriaé river watershed 
with the topography-based hydrological model (TOPMODEL) and available 
stream gauge and rain measurements between 2009 and 2013 for two subba-
sins, namely Carangola and Patrocínio do Muriaé. The simulations were car-
ried out with the Climate Prediction Center morphing method (CMORPH) 
precipitation estimates and rain gauge measurements integrated into CM- 
ORPH by the Statistical Objective Analysis Scheme (SOAS). TOPMODEL ca-
libration was performed with the shuffled complex evolution (SCE-UA) me-
thod with Nash-Sutcliffe efficiency (NSE). The best overall results were ob-
tained with CMORPH (NSE ~ 0.6) for both subbasins. The simulations with 
SOAS resulted in an NSE ~ 0.2. However, in an analysis of days with high- 
level stages, SOAS simulations resulted in a better hit rate (23%) compared to 
CMORPH (10%). CMORPH simulations underestimated the flows at the 
flood periods, which indicates the importance to use multi-sensor precipita-
tion data. The results with TOPMODEL allow an estimate of future dis-
charges, which allows for better planning of a flood warning system and dis-
charge measurement schedule. 
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1. Introduction 

Floods are a natural phenomenon, but when occurring in inhabited areas they 
become natural disasters. Brazil is among the most affected countries, with 10,444 
events recorded between 1991 and 2010, which resulted in more than 38 million 
people affected [1]. Urban expansion associated with socioeconomic problems 
acts in the increase and intensification of natural disasters related to floods. This 
is due to changes in the original hydrological cycle, such as increased soil water-
proofing, deforestation, erosion, and structural interventions in rivers [2] [3]. 
The population (mainly low income) increase in hazardous areas enhances the 
magnitude of natural disaster’s impact [4]. The effects on the affected population 
can be diverse and quite significant: direct deaths, destruction of buildings, evic-
tions, disruption of dikes and dams, and obstruction of roads [5]. The economic 
damage caused by natural disasters is also significant, as it is estimated that in 
2008 alone it was approximately US$ 1 billion [6]. 

In Brazil, the South and Southeast regions, the latter where the Muriaé river 
basin (hereafter, MRB) is located, is the most affected by natural disasters caused 
by hydrological phenomena [6]. Severe floods were recorded in the MRB in 
1997, 2008, and 2012 [7]. Most recently in 2020, intense precipitations resulted 
in severe floods and landslides, which 84 cities located at or near the MRB the 
state of emergency was decreed with 7 deaths and 40,000 unsheltered people 
[8]. 

One alternative to better understand hydrological phenomena is through hy-
drological models. They make it possible to study the impact of land-use changes 
in a watershed and the prediction of flood events [9]. In a study in the Paraíba 
do Sul basin (in which the MRB is located) Caluan & Cardoso (2020) [10] used a 
hydrological model to conclude that an increase in forest cover would decrease 
the frequency of very high flow events in the rainy season and also decrease the 
frequency of very low flow events in the dry months. Hydrological models can 
be defined as the representation of processes that occur in a watershed which al-
lows the prevention of the consequences of the different occurrences concerning 
the observed values [2]. Beven (2001) [11] defines hydrological models as a 
means to estimate hydrological variables in space and time, as a support for de-
cision-making related to water resources such as flood forecasting. 

An example of a hydrological model is the Topography-based Hydrological 
model (TOPMODEL) [12], a model developed for small basins in humid regions 
of the United Kingdom whose main parameter is the topography of the basin. 
TOPMODEL is a model classified as semi-distributed and conceptual that ag-
gregates the advantages of the complexity of a distributed model with the sim-
plicity of concentrated and unique parameters for the entire basin [13]. It was 
successfully used in several hydrologic studies in small basins (i.e. <500 km2) 
[13]-[18] and medium and large size (e.g. 800 and 27,000 km2) [19] [20]. 

TOPMODEL’s primary input variable is precipitation. The calibration effi-
ciency and the result of any hydrological model are dependent on the accuracy 
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of the measurement of this variable and, therefore, should be estimated and meas-
ured with the slightest possible error [21]. However, obtaining reliable and rep-
resentative data of precipitation measures can be an overly complex task due to 
spatial heterogeneity and the different temporal scales of rain events [22]. 

Rain gauges installed on the surface directly measure precipitation. However, 
they have limited spatial variability representation in regions with a low equip-
ment density [23]. Besides, tipping bucket pluviometers may underestimate the 
measurement in situations of very intense precipitation [24] and strong winds 
[25]. 

Indirect measurements via remote sensing such as satellite estimates are an 
alternative. These methods allow for greater space-temporal resolution, but as an 
indirect measurement of precipitation, they contain several sources of errors and 
uncertainties [26]. Satellite quantitative precipitations estimates (SQPE) are not 
effective at estimating stratiform rainfall and fail to detect convective systems 
due to data sampling [23]. The Climate Prediction Center Morphing Technique 
(CMORPH) [27] is an example of an SQPE product that uses data from passive 
microwave (PMW) and infrared (IR) sensors onboard satellites to produce pre-
cipitation data with high spatial-temporal resolution. 

One solution to reduce precipitation errors is to use objective analysis to inte-
grate rain gauge data with remote and spatially distributed estimates of weather 
radars or satellite data [21]. The Statistical Objective Analysis Scheme (SOAS) 
[28] was developed to combine the advantages of each measurement system to 
produce a precipitation analysis field with minor errors and, therefore, improv-
ing the performance of hydrological simulations. Several studies have already 
used SOAS to integrate precipitation data and apply them to hydrological mod-
els with satisfactory results [17] [29] [30] [31] [32]. In Pereira Filho et al. (2018) 
[33], a sixth-order polynomial equation of CMORPH 24-hour precipitation cor-
relation between two pixels as a function of the distance between them was ad-
justed. The correlation function was adapted for the CMORPH precipitation time 
series from 2000 to 2015 over the entire Brazil territory. This equation made it 
possible to apply the SOAS method in this study. 

Since TOPMODEL was developed for small-sized basins with a temperate 
climate, a minority of its applications have been to medium-sized basins with a 
tropical climate. When applying TOPMODEL to a hectare scale tropical climate 
basin in French Guiana, Moliĉová et al. (1997) [34] concluded that the results 
could be susceptible to the temporal and spatial resolution of the precipitation 
data. In a 73 km2 basin in Southeast Brazil, Rocha Filho (2010) [17] observed 
that only three parameters showed high sensitivity with the result (m, lnTe, and 
td) and that the low sensitivity of the other parameters can mean a lack of adhe-
rence between the observed and calculated data [35]. When applying the model 
in a humid climate, 380 km2 basin in Nigeria, Campling et al. (2002) [16] changed 
the dynamics of the topographic index so that the water table was not parallel to 
the terrain. The calibration results were satisfactory and the subsurface flow was 
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the most crucial process in generating the hydrograph. The authors also noted 
that intense convective precipitations were not properly represented by the net-
work of rain gauges used, which corroborates the need to use precipitation mea-
surement systems with high spatial resolution. 

Because it is a simple model that each parameter (except topographic index) 
has a unique value for the whole basin (i.e., lumped model), TOPMODEL is a 
viable alternative in the operation of a flood warning system. Thus, this study 
aims to study the effectiveness of TOPMODEL for hydrological forecasting in 
the MRB, a medium-sized basin and tropical climate, a situation with a limited 
number of applications. For this purpose, SQPE from the CMORPH product 
and analyzed precipitation that integrated CMORPH data with rain gauge mea-
surements with the SOAS method was used 

2. Material and Methods 
2.1. Study Area 

The MRB is located in Southeast Brazil within the states of Minas Gerais (45% 
of the area) and Rio de Janeiro States (55%) with a drainage area of 8126 km2 
(Figure 1). The Muriaé river is the last main tributary of the Paraíba do Sul river 
flowing to the Atlantic Ocean. 

In this study, hydrological simulations were performed for Carangola and Pa-
trocínio do Muriaé subbasins (hereafter referred to as CLA and PMU respec-
tively). Carangola stage level gage is at the main tributary of the eponymous riv-
er with a drainage area of 742 km2. The Patrocínio do Muriaé stage level gage is  

 

 
Figure 1. (A) Map of Brazil divided by federative units with an emphasis on the southeast region. (B) Southeast region of Brazil 
with an emphasis on the MRB location. (C) Map of the MRB (thick black line) with emphasis on CLA (light grey) and PMU (dark 
grey). Main rivers are represented by thin black lines. Stage gages are represented by a black triangle. Longitudes are represented 
on the abscissa axis and latitudes on the ordinate axis. 
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at the Muriaé river and has a catchment area of 2990 km2. 
The Digital Elevation Model (DEM) used was the product of the Shuttle Radar 

Topography Mission (SRTM) operated by the National Aeronautics and Space 
Administration (NASA). The images were available at 30-meter horizontal spa-
tial resolution and 1-meter vertical resolution. In Table 1 the land use and soil 
type of CLA and PMU are presented. The MRB terrain (Figure 2) is characte-
rized by rugged terrains with topographic features of 1500 m altitude in the north-
west quadrant and flat plains in the southeast quadrant. 

The region climate is classified as hot and humid with a dry winter, Köppen 
class Aw [37]. Temperatures are high throughout the year, with a rainy summer 
(December to March) and a dry winter (June to August) when monthly rainfall 
averages are less than 50 mm (Figure 3). The average annual rainfalls are 1400 
mm (PMU) and 1200 mm (CLA), while the average flow values are 48 m3∙s−1 
(PMU) and 13 m3∙s−1 (CLA). 

2.2. CMORPH 

The Climate Prediction Center Morphing Technique – CMORPH [27] is an 
SQPE with a high spatial-temporal resolution (~8 km and 30 min). The method 
is based on precipitation rates estimated from PMW sensors. The PMW images 
are obtained from three sensors, located at polar orbit satellites which yield im-
ages for a specific location with a 3-hour temporal resolution (Table 2). 

The IR images on board of geostationary satellites (METEOSAT and GOES) 
are used to increase the spatial-temporal resolution of the final product through 
wind vectors from the Cloud System Advection Vector (CSAV) method [41]. 
The wind vectors advect the PMW rainfall rate fields in space and time. Consec-
utive PMW images are advected forward and backward in time. In morphing, 
two images from the same time step are composed to generate the final product. 

 
Table 1. Land use and soil type for CLA (second column) and PMU (third column). 
Sources: http://sigaceivap.org.br/siga-ceivap/map and https://www.ibge.gov.br.  

 CLA PMU 

Land use   

Forests 16.2% 21.8% 

Crops 15.7% 5.0% 

Pastures 63.1% 69.1% 

Urban Area 5.1% 3.9% 

Soil type*   

Clay Soil 18.1% 2.3% 

Cambisols 1.2% 5.5% 

Latosols 74.2% 91.7% 

Neosols 6.5% 0.6% 

*Classes defined by [36]. 
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Figure 2. Digital Elevation Model (DEM) of the MRB obtained from the SRTM product. Carangola 
and Patrocínio do Muriaé stage gages are represented by black triangles. Altitudes are represented by 
the color chart (greyscale) in meters above sea level. Black lines represent the main rivers. Longitudes 
are represented on the abscissa axis and latitudes on the ordinate axis. 

 

 
Figure 3. Climatology of Patrocínio do Muriaé (black) and Carangola (grey) hydrometeorological 
stations. Monthly mean precipitations (mm) are represented by vertical bars (downward on the left 
ordinate axis) while monthly mean discharges (m3 s−1) are represented by lines (upward on the right 
ordinate axis). 
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Table 2. Satellite sensors used for CMORPH. Sensors, satellites, microwave frequencies, 
and references on respective precipitation estimates are shown. 

Sensor Satellite Frequencies (GHz) Reference 

Special Sensor Microwave  
Imager (SSM/I) DMSP 

19, 22, 37 (emission based) 
85 (scattering based) 

[38] 

Advanced Microwave  
Sounding Unit-B (AMSU-B) 

NOAA-15, NOAA-16, 
NOAA-17 

31 (emission-based) 
89, 150 (scattering based) 

[39] 

TRMM Microwave  
Imager (TMI) 

TRMM 
10, 19, 21, 27 (emission based) 

85 (scattering based) 
[40] 

 
Overland, both temperature and emissivity are highly variable, which makes 

the microwave background signal unpredictable and makes it difficult to use 
images from emission-based frequencies for precipitation estimates [42]. There-
fore, over continents, PMW-based precipitation estimates rely solely on the 
scattering of higher frequencies microwave from frozen hydrometeors. 

2.3. SOAS 

An alternative to minimize precipitation errors is through the SOAS method 
[21]. An efficient interpolation technique [43] was initially developed to inte-
grate radar precipitation estimates and rain gauge measurements. Recently, the 
methodology was also used to integrate SQPE [33]. 

The analyzed precipitation at a given grid point is obtained by adding preci-
pitation estimates by remote sensing (radar or satellite) at the point and the sum 
of the product of the weights of the differences between rain gauges measure-
ments and those estimated by remote sensing [17]. In this case, the error va-
riance will be the sum of the squares of the differences between the measured 
values and the actual values. Therefore, the weights of the analyzed values will be 
dependent on the error variance of the precipitation estimates. The analysis is 
performed so that the error variance is less than the error variance of the mea-
surements. The SOAS equation [21] is: 

( ) ( ) ( ) ( )1, , , ,K
a i i r i i ik g k k r k kkP x y P x y w P x y P x y

=
 = + − ∑         (1) 

where ( ),a i iP x y  is the analyzed precipitation at a point i of the grid [mm]; 
( ),r i iP x y  is the estimated precipitation by remote sensing at a point i of the 

grid [mm]; ( ),g k kP x y  is the measured precipitation by the rain gauge at point 
k [mm]; ( ),r k kP x y  is the estimated precipitation by remote sensing at point k 
[mm]; ikw  is the weight that will be set a posteriori; k is the number of rain 
gauges; (x, y) are the coordinates in UTM [km]. 

One premise of the method is that both rain gauge measurements and preci-
pitation estimates are not correlated or biased. Thus, it is possible to obtain the 
weights through: 

( )2
1 ; for 1K

l kl k kil W k Kρ ε ρ
=

+ = ≤ ≤∑ ,               (2) 

where klρ  is the correlation between the rain gauges k and i errors; kiρ  is the 
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correlation between point i of the grid and the rain gauge k errors; 2
kε  is the 

normalized observation error; lW  is the weight that will be set a posteriori.  
The analysis error can be normalized by applying previously elaborated algo-

rithms [44] in the error covariance matrices. The expected analysis error va-
riance (NEXERVA) ( 2

aε ) can be expressed as: 
2

11 K
a ki ll Wε ρ

=
= −∑                        (3) 

NEXERVA is the ratio between the expected analyzed data error variance and 
the remote sensing estimates error variance. Thereby, it is possible to determine 
the spatial distribution of the errors in the analyzed field [21]. In general, NE- 
XERVA is minimal at the rain gauge locations. 

The matrix of the covariances of the estimated value errors used to normalize 
Equations (1) and (2) is the most crucial component of the SOAS [21]. This ma-
trix has great importance in the accuracy of the analysis. 

( ) ( )
( ) ( )2 2

k k l l
R a R a

kl
k k l l

R a R a

P P P P

P P P P
ρ

− × −
=

− × −
                 (4) 

where klρ  is the correlation between pixels k and l errors; ( )k l
RP  are the preci-

pitation estimates by remote sensing in pixel k(l); ( )k l
aP  is the average long- 

term precipitation estimates by remote sensing in pixel k (l). 

2.4. TOPMODEL 

TOPMODEL is a rainfall-runoff model defined as deterministic, dynamic, 
physical-based parameters, and semi-distributed [12]. The model was devel-
oped for small humid basins of temperate climate [45]. The model is consi-
dered semi-distributed because only the parameter related to the topography, 
the topographic index, is spatially distributed. The topographic index (λ) can 
be expressed as λ = ln(α/tanβ), where α is the drainage area per unit of con-
tour and tanβ is the terrain slope. High values of λ indicate points more likely 
to reach saturation and consequently more likely to generate runoff [45]. 
Points with equal weights of λ are treated as regions with similar hydrological 
responses. 

Beven and Kirkby (1979) [12] and Beven et al. (1984) [45] described TOP- 
MODEL as a physical-based conceptual model that represents surface and soil 
dynamics based on the relationship between discharge and storage established 
from flows in saturated zones due to slope. According to the authors, TOPMO- 
DEL combines the advantages of the simplicity of lumped models with the dis-
tributed effects of variable areas of contribution and flows through the drainage 
network. It is also possible to determine the parameter values from the know-
ledge of the physical characteristics of the hydrographic basin. 

The transformation of precipitation into flow into a hydrological model can 
be divided into two stages: the soil water balance and the flow propagation 
through the basin [19]. In TOPMODEL, a series of three interconnected reser-
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voirs represents the flow generation process and is the average response of the 
homogeneous capacity basin: the vegetation reservoir (S1), the soil unsaturated 
zone reservoir (S2), and the soil saturated zone reservoir (S3) [17]. For each time 
step, the reservoirs S1 and S2 are filled with the levels 1S ′  and 2S ′  respectively. 
The saturation deficit (S) of each time step is the difference between the maxi-
mum reservoir level S2 ( *

2S ) and the instantaneous level ( 2S ′ ). 
This three reservoirs system generates four possible flows [19]: subsurface 

flow at the saturated zone (qs), vertical subsurface flow at the unsaturated zone 
(qv), surface runoff generated by infiltration excess (qh) (Horton mechanism), 
and surface runoff generated by saturation excess (qas) (Dunne mechanism) [46] 
[47]. 

In the next step, TOPMODEL propagates the surface runoff for the basin out-
let hydrograph composition [48]. The main processes involved in the model are 
presented in Figure 4. 

The model uses the premise that the simulation occurs after a dry period 
which implies the following initial conditions [19]: 
• the unsaturated soil zone (S2) is completely dry (i.e. 2 0S ′ = ); 
• the discharge in the basin outlet is generated exclusively by the subsurface 

flow, represented by the parameter qs0. 
The TOPMODEL’s parameters are presented in Table 3. 

 

 
Figure 4. Schematics of TOPMODEL hydrological processes. S1: Vegetation reservoir; 

*
1S : Maximum reservoir S1 level; 1S′ : instantaneous level of the reservoir S1; S2: unsatu-

rated soil reservoir; *
2S : The maximum level of the reservoir S2; 2S′ : instantaneous level 

of the reservoir S2; S: saturation deficit; S3: The reservoir of saturated soil zone; ETsup: 
Evapotranspiration that occurs on the surface; ETsoil: evapotranspiration that occurs in 
the soil; (1): precipitation; (2): effective precipitation; (3): saturated area runoff; (4): Hor-
ton mechanism runoff; (5): vertical subsurface flow; (6): surface runoff propagated with 
Clarke’s method; (7): subsurface flow. 
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Table 3. List of TOPMODEL’s parameters and their respective description. 

Parameter Description 

qs0 Initial specific subsurface flow [m∙h−1]; 

lnTe Effectively saturated soil transmissivity logarithm [m2∙h−1]; 

m An exponential factor of the soil profile transmissivity decay [m]; 

Sr0 The initial level of reservoir representing vegetation [m]; 

*
1S  = Srmax The maximum level of reservoir representing vegetation [m]; 

td Water permanence time in the unsaturated soil zone [h∙m−1]; 

vch Mean speed at the main channel [m∙h−1]; 

vr Mean surface runoff speed [m∙h−1]. 

K0 Hydraulic conductivity just below the surface in saturated soil [m∙h−1]; 

cd Capillarity drive [m]; 

dt Time step [h]; 

topographic index Image of the topographic index of each grid point. 

2.5. Calibration with SCE-UA 

For both subbasins, the same calibration methodology was used for all cases, the 
Shuffled Complex Evolution developed at the University of Arizona (SCE-UA) 
[49]. The methodology was developed to increase the probability that the best set 
of parameters found is a global minimum rather than a local minimum. The 
SCE-UA method was successfully used in the calibration of several hydrological 
models, such as NAM/MIKE 11 [50], Sacramento Soil Moisture Accounting 
(SAC-SMA) [51] [52], and TOPMODEL [53]. 

The probability of a global minimum was increased by the SCE-UA method. 
This method evolves multiple groups of parameter sets independently with the 
Competitive Complex Evolution (CCE) [49] [51]. After each round of the simu-
lation, the parameter sets are rearranged to evolve with different partners. The 
simulation is repeated until the user-defined objective function of the best pa-
rameter set meets convergence criteria. 

The SCE-UA calibration methodology was applied through the rtop library 
[54] of free software R (version 3.3.2). The objective function chosen was the 
Nash-Sutcliffe efficiency [55], which is given by: 

( )
( )

2

1
2

1

NSE 1
i i
s o

n

n

i

i
oi Q

Q Q

Q
=

=

−
= −

−

∑
∑

,                   (5) 

where NSE is the Nash-Sutcliffe efficiency; i
sQ  is the simulated discharge at time 

step i; i
oQ  is the observed discharge at time step i; Q  is the mean observed 

discharge of the whole period; n is the number of time steps. 
For the simulations, a period of 4 years was selected between 2009 and 2013. 

To meet TOPMODEL’s premise that simulations must start in a dry period (i.e. 
absence of surface runoff), the month of September was defined as the beginning 
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of the hydrological year. The hydrological years of 2009/2010 and 2010/2011 
were chosen for calibration, while the hydrological years of 2011/2012 and 2012/ 
2013 were selected for validation. 

Daily rain gauge precipitation accumulation measurements between 1000 UTC 
(Coordinated Universal Time) of consecutive days and respective CMORPH preci-
pitations estimates were used in the integration process with SOAS. Both rain 
gauges and discharge data were obtained from the Brazilian Hydrometeorologi-
cal Network, which is operated by the Brazilian Water Agency (ANA). The SOAS 
method is described in detail in Pereira Filho et al. (2018) [33]. Evapotranspira-
tion data were obtained from the closest weather station (Itaperuna, OMN #83695), 
operated by the Brazilian National Institute of Meteorology (INMET) in which 
evapotranspiration is measured with a lysimeter. 

3. Results and Discussion 
3.1. SOAS Applied to the MRB 

Fifteen (15) rain gauges were selected (Figure 5(A)) for the SOAS method at the 
MRB. In the expected analysis error variance (NEXERVA) results (Figure 5(B)), 
it can be noted the influence of the rain gauges of the pluviometers, in which the 
greater the proximity to the observed data, the more significant the reduction of 
the error variance. The NEXERVA values for CLA (0.34) and PMU (0.38) sub-
basins show that the SOAS methodology reduced the CMORPH estimates un-
certainties by approximately 65%. 

3.2. Calibrated Parameters 

The calibrated parameters of each simulation and the distribution of the topo-
graphic index of each subbasin are shown in Table 4 and Figure 6, respectively. 

To comprehend the importance of each parameter, sensitivity tests were ap-
plied to all simulations (Figure 7 and Figure 8). The sensitivity analyses were  

 

 
Figure 5. (A) Distribution of the fifteen (15) rain gauges used to apply the SOAS method for the MRB. Pluviometers are represented 
by crosses. Main rivers are represented by thin black lines. (B) NEXERVA values for the MRB. Longitudes are represented on the 
abscissa axis and latitudes on the ordinate axis. 
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Table 4. Calibrated TOPMODEL’s parameters for PMU and CLA with CMORPH and 
SOAS precipitation values. 

Parameter 
PMU CLA 

CMORPH SOAS CMORPH SOAS 

qs0 [m∙h−1] 4.04 × 10−5 5.44 × 10−5 2.22 × 10−5 4.59 × 10−5 

lnTe [m2∙h−1] 4.68 × 10−1 1.38 × 10−1 3.31 × 10−1 1.73 × 10−1 

m [m] 8.16 × 10−2 9.04 × 10−2 8.94 × 10−2 8.05 × 10−2 

Sr0 [m] 2.55 × 10−8 2.15 × 10−8 3.44 × 10−8 3.22 × 10−8 

Srmax [m] 4.66 × 10−2 2.67 × 10−1 9.65 × 10−3 1.04 × 10−1 

td [h∙m−1] 1.64 × 10−1 2.18 × 10−1 2.81 × 10−1 6.24 × 10−1 

vch [m∙h−1] 1.17 × 107 1.57 × 107 3.59 × 105 3.44 × 105 

vr [m∙h−1] 1.56 × 103 1.77 × 103 1.03 × 103 1.74 × 103 

k0 [m∙h−1] 2.68 × 10−2 2.13 × 10−2 2.80 × 10−1 3.64 × 10−1 

cd [m] 2.16 × 104 9.79 × 103 1.21 × 104 1.50 × 104 

 

 
Figure 6. Variation of the accumulated area (%) (y-axis) with the topographic index 
classes (x-axis) for PMU (black line) and CLA (grey line). 

 
obtained through simulations in which only a given parameter has a variable 
value to determine its relevance in the calibration efficiency. 

It can be noted that for all four simulations, three parameters presented the 
greatest sensitivity: qs0, m, and Srmax. The primary relevance of the parameter 
m coincides with previous studies [17] [45], which indicates the importance of 
the soil transmissivity variation with depth. The significance of the parameter 
qs0 suggests that the basin’s initial condition has great importance in the model’s 
performance. The high sensitivity of the parameter Srmax indicates the evapo-
transpiration importance. Higher values of Srmax for PMU are in agreement 
with the physical characteristics of its subbasin, which has greater forest cover-
age and less urban area (Table 1). The parameter vr (i.e. runoff speed) had 
higher values with SOAS, which indicates that in this system, precipitation tends  
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Figure 7. Sensitivity test of TOPMODEL parameters for PMU with CMORPH (blue) and SOAS (red). Parameter values are 
shown on the x-axis. Nash-Sutcliffe efficiencies are presented on the y-axis. Text: parameter – precipitation data system – subba-
sin. 
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Figure 8. Similar to Figure 7 except for CLA. 
 

to be delayed with CMORPH, which makes greater speed necessary to compen-
sate for the shorter time. 

3.3. Simulations Performances 

In PMU, simulations with CMORPH datasets (Figure 9) yielded similar per-
formance for both calibration (NSE = 0.67) and validation (NSE = 0.66) (Table 
5). Most peak flows were underestimated. Simulations with SOAS (Figure 10) 
presented higher performance for calibration (NSE = 0.60) in relation to valida-
tion (NSE = 0.39) (Table 5). Most peak flows were underestimated in the cali-
bration and overestimated for validation for the hydrological year 2011/2012 and 
underestimated for 2012/2013. 

In CLA, simulations with CMORPH (Figure 11) yielded a better result for the 
validation period (NSE = 0.61) over calibration (NSE = 0.54) (Table 5). In most 
cases, peak flows were underestimated. The fact that the validation efficiency was 
superior to that of calibration is an indication that the calibrated parameters sa-
tisfactorily represented the characteristics of the subbasin. In simulations with 
SOAS (Figure 12), the calibration period presented good efficiency (NSE = 
0.85), with peak flows been well represented in the hydrological year 2010/2011 
(Table 5). However, the simulations were not satisfactory for the validation pe-
riod (NSE = −0.04). In the 2011/2012 hydrological year, the peak flows were 
overestimated approximately 100%, which explains the negative NSE value (i.e. 
the series mean would have been a better predictor). 

For both subbasins, the highest NSE values were obtained with CMORPH da-
ta. However, in the analysis of high-level discharges (Table 6), simulations with 
SOAS resulted in a higher success rate (28% and 18% for PMU and CLA respec-
tively) compared to CMORPH (18% and 13%). 

https://doi.org/10.4236/acs.2021.113029


M. F. Salviano et al. 
 

 

DOI: 10.4236/acs.2021.113029 500 Atmospheric and Climate Sciences 
 

 
Figure 9. Discharge (m3∙s−1) time series for PMU with CMORPH for observed (black line) and simulated (grey line) da-
ta. River stage level thresholds (attention, alert, and flood) are indicated by dashed lines. The date format is as follows: 
dd/mm/yyyy. 

 

 
Figure 10. Similar to Figure 9 except for SOAS data. 
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Figure 11. Similar to Figure 9 except for CLA with CMORPH data. 

 

 
Figure 12. Similar to Figure 9 except for CLA with SOAS data. 
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Table 5. NSE for TOPMODEL simulations of CLA and PMU with precipitation estimates 
from CMORPH and SOAS. 

Subbasin 
CMORPH SOAS 

Calibration Validation Calibration Validation 

CLA 0.54 0.61 0.85 −0.04 

PMU 0.67 0.66 0.60 0.39 

 
Table 6. Comparative analysis of TOPMODEL simulations for CLA and PMU with pre-
cipitation estimates from CMORPH and SOAS. First line: the total number of days in 
which the observed discharge was higher than the attention level discharge. Second line: 
number of days (percentage of days) in which the model underestimated the observed 
discharge. Third line: number of days (percentage of days) in which the model underes-
timated the observed had an accurate result. The fourth line: number of days (percentage 
of days) in which the model overestimated the observed discharge. 

 
CLA PMU 

CMORPH SOAS CMORPH SOAS 

n˚ days with observed discharge > 
attention discharge 

67 (100%) 67 (100%) 223 (100%) 223 (100%) 

n˚ days with Deviation < −10% 58 (87%) 29 (43%) 139 (62%) 83 (37%) 

n˚ days with Deviation between 
−10% and +10% 

5 (7%) 12 (18%) 29 (13%) 63 (28%) 

n˚ days with Deviation > +10% 4 (6%) 26 (39%) 55 (25%) 77 (35%) 

4. Conclusions 

To better understand its application on medium-sized tropical climate basins, 
hydrologic simulations with TOPMODEL were performed on the Muriaé river 
basin with SQPE from CMORPH precipitation datasets and analyzed precipita-
tion with SOAS that integrated rain gauges measurements and CMORPH esti-
mates. Sensitivity analyses were performed to understand the relevance of each 
parameter to the results. For the overall period, simulated data with CMORPH 
had the best hydrologic simulation performance, while SOAS yielded the best 
simulation for high flow events (Table 6). 

The results obtained in this study agree with other studies, in which only a 
small number of TOPMODEL’s parameters showed sensitivity. The parameter 
m relevance indicates the importance of understanding the soil transmissivity 
decay profile for tropical climate applications. Regarding evapotranspiration, the 
model showed physical significance. The more forested and least urbanized ba-
sin behaved so that the vegetation had a greater storage capacity (represented by 
the higher values of the Srmax parameter). 

When compared to SOAS, simulated discharge values with CMORPH were 
significantly lower. Hypotheses for these findings are the inability of SQPE prod-
ucts to capture isolated convective systems due to sampling and the presence of 
precipitation produced by clouds without frozen hydrometeors, not detected by 
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high-frequency PMW sensors (from 60 GHz to 300 GHz). For high stage level 
periods, the simulated flows with SOAS improved because of the recovery of the 
amplitudes of the precipitation field with the observed data applied to the high 
spatial resolution (8 km) precipitation estimates. 

However, for the entire period, simulations with CMORPH resulted in better 
NSE values. That was an unexpected result since the SOAS method reduced the 
error variance of CMORPH estimates (Figure 5). Some factors that may have 
contributed to this result: short simulation period (four years); uncertainties in 
the rate curve (which are higher for extreme stage level values in which there are 
fewer measurements); possible lack of accuracy in some of the rain gauges. Since 
SOAS yielded notably worse results at the validation stage, it can indicate that 
the calibrated parameters were not representative of the subbasin and behaved as 
empirical values to better adjust to the input data. 

Thus, TOPMODEL and these new high-resolution precipitation datasets can 
be used in MRB hydrometeorological forecasting, provided that the initialization 
of TOPMODEL starts in the dry season with high-resolution precipitation data-
sets. Therefore, this hydrometeorological forecast improves flood warning sys-
tems for civil protection. 
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