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Abstract 
An analog forecast method designed for monthly and seasonal outlooks is 
applied to the Arctic. The analog selection process uses pattern matches based 
on agreement with historical data to identify past years with similar distribu-
tions of sea level pressure, upper-air geopotential height, surface and up-
per-air temperatures, precipitation, and sea surface temperatures. The evolu-
tion of the atmosphere in the analog years is then the basis of a prediction for 
the target year. Users can choose the predictor domain, the predictand do-
main, the variable to be predicted, and the number of antecedent months on 
which the analog selection is based. We provide an example of a monthly 
forecast generated by the analog forecast tool. In comparisons with opera-
tional dynamical model forecasts over the period 2012-2019, the analog sys-
tem underperforms the dynamical models in middle latitudes but generally 
outperforms the dynamical models in monthly forecasts of surface air tem-
peratures in the Arctic. The improvement over the dynamical models is espe-
cially apparent in the late summer and early autumn (August-October). 
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1. Introduction 

While the concept of analog forecasting has been known since the advent of 
weather forecasting, serious scholarly research on the use of analogs for weather 
and climate forecasting began in the late 1960s and into the 1980s [1] [2] [3] [4] 
[5]. These studies, and many others, sought to identify large-scale patterns in 
the atmosphere and ocean as a guide to forecasting weather in the over time-
scales ranging from days to seasons. On the seasonal time scale, perhaps the 
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most well-known analog forecasts are derived from El Niño and La Niña states 
in the tropical Pacific Ocean. Maps showing what typically happens during an El 
Niño and a La Niña proliferate on the Internet [6]. An example is shown in Fig-
ure 1, in which panel (a) corresponds to El Niño conditions and panel (b) cor-
responds to La Niña conditions. Such patterns enable seasonal climate outlooks 
via a two-step process. Step 1 is the identification of an El Niño or La Niña event 
in the tropical Pacific that is expected to persist through the next season (or 
longer). Step 2 is the use of the broad patterns of association in Figure 1 as the 
basis for a seasonal forecast for regions outside the tropics. In essence, the pre-
vious El Niño or La Niña years are being used as analogs for a forecast from 
current conditions. 

Current analog forecasting initiatives fall into one of several categories. In the 
first, pattern marching or similar techniques are used to identify similar past 
cases that are then followed into the future as a forecast [7] [8] [9]. These methods 

 

 
Figure 1. Winter anomalies of temperature (red = warmer than normal, blue = cooler than 
normal) and precipitation (green = wetter than normal, brown = drier than normal) in winters 
with (a) El Nino and (b) La Nina conditions in the equatorial Pacific. Characteristic jet stream 
patterns are shown by thick arrows. From Climate Prediction Center/NCEP/NWS/NOAA,  
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensocycle/enso_cycle.shtml.  
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usually assume no a priori knowledge of the climate system. A second approach 
is to utilize analogs in conjunction with dynamical (numerical weather predic-
tion, NWP) models [9] [10]. More recently, machine learning techniques have 
been brought to bear on the use of analogs in weather forecasting, particularly in 
the targeting of surface temperature extremes over multiday time scales [11] 
[12]. Despite this upswing of research interest, analog-based methods have not 
been prominent in weather and climate forecasting strategies in the past few 
decades, especially with the advances in dynamical models for weather forecast-
ing and climate simulations. For purposes of deterministic weather forecasts, the 
conventional wisdom is that analogs diverge sufficiently rapidly that a forecast 
based on analogs cannot compete with forecasts from dynamical models. The 
divergence arises from nonlinear error growth triggered by differences between 
any two analog states. However, dynamical models are also sensitive to errors in 
the initial conditions, and several additional considerations suggest that a fresh 
look at an analog approach may be in order, especially at monthly-to-seasonal 
lead times. These considerations include the recognition that slowly evolving 
surface boundary conditions (sea surface temperature, sea ice, soil moisture) 
contribute to departures from normal atmospheric states. Potential applications 
are especially deserving of exploration for regions such as the Arctic, where the 
analog method has not previously been evaluated, where observational data to 
initialize dynamical models are relatively sparse, and where dynamical model 
skill is lower than in middle latitudes  
(https://www.ecmwf.int/en/about/media-centre/science-blog/2018/improving-pr
ediction-and-climate-monitoring-polar-regions). 

Additional motivation for the present study includes the following. First, 
beyond the range of several weeks, the skill of dynamical models in predicting 
departures from monthly and seasonal means is small. Second, statistical ap-
proaches such as those used by the Climate Prediction Center for its seasonal 
outlooks (e.g., CCA—Canonical Correlation Analysis, Regression Analysis (SMT) 
tool), implicitly assume that there is some longer-term forcing that can provide 
forecast skill. This forcing may arise from persistence in ocean temperatures or 
other parts of the land-ocean system, or from evolution of this forcing inherent 
in the analog approach. In this regard it should be noted that an analog ap-
proach (constructed analogs, CA) is part of the Climate Prediction Center’s 
toolkit for seasonal outlooks  
(http://www.cpc.ncep.noaa.gov/products/predictions/90day/seasglossary.html#c
a). Third, analog approaches have recently been developed and made available 
for various parts of the contiguous United States, for example by the Coopera-
tive Institute for Precipitation Systems (CIPS) at St. Louis University  
(http://www.eas.slu.edu/CIPS/ANALOG/analog.php). While the CIPS analog 
forecast system is applied only to shorter forecast ranges (days), it 1) demon-
strates the use of analog forecast targeting impacts, which in the CIPS case are 
tied to severe weather threats and 2) is publicly available. 
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The targeting of applications and the real-time availability highlight one of the 
main advantages of analog forecasts: stakeholders and decision-makers can be 
given historical analogs for use in assessing impacts of greatest relevance to their 
particular decision-making needs (e.g., related coastal flooding or, more gener-
ally, the likelihood of severe weather) by knowing which past events most closely 
resemble their present situation. On the seasonal timescale, analog years provide 
potentially useful information for anticipating wildfire season severity, droughts 
or, in the Arctic, sea ice conditions affecting navigation and other offshore activ-
ities. The fact that the analog forecast approach has not been rigorously explored 
for the Arctic represents an opportunity for enhancing monthly-to-seasonal 
outlooks in a region that is arguably under-served by the suite of existing fore-
cast products. 

The considerations summarized above led to the present study, for which the 
objectives were to: 1) develop an analog system to forecast atmospheric condi-
tions in the Arctic over timescales of a month to several seasons, and 2) assess 
the skill of the analog forecasts relative to dynamical model forecasts. Because 
our analog system will target forecasts on the monthly to seasonal timescale, 
monthly fields will form the basis of the analog selection. The study is carried 
out with the aid of software that gives the user the choice of region, forecast lead 
time, and predictor variables, all at monthly temporal resolution. 

2. Data and Methods 
2.1. Data Source 

The analog forecast procedure presented here uses current atmospheric and sea 
surface temperature to from the NCEP/NCAR R1 reanalysis [13] [14] to identify 
a set of n best historical matches (analogs). For illustrative purposes, we choose 
n = 5. A previous hindcast study [15] has shown that values of n in the range of 5 
to 10 represent an optimal compromise between excessive damping of anomalies 
as the number of analogs increases above about 5 - 10 and the increased volatili-
ty as the number of analogs is reduced below five. The R1 reanalysis is used be-
cause it offers a longer period of record (since 1949) than most other atmospheric 
reanalyses and is routinely updated (to within a day or two of real time). Its resolu-
tion of 2.5˚ × 2.5˚ in latitude and longitude enables the running of the required 
matching algorithm in less than a minute on a laptop or desktop computer. 

2.2. Generation of the Analog Forecast 

The analog identification is based on six variables from an antecedent period: 
surface air temperature, sea level pressure, precipitation, upper–air pressure (geo-
potential height), upper–air temperature, and sea surface temperature. As de-
scribed below, there are several options for the pressure level of the upper-air 
geopotential height and temperature. The antecedent period, which is also us-
er-selected, can be as current as the most recent calendar month. The main 
attributes of the analog system are presented in Figure 2. In order to capture the  
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Figure 2. Schematic representation of the analog forecast system. 
 

essence of the procedure by which a user obtains an analog-based forecast, we 
highlight the main elements of Figure 2 by stepping through a user’s construc-
tion of a forecast. 

First, a search area and calendar month(s) for which the analog years are se-
lected by the user (upper left panel in Figure 2). Monthly data are available, so 
the time-window can be specified as a single month (e.g.., January, 2020) or a set 
of 2, 3, …, 12 consecutive months (e.g., June through August 2020). The geo-
graphical area should be one that the user believes is climatologically predictive 
of the intended forecast area. One natural choice is a region in the Pacific Ocean 
near the equator which is part of teleconnection patterns (El Niño, La Niña) 
known to be associated with monthly-to-seasonal variations over a large area 
(Figure 1). The user also selects the pressure levels (925, 500 or 250 hPa) for the 
upper air geopotential height and the air temperature fields to be used in the 
analog-year selection. The upper-air fields used in the analog selection are in ad-
dition to the near-surface fields of sea level pressure, 2-meter air temperature, 
precipitation and sea surface temperature. 

There are varying degrees of relationship among the user options. First, the 
geographical area of the predictors can be the same as the area for which the 
prediction is desired, although it need not be. In the left portion of Figure 3, the 
two areas are different. With regard to the variables, the six predictor variables 
are pre-determined or “hard-wired” into the tool, while the variable being pre-
dicted is left to the choice of the user. The predicted variable can be any one of 
the six variables in the predictor suite. Both the predictor (analog selection) time-
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frame and the prediction timeframe can range in length from 1 to 12 months. 
However, the month(s) used the analog selection (and the predictor variables) 
are different from the month(s) of the prediction. The former must precede the 
latter, and there must be no overlap; otherwise the predictor information would 
extend into the timeframe for which the prediction is being made, in which case 
there would not be a true “prediction”. 

Second, a forecast area and time window must be defined. Similar to the search 
area, data are available for monthly and multi-month periods. The area for which 
the forecast is made should be user-relevant. 

Third, given the choices summarized above, the software evaluates the pattern 
matches of each variable with corresponding fields of all past years over the us-
er-selected domain of the predictors. The pattern-matching uses the RMSE me-
tric, and a weighting procedure (Section 2.3) is applied to obtain an overall match 
score for each year in the database. The weights are the standardized metrics of 
closeness of fit. The top five years by match score are selected as the basis for the 
analog forecast (Figure 2, upper middle panel). 

Spatial distributions of the forecast variable in the forecast area during the 
forecast month are then returned for each of the five best analog years based on 
the match scores calculated during Step 3. These conditions are presented in 
map form (upper right panel of Figure 2). The conditions returned during the 
top five match years are also averaged to produce a composite forecast for the 
forecast period (lower right panel of Figure 2). The composite forecast may be 
regarded as a “constructed analog” forecast [16] [17]. This is a prediction of the 
user-requested field in the forecast area during the forecast period based on con-
ditions during the five best analog years in the search area. 

2.3. Pattern Match Criteria 

What constitutes an analog match is a fundamental question in this type of 
study. While an analog pattern match need to be perfect to be useful, the close-
ness of the match should align with the utility of an analog. The closeness of a 
match may be measured qualitatively, or quantitatively by using various statis-
tical metrics. [1] describes a simple procedure using squared differences between 
atmospheric states and also a root mean square error (RMSE) metric. Other 
techniques involve pattern correlation, linear regression [16] or more sophisti-
cated statistical algorithms [18]. 

Analog matches in the current study use a similar match technique as [1] [19] 
[20] and others namely, a ranked RMSE score. The target month/year is eva-
luated against the same calendar month in all other years on a grid-cell by grid- 
cell basis. The difference between the target month/year and the comparison 
month/years is squared to remove the sign. Prior to the cell-by-cell evaluation, 
we remove the target domain mean from the target month/year and sepa-
rately remove each comparison month/year domain mean from each compari-
son month/year. Without this step, the highest RMSE matches often reflect the 
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overall deviation from climatology—not the best pattern matches. Metrics based 
on simple departures from the mean are not appropriate for the atmospheric 
circulation, which is determined by spatial gradients rather than by departures 
from the mean. 

Root mean squared error (RMSE) between each past year and the search pe-
riod is performed for each grid cell, then summed and weighted across each va-
riable using an auto-weighting calculation based on a standardized closeness of 
the match of each variable. The sum of the weighted mean squared errors across 
all variables is the “Match Score”. Low numerical values of the match score, i.e., 
small values of the summed RMSEs, correspond to high levels of similarity be-
tween that year and the search year. 

2.4. The User Interface 

Figure 3 is a schematic representation of a user interface illustrating the options 
available for obtaining an analog-based forecast for a particular region. Figure 3 
aligns with Figure 2 in the sense that Figure 3’s left and middle columns cor-
respond with the upper and lower left panels, respectively, of Figure 2. An ex-
ample of the software’s response to the “Run analog forecast” icon in Figure 3 is 
presented in Section 3.1. 

3. Results and Discussion 
3.1. Sample Forecast 

In order to illustrate the performance of the analog forecast software, we present 
the following example. In this case, the domains for the analog selection and the 
actual forecast are identical, 60˚N - 90˚N. The variable being forecast is the 2-meter 
air temperature. The month being forecast is April 2020, while March 2020 is the 
period used to identify the best analog match years. This period was chosen be-
cause April 2020 was characterized by extreme temperature anomalies, particularly 
the anomalous warmth that was observed over northern Eurasia. Figure 4 shows 

 

 
Figure 3. Analog software user options. 

https://doi.org/10.4236/acs.2021.113028


J. E. Walsh et al. 
 

 

DOI: 10.4236/acs.2021.113028 476 Atmospheric and Climate Sciences 
 

 
Figure 4. Departures from normal (1981-2010 mean) surface air temperatures (˚C) during March (left) and April 
(right) 2020. Source: NOAA Physical Sciences Laboratory,  
https://psl.noaa.gov/cgi-bin/data/composites/printpage.pl.  

 
that temperatures during March 2020 were generally 1˚C - 4˚C warmer than 
normal over most of northern Eurasia and the seas to the north. During April, 
however, temperature anomalies of +5˚C to +8˚C developed over central Siberia, 
with anomalies exceeding 5˚C extending across much of the Arctic Ocean, in-
cluding the Chukchi Sea. This highly unusual springtime warmth contributed to 
an early sea ice retreat north of Siberia, leading to record-low sea ice in in the 
Kara and Laptev Seas during much of the summer [21]. The anomalous heat 
persisted into June, leading to large areas of wildfire and degraded air quality 
over much of northern Asia [21]. The change from March to April is sufficiently 
large that a simple forecast of anomaly persistence from March to April would 
have severely underestimated the magnitude of the warmth over Siberia. 

Figure 5 shows the temperature anomaly fields during March of the five years 
identified as the best analogs for March of 2020. These years, determined by ap-
plication of the analog selection software to the NCEP reanalysis data for 
1948-2019, were (in order of decreasing match) 2002, 2015, 2011, 1975 and 2014. 
The preponderance of recent years in the set of five best matches is consistent 
with the recent Arctic warming and the fact that the heaviest weights were as-
signed by this search to sea surface temperature and the 2 m air temperature. 
While the different sample members have varying locations and magnitudes of 
the high-latitude warm anomalies, all show positive departures from normal 
somewhere in the vicinity of northern Asia. 

Figure 6 shows the temperature anomaly fields for April of the five best ana-
log years. The anomalies are defined here as the departures from the climatological  
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Figure 5. Departures from normal (1981-2010) air temperatures (˚C) during March of 
the five analog years with the closest match to 2020. Closeness of the match decreases 
rom upper left to lower right. 

 
mean values for 1981-2010 (the current “climatological normal” period), al-
though we note that the candidate years for the analog selection range from 1949 
to 2019. As was the case for March (Figure 5), across-sample variability is ap-
parent in the April temperature fields for the same analog years. In this case the 
2nd, 3rd and 5th best analogs (2015, 2011 and 2014) have positive anomalies ex-
ceeding 5˚C over parts of northern Asia, while the other two analogs have weak-
er positive anomalies over northern Eurasia. The across-sample variability in 
Figure 5 and Figure 6 is typical of the analog selection based on the approx-
imately 70-year sample used here. As noted in Section 2.1, the skill of the analog 
forecasts is generally highest when the number of analogs used for the composite 
(“constructed analog”) prediction is in the range of 5 to 10 [15]. 

The effect of compositing is shown in Figure 7, where the mean of the five 
analog forecasts for April 2020 is compared with the actual temperature anomaly 
map. The spatial pattern in the Arctic is generally captured well, as positive 
anomalies extend from Siberia over much of the Arctic Ocean in both the analog 
forecast and the reanalysis map. The negative anomalies over much of northern, 
western and central Canada are also well forecast by the analogs. The major area  
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Figure 6. Departures from normal (1981-2010) air temperatures (˚C) during April of the 
five years with the best March analog matches for 2020. 

 

 
Figure 7. Departures from normal temperature in April 2020 based on the NCEP/NCAR 
reanalysis (left) and the composite forecast of the five best analogs (right). 

 
of discrepancy is from northeastern Canada to Greenland, where the negative 
anomalies forecast by the analogs did not verify. Over Baffin Bay, for example, 
the observationally-based reanalysis shows positive departures from normal where 
the analog system had forecast large negative anomalies. 
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While the preceding example illustrates the analog system’s ability to capture 
some, but not all, features of month-to-month evolution of Arctic temperatures, 
it represents a single case. Moreover, the analog forecast was not compared to 
other forecasts. In the following section, we draw upon a larger sample of fore-
casts and include comparisons with operational models used for monthly to 
seasonal climate outlooks. 

3.2. Comparison with Dynamical Forecast Models 

The analog tool produces forecasts for periods of a month to several seasons. 
These forecast ranges are the same as those spanned by climate prediction cen-
ters’ dynamical forecast models, which are generally coupled atmosphere-ocean- 
ice-land models. The atmospheric components of these models are essentially 
the same models used in numerical weather prediction, for which there is de-
monstrable skill in day-to-day weather predictions out to one or two weeks. 
When these models are run beyond a week or two in order to generate monthly 
and seasonal outlooks, the forecasts target monthly or seasonally-averaged de-
partures from climatological means—as do the analog forecasts in this study. 
The availability of dynamical model forecasts for recent decades enables com-
parisons of the skill of the analog and dynamical model forecasts. For the com-
parison here, we use the North American Multimodel Ensemble (NMME), a set 
of models used to generate forecasts to lead times of seven to eleven months. The 
NMME ensemble of models has evolved over time (cf. Table 1 in [22]). The 
current forecasts of the six primary ensemble members of the current NMME 
are accessible at https://www.cpc.ncep.noaa.gov/products/NMME/ One of the 
NMME models is the National Centers for Environmental Prediction’s CFSv2 
[23], which we include in single-model comparisons described below. 

At the global scale, the dynamical model forecasts of temperatures and heights 
were found to outperform the analogs method for most forecast months at all 
time lags. For example, over the 2012-2017 period, the analogs’ 2-meter forecasts 
of temperature for the Contiguous U.S. using matches at one-month lead time 
beat the NMME only 40% of the time, with the analogs’ with the percentage 
ranging from 49% in July-September to 25% in October-December (Figure 8) 
(The seasons in Figure 8 correspond to those of the annual cycle of temperature 
over 70˚N - 90˚N, where the months of minimum and maximum temperature 
are February and August, respectively). This under-performance of the analogs 
relative to the dynamical models diminishes as one moves into high latitudes 
and, for the Arctic, the skill of the analog forecasts slightly exceeds that of the 
dynamical models. Figure 9 shows the percentages of cases in which the analog 
and dynamical model forecasts had the lower RMSE of Arctic temperature fore-
casts. Each panel in Figure 9 shows the results for forecasts targeting a particular 
calendar month (January, February, …, December) over the period 2012-2017. 
Each pair of bars summarizes results for cases in which the number (m) of 
months used for the analog selection ranged from 1 to 12. Each bar also includes  

https://doi.org/10.4236/acs.2021.113028
https://www.cpc.ncep.noaa.gov/products/NMME/


J. E. Walsh et al. 
 

 

DOI: 10.4236/acs.2021.113028 480 Atmospheric and Climate Sciences 
 

 
Figure 8. Percentage of cases (%) in which the analog (blue bars) and NMME (orange bars) had the smaller RMSE. 
 

 
Figure 9. Percentage of cases in which the lower RMSE of the monthly forecast of Arctic air temperature was achieved by the 
analog system (blue bars) and the NMME (orange bars). Each panel summarizes forecasts for a particular calendar month of the 
2021-2017 period (January to December from upper left to lower right). Successive pairs of bars in each panel are for cases in 
which the analog selection was based on m = 1, 2,…, 12 antecedent months. 
 

a range of lead times from one month to six or seven months. Because of occa-
sional corruptions of the archived NMME files, the sample sizes for each bar 
range from 34 to 37 cases (generally six lead times for six different years). 

Figure 9 shows that each type of forecast (analog, NMME) outperformed the 
other in some calendar months. For a given calendar month, the relative per-
formance of the analog system shows some sensitivity to the number of antece-
dent months, m, used in the analog selection. However, the choice of m does not 
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have a major impact on which of the two methods shows has the smaller error in 
a particular calendar month. While there is substantial month-to-month scatter 
in the relative performance of the two methods, an aggregation of the results by 
season (Figure 8) leads to the conclusion that the analog method slightly out-
performs the NMME in this particular application (forecasts of 2-meter temper-
ature over the domain 70˚N - 90˚N, which is essentially the Arctic Ocean. The 
60˚N - 90˚N was used in the analog selection for these forecasts. The aggrega-
tions in Figure 8 include all values of m for each of the three months in the season. 

Figure 8 and Figure 9 show that, except for the autumn season, the analogs 
outperform the NMME in forecasts of 2 m air temperature in the Arctic. This 
suggests that the analogs are capturing some features of the Arctic system that 
have sufficient memory to impact subsequent air temperatures. The fact that the 
NMME outperforms the analogs in the autumn is consistent with the large au-
tumn sea ice anomalies of 2012-2017, which are incorporated into the dynamical 
models’ initializations with subsequent large impacts on the surface air temper-
atures during the freeze-up period. In this respect, the dynamical models’ fore-
casts of autumn air temperatures over the Arctic during these years should be 
“hard to beat”. 

As a further illustration of the relative performance of the analogs and the 
dynamical models, Figure 10 shows the lowest RMSE errors of the forecasts 
made by the NMME, CFSv2 and analog forecasts for each month of the 2012- 
2019 period. All forecasts in this case are one-month forecasts, and the number 
of antecedent months used to identify the best analogs is m = 1. The errors show 
a strong seasonal cycle, with the largest errors in winter and the smallest errors 
in summer, consistent with the seasonal cycle of variance of Arctic air tempera-
tures (Przybylak, 2000). The color-coded symbols in Figure 10 indicate which of 
the three forecasts was the “winner” in the sense that it had the lowest RMSE: 
analog (blue), NMME (orange) and CFSv2 (green). In over half (50/87, or 57%) 
of the cases, the analog forecast had the smallest error. In the remaining 37 cases, 
the lowest errors were about evenly split among the NMME (19 cases) and the 
CFSv2 (18 cases). The latter two forecasts are not independent, as the CFSv2 is 
one of the NMME models. Consistent with Table 1, the analog forecasts in Fig-
ure 9 generally fare most poorly during the autumn season (the periods of in-
creasing errors in the seasonal cycles of Figure 10). 

4. Conclusions 

The analog forecast system presented here has been shown to be competitive 
with state-of-the-art dynamical forecast models in the Arctic despite its under-
performance relative to dynamical models in middle latitudes. This regional de-
pendence of the relative accuracies of the different approaches may be surprising 
at first glance, but it is consistent with the sparser network of in situ observations 
in the Arctic. Especially over the Arctic Ocean, which is the domain of the com-
parison presented here, there are no rawinsondes or surface observing stations.  
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Figure 10. Root-Mean-Square Errors (˚C) of one-month temperature forecasts produced by the analog system (blue), the 
NMME (orange) and the CFSv2 model (green). 

 
Aircraft and ship reports are also much less frequent in the Arctic, where surface 
buoys and satellite products are the main sources for the initialization of dy-
namical models. While one may argue that an analog forecast should also be 
sensitive to the initial state, the impact of uncertainties in the initial state is evi-
dently less in an approach that inherently assumes some correspondence in the 
evolution of the atmosphere in years with similar initial states. Given the limits 
of deterministic predictability (one to two weeks at present), surface boundary 
forcing or some other “memory” in the system is being utilized by the analog 
system. 

There are several notable limitations of the analog forecast system. First, the 
pool of candidate years for the analog matches is clearly limited, in this case to 
approximately 70 years. An analog-based forecast would clearly benefit from a 
larger sample of candidate analog years, as the closeness of the best match(es) 
will generally increase as the size of the candidate matches increases. Stated dif-
ferently, the divergence from the “best” analogs will be more rapid as the close-
ness of the match worsens. Another major limitation is that the effect of climate 
change or even low-frequency internal climate variability. If climate change of 
variability takes the climate system to a new extreme that is outside the range 
spanned by the available analogs, then not only is a perfect match impossible but 
a close match becomes increasingly unlikely. The fact that the Arctic climate is 
changing rapidly and reaching new extremes (e.g., of temperature) makes this 
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limitation especially important in the Arctic. 
The design of a system in which the predictor domain as well as the predictor 

variables can be varied makes the analog system presented here a natural candi-
date for machine learning. Machine learning has indeed been introduced into 
analog usage for short-range (days) weather forecasting [11]. With regard to the 
various user options included here, the combination of predictor regions, pre-
dictor variables, and predictor lead times that fare best in terms of forecast ac-
curacy will vary, making optimization computationally challenging. However, if 
the system can “learn” from its successes and failures, it can move towards 
self-selection of optimal combinations of input parameters for a particular fore-
cast. While such an approach will require additional levels of complexity in the 
system design, it could ultimately enable the analog method to realize its full po-
tential in monthly and seasonal forecasting. 
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