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Abstract 
Rainfall over Rwanda is highly variable both in space and time. This variabil-
ity leads to chronic food insecurity due to the overdependence of the econo-
my on rain-fed agriculture systems. This study aims to evaluate the skills of 
Rossby Centre Regional Climate Model (RCA4) simulations driven by 10 
GCMs for the period 1951-2005 using the Global Precipitation Climatology 
Centre (GPCC v8) as a reference. Different statistical and geospatial metrics 
were used to deduce the model’s skills in simulating seasonal and annual 
rainfall. Results show that the country received bimodal rainfall pattern; 
March-May (MAM) and September-December (SOND). The RCA4 models 
are inconsistent in simulating the MAM rainy peak. However, the models are 
coherent in simulating SOND seasonal peak despite exhibiting wet bias. The 
models show reasonable skills in simulating mean annual cycle than interan-
nual variability as depicted by insignificant correlation and different signs of 
rainfall trend. Conclusively, the performance of RCA4 models in simulating 
observed rainfall characteristics over Rwanda is relatively weak. The perfor-
mance of the models differs at various time scales. Nevertheless, the models 
can be ranked from the best performing to the least as; CSIRO, CanESM2, 
CNRM, GFDL, MIROC5, ENS, EC-Earth, HadGEM2, IPSL, MPI, and No-
rESM1. Ranking the performance of RCA4 historical models acts as a basis 
for future climate model’s selection depending on the purpose of the study. 
The findings of this study may help in devising appropriate climate adapta-
tion measures to respond to the ongoing global warming for sustainable eco-
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nomic and livelihood development. Additionally, modelers may improve the 
model’s parametrization schemes and lessen the inherent chronic biases for a 
better presentation of the future. 
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1. Introduction 

Understanding the current and future rainfall trends, and its variability over 
Rwanda is paramount. The footprints of climate change and variability are evi-
denced over the region due to increased occurrence of extreme climate events 
[1] [2] [3]. Rainfed agriculture is the core of the economy hence rainfall variabil-
ity has detrimental impacts on the socioeconomic of the country [4]. Unfortu-
nately, the main crop growing seasonal rainfall has been decreasing over the 
country [5] [6] [7] [8] [9], hence threatening food security and livelihood. 

Food insecurity and clashes over natural resources have been witnessed over 
East Africa region due to limited resources. Increased frequency and intensity of 
occurrences of droughts and floods [10] [11] have exacerbated food insecurity in 
the already vulnerable zone due to weak adaptive capacity. Prevalence of pests 
and diseases due to climate change like the recent invasion of desert locust over 
the East Africa region has threatened many people’s livelihood and the economy 
at large. The numerical model has become an effective tool to understand the 
climate change and predict the climate at different time scales. Therefore, gaug-
ing the skills of the current RCA4 historical models is crucial in selecting the best 
performing model that can be used for future climate projections and impacts 
studies. 

Around the globe, the General Circulation Models (GCMs) have been widely 
used to understand the climate issues [12] [13] [14] [15]. In some regions, the 
models are skillful like the subtropics [16] [17] while in other regions especially 
over the tropics, the models show relatively poor skills and huge models’ diver-
gence [13] [15] [18]. This discrepancy in the performance of GCMs has been 
partly linked to the imperfect parametrization schemes, such as the convective 
schemes in the GCMS [19]. For one thing, the parameterization schemes may be 
sensitive to regions, that is, an appropriate scheme for a region may not fit for 
another region. As the model performance varies for different regions, one of the 
purposes of this study is to examine the performance in simulating the regional 
climate in East Africa. 

Under the umbrella of the World Climate Research Program (WCRP), CMIP 
modeling groups have been developing models for the last 20 years [20]. These 
models have been on improvement in both physical parametrization and hori-
zontal resolution, e.g., most of the CMIP3 atmospheric model has a horizontal 
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resolution of 300 km while most of CMIP5 models have a resolution of around 
200 km [21]. Encouragingly, improved performance across CMIP models’ gen-
erations have been observed by [22] in simulating observed rainfall over East 
Africa (EA) when comparing the CMIP3 with CMIP5. The study documented 
that, CMIP3 was less skillful in simulating the short-term rainfall peak in April 
but such bias was rectified in CMIP5 that depicted satisfactory skills in capturing 
the seasonal peak. 

The course (low-medium) resolution of GCMs has hindered them from cap-
turing mesoscale features that control rainfall patterns in many parts of the globe 
[23] [24]. Models with high resolution are anticipated to be capable of simulat-
ing skillfully convective mesospheric features and multiple-scale interaction than 
GCMs with coarse resolution [25] [26]. Due to the limitation of the computing 
resource and the difficulty in model designing, high-resolution simulation and 
prediction for a global region is still in its infancy. This promoted the scientists 
around the globe to widely deploy both dynamical and statistical downscaling 
techniques to improve on the model’s simulation ability. Despite the advantages 
brought by downscaling methods, the physics uncertainty derived from the 
driving GCMs can lead to more uncertainty in the regional climate model 
(RCMs), which yields the biased results [27] [28]. 

Remarkably, previous studies that evaluated the skills of CORDEX (Coordi-
nated Regional Downscaling Experiment) historical models consensually agree 
that RCMs still exhibits inadequate skills to simulate rationally rainfall characte-
ristics over different regions [29] [24] [18]. This can be linked to the fact that the 
majority of these studies evaluated the first phase of CORDEX models that were 
driven by ERA-Interim reanalysis data [30] [31]. The systematic errors in simu-
lating the large-scale circulation features will greatly influence the skills of the 
RCMs in replicating the climate characteristics. This calls for the need to eva-
luate the skills of the second phase of CORDEX models that are driven by 
CMIP5 [21], as few attentions has been paid for this aspect. 

The main objective of this current study is to evaluate the performance of 10 
CORDEX historical Climate models against observed rainfall. The findings of 
this study are vital for model developers, government policy makers and contri-
bute significantly to the body of growing literature review on the performance of 
models in simulating observed climate. The remaining part of this paper will 
address the characteristics of the study domain, the types of datasets and me-
thodology deployed in Section 2. Section 3 will present the findings and discus-
sion at length. Conclusion and recommendations will be drawn in the last Sec-
tion 4. 

2. Study Domain, Data, and Methodology 
2.1. Characteristics of the Study Area 

Rwanda is a tropical country located on Latitude 1.4˚S to 2.51˚S and Longitude 
28.53˚E to 30.53˚E with an area of approximately 26,338 km2 (Figure 1). The  
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Figure 1. The insert shows a map of East Africa on the left (a) while the map of Rwanda is on the right (b). The background 
color shows the elevation (meters). 

 
country experienced dipole rainfall regimes, i.e., March-May (MAM) and Sep-
tember to December (SOND); and two dry seasons, i.e., June-August (JJA) and 
January-February (JF) on its annual cycle [5] [7] [32] [33]. These rainy seasons 
are known locally as ‘long-term rainy seasons” that refers to the MAM season 
and “short-term rainy season” that refers to the SOND season. Such termination 
is based on the amount of rainfall during the rainy season. Throughout the re-
mainder of this study, MAM and SOND will be used to refer to these two sea-
sons. 

Rainfall is highly erratic and unevenly distributed within Rwanda during both 
rainy seasons despite the country’s location is along the equatorial zone. The 
country exhibits complex mountainous topography ranging from 900 to 4507 m 
[5]. High altitude regions like the Virunga volcanic chains and Congo-Nile ridges 
are located on the northwestern part of the country with a height of 1800 - 4500 
m. Those regions receive the largest amount of rainfall with an annual amount 
ranging from 1300 mm to 1550 mm [32]. The low-lying land lies on the eastern 
parts of the country. This complex topographic feature highly influences the 
climate characteristics of the country. 

The seasonality of the rainy seasons is modulated by the equatorial rain belt 
over the region [34] [35]. MAM rainfall season is controlled by mesospheric 
features like topography and Lakes while SOND rains are controlled by large- 
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scale features like El Niño Southern Oscillation (ENSO), Indian Ocean Dipole 
(IOD), subtropical Anticyclones [36]-[42]. Remarkably, the convergence of an-
ticyclones, i.e., Mascarene High at Madagascar coast and feeds to the Mozambi-
que coast and St. Helena high conveyed from the South Atlantic Ocean to Congo 
basin then to Lake Kivu, leads to an anomalous amount of rainfall during MAM 
season [32]. The dry seasons are caused by cold and dry air masses from the 
Arabian Sea that forms the Siberian anticyclone [5] [37]. 

2.2. Data 

Several datasets were deployed in this study from 1951-2005. Monthly precipita-
tion data obtained in form of “Precipitation flux" (kg/m2/s) for 10 RCA4 models 
in Coordinated Regional Climate Downscaling Experiment (CORDEX) was be 
used. These models are an advancement of the High-Resolution Limited Area 
Model (HIRLAM) [43], in which the improved dynamical and physical parame-
trization were applied [44]. This dataset has been developed by the Swedish Me-
teorological and Hydrological Institute [45] and archived at  
https://www.smhi.se/en/research/research-departments/climate-research-rossby-c
entre2-552. The information for the RCA4 models used are illustrated in Table 1. 
Based on the location of the study domain, we used the RCA4_AFRICA (AFR- 
44) domain with a resolution of 50 km (approx. 0.44˚). The Digital Elevation 
Model data was obtained from National Oceanic and Atmospheric Administra-
tion archived on https://www.ngdc.noaa.gov/mgg/topo/topo.html.  

As the densely populated synoptic stations remain a major challenge over 
Africa [39], the precipitation data derived from the Global Precipitation Clima-
tology Centre (GPCC) version 8 was used in this study. The available station da-
ta were used to validate GPCC dataset which was used in the subsequent analysis  

 
Table 1. The description of the CMIP5 climate models that were downscaled by the RCA4 group to RCA4, v1. 

Modelling Institution Horizontal Resolution Model full name Acronym 

Canadian Centre for Climate Modelling and Analysis, Environment and Climate 
Change Canada, Victoria, BC V8P 5C2, Canada 

2.8˚ × 2.8˚ CanESM2 CanESM2 

Centre national de recherches météorologiques (France) 1.4˚ × 1.4˚ CNRM-CM5 CNRM 

Commonwealth scientific and industrial research organization 1.875˚ × 1.875˚ CSIRO-MK3-6-0 CSIRO 

EC-Earth-Consortium 1.125˚ × 1.125˚ EC-Earth3 EC-Earth 

NOAA geophysical fluid dynamics laboratory, USA 2.5˚ × ~ 2.0˚ GFDL-ESM2M GFDL 

Met Office Hadley Centre 1.25˚ × 1.9˚ HadGEM2-ES HadGEM 

Institute Pierre-Simon Laplace, France 2.5˚ × ~ 1.27˚ IPSL-CM5A-MR IPSL 

Japan Agency for Marine-Earth Science and Technology (AMSTEC), 
Atmosphere and Ocean Research Institute, The University of Tokyo, National 
Institute for Environmental Studies, and R-CCS (RIKEN Center for 
Computational Science, Hyogo 650-0047, Japan 

1.4˚ × 1.4˚ MIROC5 MIROC5 

Max Planck institute for meteorology (Germany) 1.875˚ × 1.875˚ MPI-ESM-LR MPI 

Norway Climate modeling Consortium 1.875˚ × 2.5˚ NorESM1-M NorESM1 
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as the reference dataset. For consistency purposes and fair comparison, both the 
observational data and the RCA4 model datasets were regridded to a common 
resolution of 0.44˚ * 0.44˚ using bilinear interpolation method. 

2.3. Methodology 

This study deployed various scalar statistical metrics to discern the skills of 
RCA4 models in simulating the observed rainfall characteristics over Rwanda. 
To obtain the multi-model ensemble mean, equal weight was assigned to each 
model. This method of building the model ensemble mean was adopted from 
[46]. Other statistical methods include: Standard deviation, Mean, Pearson Cor-
relation coefficient, Relative percentage bias, Mann-Kendall trend test, and Sen’s 
slope estimator. These methods can be elucidated mathematically as; 

( ) 1
n

ii X
Mean

n
µ

µ =
−

= ∑                     (1) 

After obtaining the means of the two datasets, it was essential to get the mean 
difference between the two using Root mean square error (RMSE). The value of 
the RMSE is taken as an absolute value. Remarkably, for a fair comparison of the 
model performance, is to scale the value of RMSE either by the observed mean 
or the standard deviation. In this study observed mean ( OBSµ ) was used (Equa-
tion (3)) 

( )21
1 ii n

n x
nRMSE

n

µ
=

−
−=
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                  (2) 
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RMSEnRMSE
µ

=                        (3) 

( ) ( )21 
1 ii n

nStandard deviation x
n

δ µ
=

= −
− ∑            (4) 

To understand the temporal agreement between the simulated rainfall and 
observation, the Pearson correlation method was used. The coefficient value is 
obtained by dividing the covariance between the observed and simulated model 
with the product of their standard deviation as expressed in (Equation (5)). The 
significance of the correlation value was tested using a t-test at a 95% confidence 
level. 

( ) ( )
( ) ( )

1

2 2
1 1

i Obs i Modeli
xy

i Obs i Mode

n

i
n n

li

Obs Model
CC

Obs Model

µ µ

µ µ
=

= =
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− ∗ −

∑
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         (5) 

Understanding the rainfall trend is important for agriculture purposes and 
water management. Non-parametric trend detection Modified Mann-Kendall 
test [47] [48] was used to assess the direction of the trend. The magnitude of the 
trend was assessed using a non-parametric Theil Sen slope estimator [49]. 
Non-parametric methods are more robust than their coequal parametric me-
thods since they are not influenced by occurrences of extremes and outliers in 
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the datasets [50]. More details of the methods can be found in [51] [52] [53] 
[54]. 

To understand the discrepancy between the observed and simulated mean 
values, relative bias is used. The relative bias of different models is scaled against 
the mean observation to unify them for a fair comparison of individual models. 
The Percentage Relative Bias (P.R.B) can be elucidated mathematically as; 

1

1

. . 100%p pi

pi

n

n

Model Obs
P R B

Obs
=

=

−
= ∗∑

∑
                (6) 

Taylor diagram [55] was used to assess spatially the performance of the mod-
els when statistical measures like standard deviation, correlation, and cen-
tered-root mean square error (RMSE) are combined. If the model is near to the 
reference data (Observation), the model is considered to exhibit reasonable skills 
in simulating the observation. Additionally, if the models are spread apart from 
each other, it depicts divergence of the models/lack of consensus in their predic-
tion ability and the opposite is true. 

Lastly, we combined these statistical methods using skill scores [56]. The skills 
of the models at both seasonal and annual scales were subjected to an absolute 
error to capture their magnitude of deviation from the observation or the ideal 
values i.e. 1 in the case of the correlation coefficient. Then, we added up the Skill 
score values (SSV) at all the time scale considered. The smaller the SSV, the bet-
ter the performance of the models and vice versa is true. The following scalar 
metrics were used to build the SSV; Normalized Root means square error 
(nRMSE), Correlation coefficient (CC), absolute relative errors for; relative bias 
and, Theil-slope estimator (TSA). The SSV can be illustrated mathematically as; 

( )1 . .SSV CC nRMSE R P B TSA= − + + +               (7) 

3. Results and Discussion 
3.1. Mean Annual Cycle Characteristics 

As described in Sect. 2, the mean rainfall in Rwanda exhibits bimodal rainfall 
patterns, MAM rainy season and SOND rainy season. Virtually, the skills of the 
model to simulate the seasonality of rainfall over Rwanda lies primarily in the 
model’s ability to capture the north-south movement of ITCZ, which is an es-
sential baseline of model’s basic performance. Therefore, we firstly investigate 
whether the RCA4 models have the ability of duplicating the seasonality of the 
mean rainfall. 

As clearly seen in Figure 2, the mean rainfall simulated by all the models ex-
hibit a semi-annual feature, indicating that all the models can capture the annual 
cycle of rainfall over Rwanda. Here the GPCC dataset was also evaluated, in or-
der to be used as the reference dataset in the subsequent analysis. In general, the 
annual cycle of rainfall derived from the GPCC (thick red curve in Figure 2) 
matches well with the observation (thick blue curve in Figure 2), in terms of 
both the temporal evolution feature and the magnitude. Specifically, the correlation  
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Figure 2. The skills of RCA4 models in simulating the mean annual rainfall cycle 
(mm/month) over Rwanda from 1951-2005. 

 
coefficient between them reaches more than 0.9, indicating that the GPCC cap-
tures the seasonality feature excellently. Therefore, the GPCC data is used as a 
potential reference in the subsequent analysis. 

To assess the ability of RCA4 models in simulating the annual cycle of rainfall 
in detail, we further examine the dynamical aspects of the annual cycle of rain-
fall, including the onset, peak, and cessation of rainfall. In general, the RCA4 
models can simulate the MAM seasonal rainfall peak, despite showing some bi-
ases in the magnitude (Figure 2). Specifically, the MAM seasonal rainfall is un-
derestimated by three models (HadGEM2, NorESM1 and GFDL-ESM2M) while 
the rest of the models overestimated the seasonal rainfall. In contrast, all the 
RCA4 models exhibit wet bias when simulating the SOND seasonal rainfall, 
compared to the observation data and GPCC (Figure 2). The higher values of 
precipitations given by the models may indicate that the parametrization con-
cern an accumulation effect. 

We further assess the RCA4 model performance in simulating the observed 
mean annual cycle, in terms of three aspects (i.e., correlation, root mean square, 
and standard deviation). As summarized in Figure 3, the models show reasona-
ble skills and consistency in simulating the mean annual cycle with low spatial 
variability and normalized RMSE of less than one. In this case, the best per-
forming model is CSIRO while the least performing its MIROC5. These findings 
are consistent with previous studies that also focused on this region and identi-
fied CSIRO has the best performance in simulating the mean annual cycle [57] 
[15]. 

3.2. Spatial Distribution of Seasonal Rainfall over Rwanda 

Observed spatial patterns depicts that most parts of the country are wet during 
the MAM rainy season, as shown in Figure 4(a). The regions surrounding Lake  
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Figure 3. Summarizing multiple facets of RCA4 climate models in simulating observed mean annual cycle. The alphabetical letters 
denote; A-CanESM2, B-IPSL, C-CNRM, D-CSIRO, E-EC-Earth, F-Ensemble model, G-GFDL-ESM2M, H-HadGEM2, I-MIROC5, 
J-MPI, K-NorESM1. 
 

 
Figure 4. Spatial distribution of observed MAM seasonal rainfall (a), RCA4 models (b), and bias (c) in mm/year. 
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Kivu and northwestern part of Rwanda receive the highest amount of rainfall 
during this season as compared to the other parts. Notably, the eastern parts are 
found to be drier than the rest of the country (Figure 4(a)). The MME made by 
the RCA4 models show reasonable skills in simulating this spatial distribution 
(Figure 4(b)). However, the models underestimate the rainfall amount in most 
parts of the country, especially for the southeastern region where the underesti-
mation reaches around 100 mm/year. In the western parts, the models slightly 
overestimated the observed seasonal rainfall by 30 mm/year (Figure 4(c)). 

During SOND rainy season, the observed data shows that the country receives 
more rainfall than that during MAM. The spatial pattern remains relatively the 
same during the two seasons with the western regions wetter than the eastern 
side (Figure 5(a)). The MME result made by RCA4 models show relatively low 
skills in simulating the spatial pattern by documenting a high amount of rainfall 
on the northern parts of Lake Kivu as compared to the observation (Figure 
5(b)). Succinctly, the RCA4 climate models show wet bias in simulating SOND 
seasonal rainfall over the northern parts of Rwanda while dry bias in the south-
ern region (Figure 5(c)). 

 

 
Figure 5. Spatial distribution of observed SOND seasonal rainfall (a), RCA4 models (b), and bias (c) in mm/year. 
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The biases of the mean precipitation distribution may be linked to the oro-
graphy. In Rwanda, the precipitation distribution exhibits more rainfall in the 
western parts, which is closely associated with the fact that the anomalous influx 
of moisture from Lake Kivu and the Congo airmasses is usually the source of the 
precipitation in Rwanda. As shown in Figure 1(b), the altitude sharply increases 
in the western edge of Rwanda and can reach around 4000 meters. Such a so-
phisticated orography may be beyond the simulation skill in the models and in-
duce the bias in simulating the mean precipitation in Rwanda. It is worth men-
tioning that the orographic effects have been noted to significantly influence the 
skills of RCA4 models in simulating observed rainfall over Africa [18] [24]. 
Conclusively, RCA4 models have the ability in simulating the mean precipitation 
in MAM and SOND rainy seasons, but still show some biases in their spatial dis-
tribution. 

3.3 Seasonal MAM Rains Temporal Characteristics 

Table 2 shows the ability of the RCA4 climate models in simulating observed 
MAM seasonal rainfall statistics. Most of the models exhibit dry bias except 
CSIRO, EC-Earth, IPSL, and MPI that have a wet bias. The ability of the climate 
models to capture the temporal variability was low as portrayed by the majority 
of the models exhibiting insignificant negative correlation values. Few models 
that depicted positive relationships were CanESM2, CNRM, and NorESM1. 
Notably, none of the models exhibited an insignificant relationship with the ob-
served MAM seasonal rainfall at a 95% significant level. 

In the observation, the rainfall exhibits a decreasing trend at a rate of 0.10 
mm/year for the MAM rainy season. Unfortunately, only two out of ten models 
(CNRM and IPSL) were able to capture such decreasing trend. This conforms to  

 
Table 2. Skills of RCA4 models in simulating MAM seasonal rainfall (mm/year) mean 
statistics. 

Model Mean %Bias Stdev RMSE MK TSA 

OBS 150.89 
 

17.29 − −0.10 −0.17 

CanESM2 145.97 −3.26 30.14 0.23 0.05 0.14 

CNRM 145.99 −3.25 31.90 0.24 −0.06 −0.22 

CSIRO 158.78 5.23 32.15 0.26 0.01 0.03 

EC-Earth 171.85 13.89 34.10 0.31 0.06 0.20 

ENS 142.49 −5.57 8.46 0.15 0.24 0.21 

GFDL 109.38 −27.51 28.28 0.35 0.07 0.17 

HadGEM2 84.58 −43.95 22.65 0.48 0.03 0.07 

IPSL 170.74 13.15 27.15 0.27 −0.07 −0.21 

MIROC5 156.98 4.04 31.49 0.24 0.21 0.60 

MPI 170.61 13.07 35.28 0.31 0.24 0.70 

NorESM1 110.05 −27.07 26.94 0.34 0.17 0.42 
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the “East Africa Climate paradox” where the observation shows decreasing rain-
fall trends while the GCMs show positive trends [58]. 

To summarize pictorially different aspects of the RCA4 models in simulating 
the observed MAM seasonal rainfall, the Taylor diagram was used (Figure 6). 
All the RCA4 models have some biases in simulating the mean rainfall in MAM 
season to various extent, and the MME results outperforms the individual model 
in simulating the observed MAM rain characteristics. This has been observed in 
the previous studies over the great horn of Africa that gauged the skills of RCA4 
models against observations [18] [59]. 

3.4. SOND Rainfall Characteristics 

The ability of the RCA4 models to simulate the observed SOND rains was also 
gauged. As shown in Table 3, the results show that all the models as well as the 
MME have shown wet bias in terms of the mean SOND rainfall, showing an 
overestimation of mean SOND rainfall to various extent. In terms of the inte-
rannual variation, the models exhibit high standard deviation than the observa-
tion (Table 3). In terms of long-term trend of SOND mean rainfall, the observa-
tion shows an insignificantly increasing trend at a rate of 0.03 mm/year during 
this period. Interestingly, only three RCA4 models (HadGEM2, IPSL, and 
MIROC5) were able to capture this increasing trend. 

Diagrammatically, the three aspects of the RCA4 models’ skills in simulating 
the observed SOND rainfall are shown in Figure 7. All the RCA4 models have 
some biases in simulating the mean rainfall in MAM season to various extent, 
but the MME results outperforms the individual model in terms of simulating  

 

 
Figure 6. Taylor diagram depicting the performance of RCA4 model in simulating MAM 
seasonal rainfall mean statistics. The alphabetical letters denote; A-CanESM2, B-IPSL, 
C-CNRM, D-CSIRO, E-EC-Earth, F-Ensemble model, G-GFDL-ESM2M, H-HadGEM2, 
I-MIROC5, J-MPI, K-NorESM1. 
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Table 3. RCA4 Skills in simulating mean SOND rainfall (mm/year) over Rwanda. 

Model Mean %Bias Stdev RMSE MK TSA 

OBS 132.20 
 

20.72 
 

0.03 0.07 

CanESM2 169.12 27.92 27.62 0.39 −0.01 −0.03 

IPSL 156.61 18.46 24.68 0.30 0.08 0.18 

CNRM 141.74 7.21 23.41 0.25 −0.07 −0.17 

CSIRO 142.35 7.67 27.46 0.25 −0.05 −0.15 

EC-Earth 191.76 45.05 28.23 0.51 −0.08 −0.26 

ENS 155.39 17.54 8.71 0.24 −0.05 −0.05 

GFDL 183.81 39.03 32.83 0.51 −0.02 −0.07 

HadGEM2 162.53 23.32 23.26 0.24 0.08 0.14 

MIROC5 135.40 2.41 22.34 0.21 0.09 0.20 

MPI 154.83 17.11 28.17 0.29 −0.01 −0.03 

NorESM1 155.78 17.83 26.09 0.33 −0.001 −0.01 

 

 
Figure 7. Summarized skills of RCA4 models in simulating observed SOND rains over 
Rwanda. The alphabetical letters denote; A-CanESM2, B-IPSL, C-CNRM, D-CSIRO, 
E-EC-Earth, F-Ensemble model, G-HadGEM2, H-GFDL-ESM2M, I-MIROC5, J-MPI, 
K-NorESM1. 

 
the observed SOND rain characteristics. 

3.5. Annual Scale Characteristics 

At the annual mean time scale, the ability of the RCA4 climate models to simu-
late the mean annual statistics are illustrated in the Table 4. The results show 
that, all the models with exception of EC-Earth exhibit dry bias. The RMSE re-
sults show that the models exhibit bias in terms of the spatial distribution of 
mean rainfall to various extent. The observed annual rainfall over Rwanda shows  
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Table 4. The skills of RCA4 models in simulating total annual rainfall (mm/year) over 
Rwanda. 

Model Mean %Bias Stdev RMSE MK TSA 

OBS 1310.58 
 

104.7 
 

−0.02 −0.21 

CanESM2 1166.52 −10.99 130.76 0.17 0.00 0.00 

IPSL 1217.72 −7.09 133.93 0.15 0.01 0.21 

CNRM 1093.96 −16.53 150.11 0.21 −0.17 −2.45 

CSIRO 1169.50 −10.76 136.27 0.18 −0.04 −0.68 

EC-Earth 1379.91 5.29 129.27 0.14 −0.03 −0.34 

ENS 1144.12 −12.70 42.34 0.15 0.03 0.13 

GFDL 1165.40 −11.08 162.15 0.19 0.02 0.32 

HadGEM2 784.89 −40.11 122.40 0.42 0.06 0.72 

MIROC5 1168.61 −10.83 149.28 0.17 0.19 2.88 

MPI 1221.15 −6.82 147.77 0.15 0.07 1.01 

NorESM1 1073.51 −18.09 125.31 0.23 0.13 1.62 

 
a decreasing trend at a rate of -0.02mm/year. The three RCA4 models (CNRM, 
CSIRO, and EC-Earth) are able to capture this decreasing trend, as shown in 
Table 4). 

Notably, the inadequacy of RCA4 models to capture the correct sign of trend 
is consistent with the finding that was documented by previous studies which 
also focused on this region [18] [59] [60]. Such bias may be traced back to the 
driving GCMs models that have been dynamically downscaled. It is worth men-
tioning that the RCA4 models that are driven by ERA-Interim dataset skillfully 
simulate rainfall trends compared to those driven by CMIP data [61]. 

The summary of the skills of RCA4 climate models in simulating the observed 
annual rainfall is shown using a Taylor diagram in Figure 8. The results show 
that there is little agreement between the models in capturing the statistical as-
pects of the annual rainfall over Rwanda. 

The RCA4 models exhibits some biases in simulating the annual mean rainfall 
to various extent. Clearly, the multi-model ensemble result performs better than 
the individual models in this category. 

3.6. Summarizing the Skills of RCA4 Models Using Skill Score 

The models were gauged on their capability to simulated seasonal and annual 
rainfall over Rwanda. The models portrayed mixed performance in simulating 
rainfall at all scales (Figure 9). Notably, individual models perform differently at 
a different scale. The RCA4 models show reasonable skills in simulating SOND 
seasonal rainfall than both MAM and annual rainfall. These findings are cohe-
rent with previous studies over the region that deployed different GCMs models 
[13] [14] [15] [18]. Remarkably, the ensemble model outperforms the skills of 
the individual model in simulating the observed rainfall features over Rwanda. 
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Figure 8. Pictorial depiction of RCA4 models in simulating total annual rainfall. The al-
phabetical letters denote; A-CanESM2, B-IPSL, C-CNRM, D-CSIRO, E-EC-Earth, F-En- 
semble model, G-GFDL-ESM2M, H-HadGEM2, I-MIROC5, J-MPI, K-NorESM1. 

 

 
Figure 9. Skill score of the RCA4 historical models in simulating seasonal and annual 
rainfall over Rwanda. The alphabetical letters denote; A-CanESM2, B-IPSL, C-CNRM, 
D-CSIRO, E-EC-Earth, F-Ensemble model, G-GFDL-ESM2M, H-HadGEM2, I-MIROC5, 
J-MPI, K-NorESM1. 

 
The best model in simulating observed MAM seasonal rainfall is CNRM while 

the least performing model is MPI. During SOND rainy season, MIROC5 out-
performs all other models including the ensemble model which is number six 
out of eleven. The least skilled model in this category is GFDL. At the annual 
scale, EC-Earth shows more reasonable skills in simulating observed annual 
rainfall characteristics while MIROC5 was the least skilled. This mixed perfor-
mance portrays that, no individual model performs skillfully at all time scale. 
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Therefore, model selection should be based on the intended use of the model. 
This calls for improvement of model parametrization to capture the large-scale 
factors (ENSO and IOD) and mesospheric factors (Complex topography and 
significant water bodies) that modulate rainfall over the study domain and the 
greater East Africa. 

Ranking the overall performance of the models is crucial as it acts as a basis 
for model selection to be used for future climate projection. Therefore, the mod-
els can be ranked from the best performing model to the least as; CSIRO, Ca-
nESM2, CNRM, GFDL, MIROC5, ENS, EC-Earth, HadGEM2, IPSL, MPI, and 
NorESM1. 

4. Conclusion and Recommendations. 

The present study aims at ranking the performance of ten RCA4 historical mod-
els that were driven by CMIP5 climate models against the observed gridded da-
tasets as obtained from GPCC from 1951-2005 over Rwanda. The study dep-
loyed both statistical metrics and geospatial methods to understand both spatial 
and temporal skills of the RCA4 models in simulating the observed seasonal and 
annual rainfall characteristics. For consistency purposes and fair comparison, all 
the models and the GPCC dataset were regridded to a common resolution of 
0.5˚ × 0.5˚ using bilinear interpolation. The results show that Rwanda receives a 
bimodal rainfall regime; March-May (MAM) and September-December (SOND). 
The historical RCA4 climate models are inconsistent in simulating this annual 
cycle with most of the models showing wet bias and three of them exhibiting dry 
bias during MAM rainy season. However, the historical RCA4 models are cohe-
rent in simulating the SOND seasonal rainfall although they exhibit a wet bias. 

The RCA4 historical models are skillfully in simulating the mean annual cycle 
than capturing the temporal pattern at both seasonal and annual scale. Most of 
the models exhibited inadequate skills in simulating rainfall trends and magni-
tude. This signifies the inadequacy of the GCMs models even after downscaling 
to simulate the mechanisms that modulated interannual variability of rainfall 
over the region. The performance of the RCA4 historical models differs from 
one-time scale to another with huge bias. The historical models can be ranked 
from the best performing model to the least as; CSIRO, CanESM2, CNRM, 
GFDL, MIROC5, ENS, EC-Earth, HadGEM2, IPSL, MPI, and NorESM1. The 
ensemble model outperforms some individual models in capturing the mean 
statistics of rainfall over Rwanda. 

The findings of this study are meaningful to both policymakers and climate 
modelers. The modeler can use the results to improve on the models’ parame-
trization schemes and physics in order to reduce the chronic bias documented. 
We highly recommend deployment of bias correction techniques on RCA4 fu-
ture climate models before using them for future rainfall projections and impact 
studies. Additionally, the selection of the model should be based on the purpose 
of the study due to mixed performance of the models at different time scale. 
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